Articles | Volume 20, issue 1
https://doi.org/10.5194/tc-20-737-2026
https://doi.org/10.5194/tc-20-737-2026
Research article
 | 
28 Jan 2026
Research article |  | 28 Jan 2026

Ensemble-based snow depth data assimilation for a multi-layer snow scheme over the European Arctic

Åsmund Bakketun, Jostein Blyverket, and Malte Müller

Related authors

Observations of high-frequency spectral peaks from in-situ waves in ice data: evidence for nonlinear waves in ice triad interactions?
Jean Rabault, Joey Voermans, Takehiko Nose, Graig Sutherland, Alexander Babanin, Takuji Waseda, Tsubasa Kodaira, Atle Jensen, Lars Willas Dreyer, Øyvind Breivik, Gaute Hope, Malte Müller, Zhaohui Cheng, Lichuan Wu, Aleksey Marchenko, Brian Ward, Kai H. Christensen, Petra Heil, and Karsten Trulsen
EGUsphere, https://doi.org/10.48550/arXiv.2507.19034,https://doi.org/10.48550/arXiv.2507.19034, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
MET-AICE v1.0: an operational data-driven sea ice prediction system for the European Arctic
Cyril Palerme, Johannes Röhrs, Thomas Lavergne, Jozef Rusin, Are Frode Kvanum, Atle Macdonald Sørensen, Arne Melsom, Julien Brajard, Martina Idžanović, Marina Durán Moro, and Malte Müller
Geosci. Model Dev., 18, 9751–9766, https://doi.org/10.5194/gmd-18-9751-2025,https://doi.org/10.5194/gmd-18-9751-2025, 2025
Short summary
Buoy measurements of strong waves in ice amplitude modulation: a signature of the impact of sea ice closedness on waves in ice attenuation
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Håkon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
The Cryosphere, 19, 6229–6260, https://doi.org/10.5194/tc-19-6229-2025,https://doi.org/10.5194/tc-19-6229-2025, 2025
Short summary
Developing a deep learning forecasting system for short-term and high-resolution prediction of sea ice concentration
Are Frode Kvanum, Cyril Palerme, Malte Müller, Jean Rabault, and Nick Hughes
The Cryosphere, 19, 4149–4166, https://doi.org/10.5194/tc-19-4149-2025,https://doi.org/10.5194/tc-19-4149-2025, 2025
Short summary
Improving short-term sea ice concentration forecasts using deep learning
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024,https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary

Cited articles

Aas, K. S., Gisnås, K., Westermann, S., and Berntsen, T. K.: A Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere Models, Journal of Hydrometeorology, 18, https://doi.org/10.1175/JHM-D-16-0026.1, 2017. a
Alonso-González, E., Gascoin, S., Arioli, S., and Picard, G.: Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment, The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, 2023. a, b
Arduini, G., Balsamo, G., Dutra, E., Day, J. J., Sandu, I., Boussetta, S., and Haiden, T.: Impact of a Multi-Layer Snow Scheme on Near-Surface Weather Forecasts, Journal of Advances in Modeling Earth Systems, 11, 4687–4710, https://doi.org/10.1029/2019MS001725, 2019. a
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and Køltzow, M. Ø.: The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System, Monthly Weather Review, 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a
Blyverket, J., Hamer, P. D., Bertino, L., Albergel, C., Fairbairn, D., and Lahoz, W. A.: An Evaluation of the EnKF vs. EnOI and the Assimilation of SMAP, SMOS and ESA CCI Soil Moisture Data over the Contiguous US, Remote Sensing, 11, 478, https://doi.org/10.3390/rs11050478, 2019. a
Download
Short summary
Obtaining accurate estimates of seasonal snow conditions requires a combination of observations and numerical models. We use a model accounting for the vertical structure of the snow, and a data assimilation method representing varying uncertainty of the model in time and space. Compared to existing products, neglecting these considerations, our system produced improved estimates of seasonal snow conditions. Snow mass estimates suggest a potential impact on derived hydrological applications.
Share