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Abstract. Reliable estimates of Earth system conditions are
important for weather forecasting, hydrological modelling
and their downstream applications. Both real-time prediction
systems and historical reanalyses use a combination of ob-
servations and physical laws embedded in numerical models
to generate gapless and accurate estimates of weather, cli-
mate and hydrological conditions. Data assimilation systems
merge information from model estimates and observations in
an objective way, accounting for their respective uncertain-
ties. In this work we present a regional reanalysis system,
focusing on the land surface component. The system uses
a multi-layer snow model together with the ensemble-based
Local Ensemble Transform Kalman Filter (LETKF) data as-
similation scheme. The system is run for a 4 year period over
the European Arctic, assimilating in situ snow depth observa-
tions. Evaluation of the new snow depth analysis showed re-
duced errors compared to existing products and positive im-
pact of the data assimilation over the domain. Furthermore,
a significant difference in total accumulated snow water was
seen over the domain, implying a potential impact on down-
stream hydrological applications. The ensemble correlations
between the total snow depth and the multivariate control
vector indicated that the ensemble was able to represent snow
compaction processes. The LETKF is thus able to account
for processes which are often neglected in snow depth data
assimilation. The system presented in this study allows for
future extensions, including other types of observations and
analyses beyond snow variables.

1 Introduction

Accurate weather and climate estimates are crucial for a wide
range of applications, including advancing our knowledge of
the Earth system. In mountain regions and high latitudes, sea-
sonal snow cover significantly influences land-atmosphere
interactions. This is due to its high albedo, which reflects
more sunlight compared to snow-free ground and its unique
thermal properties (Gong et al., 2004). Moreover, realistic
initial conditions of surface and snow variables play a key
role in improving atmospheric predictions (de Rosnay et al.,
2014). Seasonal snow cover also impacts local infrastructure
and stores substantial amounts of water, which are released
during spring melt (Viviroli et al., 2007; Sturm et al., 2017;
Croce et al., 2018). Accurate estimates of snow cover and
mass are also vital for managing hydropower stations and is-
suing timely flood warnings (Casson et al., 2018; Li et al.,
2019; Magnusson et al., 2020).

Reanalysis products offer consistent time series of meteo-
rological conditions on both global (Hersbach et al., 2020)
and regional scales (Kgltzow et al., 2022). By integrating
vast amounts of observational data into numerical model
simulations, they generate estimates of numerous parame-
ters. Among these, global atmospheric reanalyses like ERAS
(Hersbach et al., 2020) and MERRA-2 Gelaro et al. (2017)
have become foundational tools in Earth system research.

The land surface component of numerical weather pre-
diction models is often simplified compared to state of the
art models used in other communities (Fisher and Koven,
2020). Land surface models can be run stand-alone using at-
mospheric input from a forecast or reanalysis product. This
allows for efficient testing of new configurations and pro-
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duction of datasets tailored for specific needs (Arduini et al.,
2019; Zsoter et al., 2022). Several reanalyses feature a stand-
alone “spin off” prioritizing improved representation of land
surface processes. One such example is ERAS5S-Land, de-
rived from ERAS. It incorporates a more advanced surface
model and has a higher spatial resolution compared to the
ERAS dataset (Mufioz-Sabater et al., 2021). Despite the im-
proved representation of the land surface, several challenges
remain to be solved. Cao et al. (2020) found warm bias in
ERAS5-Land soil temperature in high latitudes affecting per-
mafrost estimation, potentially due to snow density errors.
Clelland et al. (2024) found no advantage of ERA5-Land
relative to ERAS over Siberia for a range of climate vari-
ables. Kouki et al. (2023) used satellite retrievals of snow
variables to demonstrate improved spatial snow cover esti-
mates in ERAS5-land, but overestimated snow water equiva-
lent particularly in high elevation areas compared to ERAS.

Regional reanalyses add value to the global reanalyses
by providing higher resolution products over limited geo-
graphical areas (Kgltzow et al., 2022). Notable examples in-
clude the Copernicus European and Arctic regional reanaly-
sis products CERRA (Ridal et al., 2024) and CARRA (Schy-
berg H. et al., 2021), among others. They use the ERAS
global product as lateral boundary conditions and optimize
observation usage and parametrization over Europe and the
European Arctic region. Nevertheless, these products are
based on simple land surface schemes which are not able
to describe important processes. Monteiro et al. (2024) con-
figured a multi-layer land surface model and improved the
representation of seasonal snow in a numerical weather pre-
diction system similar to the one used in the production of
CARRA. While a reported evaluation of snow properties is
missing for the CARRA dataset, it is likely to share similar
deficiencies as the single layer snow scheme in the last men-
tioned study.

An essential component of reanalysis systems is data as-
similation. Data assimilation is the method of combining
model predictions and observations objectively based on
their respective uncertainties. For snow analysis, observa-
tions often include in situ networks of snow depth measure-
ments, satellite observations of reflectance and microwave
radiance (De Lannoy et al., 2012; de Rosnay et al., 2014;
Charrois et al., 2016; Micheletty et al., 2022; Gichamo and
Draper, 2022). Furthermore, land surface temperature prod-
ucts could potentially be useful of improving snow esti-
mates, as seen in synthetic experiments (Alonso-Gonzdlez
et al., 2023). Sentinel-1 backscatter data have also shown
promising results for both snow depth estimates and down-
stream river discharge (Brangers et al., 2024). Data assimi-
lation schemes vary from direct insertion, which disregards
the respective uncertainties (Hedrick et al., 2018), optimal
interpolation techniques using static prescribed uncertain-
ties (Brasnett, 1999) and ensemble-based schemes where the
uncertainties are deducted from the ensemble covariances.
Variants of the Ensemble Kalman Filter (EnKF) (Evensen,
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2003; Tippett et al., 2003) and the particle filter (Magnus-
son et al., 2017; Cluzet et al., 2021; Alonso-Gonzalez et al.,
2023) are popular in snow data assimilation. While the EnKF
have an underlying assumption of normally distributed er-
rors, the particle filter is relaxed on this constraint. How-
ever, the EnKF has shown to be robust also when the Gaus-
sian assumption is not met (Katzfuss et al., 2016). With the
EnKEF, the analysis ensemble is a linear combination of the
first guess ensemble. It is thus important that the linear as-
sumption holds for the ensemble, particularly in multivariate
analysis, otherwise it could lead to inconsistent or unrealis-
tic states. A hypothetical example could be a two member
ensemble where one member has old snow with high density
and the other has fresh snow with low density. The ensemble-
mean (example case of linear combination) would not repre-
sent any of the two conditions, nor a realistic snow pack for
that time. Since the particle filter resamples the most likely
states and does not apply linear combinations, it is not sub-
ject to this issue. However, it is more vulnerable to ensemble
collapse. For the above example, the analysis could result in
two copies of the same member. In general, the particle fil-
ter requires a larger number of members, but could represent
diverging trajectories in contrast to the standard EnKFs.

In this work, we implement a regional land reanalysis
system using recent developments of a multi-layer snow
model together with an ensemble-based data assimilation
scheme. Through evaluation over northern Scandinavia, we
assess whether a more advanced system can enhance esti-
mates of snow conditions compared to those using simplified
schemes. Understanding the differences between simplified
and more advanced schemes is valuable for the development
of future reanalysis and weather prediction systems.

The configuration of the system and reference datasets are
described in Sect. 2. Results and evaluation are presented
in Sect. 3 and discussed in Sect. 4. Conclusion is given in
Sect. 5.

2 Methods and data

In the following section, a brief description of the refer-
ence system (CARRA) is given, including details about its
snow data assimilation scheme (2.1). Subsequently, the sec-
tion presents the land surface model (Sect. 2.2), data assimi-
lation method (Sect. 2.3), the ensemble generation and con-
ditioning methods (Sects. 2.4 and 2.5), a description of the
observation and validation data (Sect. 2.6) and finally the ex-
perimental setup in Sect. 2.7.

2.1 Copernicus Arctic Regional Reanalysis (CARRA)

The CARRA dataset is produced by the convection-
permitting numerical weather prediction model system
HARMONIE-AROME (HIRLAM-ALADIN Research on
Mesoscale Operational NWP in Euromed—Application of
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Figure 1. Observations of snow depth only used in CARRA-Land-
Pv1 (set A), only in CARRA (set B) and in both (set C) over the
model domain. Marker size indicates the number of observations
through the study period.

Research to Operations at MEsoscale) (Bengtsson et al.,
2017). The dataset covers the area shown in Fig. 1, with a
grid point spacing of 2.5 km. As we focus on the snow com-
ponent of the reanalysis, we guide the reader to the full sys-
tem documentation (Yang et al., 2020) for details concerning
the remaining components.

The CARRA system uses the externalized surface (SUR-
FEX) (Masson et al., 2013) as lower boundary in the model
integration. The soil and snow is modelled by the force re-
store version of Interactions between Soil, Biosphere and At-
mosphere (ISBA) (Noilhan and Mahfouf, 1996; Calvet et al.,
1998; Decharme et al., 2011), where two soil layers repre-
sent rapid (hourly) and slow (daily) variations in temperature
to provide fluxes back to the atmospheric component Noil-
han and Mahfouf (1996). The snow is represented by a sin-
gle layer scheme (Douville et al., 1995). This snow model
represents the snowpack with snow water equivalent, snow
density and albedo as prognostic variables.

In the CARRA system, in situ snow depth measurements
and a binary satellite snow cover product are assimilated
to update snow water equivalent of the model. The in situ
snow depth observations are converted to snow water equiv-
alent using monthly climatological snow densities from a
lookup table. The satellite snow extent data is converted to
snow water equivalent pseudo observations following a set
of rules. If the satellite reports “no snow”, the pseudo ob-
servation yields 0 kgm™2; if the satellite reports “snow”, the

https://doi.org/10.5194/tc-20-737-2026

pseudo observation is set equal to the model background
value in the observation point. However, if the model ex-

ceeds 25kgm™2, “snow” observations are discarded, and if

the model exceeds 100 kgm™2, “no snow” observations are
discarded. Furthermore, the snow analysis is not allowed to
add snow on snow free grid cells if the surface temperature is
above the melting-point of water. Such rules can be consid-
ered to represent some confidence in the model state as the
direct insertion method does not account for that. The pseudo
observation snow water equivalent value is then treated as
an in situ observation. The satellite product and assimilation
method are reported in Homleid and Killi (2014). The in situ
measurements (including pseudo observations from satellite)
are interpolated horizontally (from point measurements to a
2D field) based on distance dependent correlation functions
with the optimal interpolation (OI) scheme (Brasnett, 1999).
While the spatial correlation length is equal for in situ and
pseudo observations from satellite, they are weighted differ-
ently relative to the background field with observation error
ratios o, = 1.0 and o, = 1.6, respectively. The snow water
equivalent is finally inserted directly into the model replac-
ing the background field, snow density and snow albedo are
not modified in the analysis but kept constant.

2.2 Land surface model

Production of the regional reanalysis presented in this study
consists of two main components. A land surface model to
cycle the model snow states between analysis times, and the
assimilation scheme that ingests the observations into the
model state variables. To model the time evolution of the
snow state, we use the ISBA model (Noilhan and Mahfouf,
1996; Calvet et al., 1998; Decharme et al., 2011) within the
SURFEX framework (Masson et al., 2013). The ISBA model
is set up using two patches (low and high vegetation), the
multi-layer diffusion soil scheme (Decharme et al., 2011),
explicit snow scheme (Decharme et al., 2016) and the ex-
plicit canopy option (Boone et al., 2017; Napoly et al., 2017)
for the high vegetation patch.

We have also adopted some of the configurations in Mon-
teiro et al. (2024). In their study, they found that heat flux
from the uppermost soil layer to the lowermost snow layer
was too large in the case of low snow fractions leading to too
rapid snow melt. They proposed a workaround by reducing
the heat flux in these situations which we included in our sys-
tem. We used soil clay, sand and organic carbon dataset from
soilgrids (Hengl et al., 2017).

Using two patches means that within a grid cell, two inde-
pendent mass and energy budgets are computed, adapted to
the vegetation type. The resulting soil and snow states thus
represent different sub grid conditions.

We use the ISBA explicit snow model with the default
12 layers, adding information about the vertical structure of
the snow compared to the single layer model. The prognostic
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variables are snow water equivalent, snow density, snow heat
content, albedo and snow age.

The land surface model is driven by atmospheric vari-
ables including precipitation (snow and rain), radiation (di-
rect shortwave, diffuse shortwave and longwave), air temper-
ature and humidity, surface pressure and wind. In this work,
the forcing data is obtained from CARRA (Schyberg H. et al.,
2021). The CARRA dataset has proven to perform better
compared to the ERAS5 product for both temperature and
wind particularly in areas with complex topography (Kglt-
zow et al., 2022; Box et al., 2023). The forcing data are in-
terpolated spatially to the model grid using bilinear interpo-
lation and SURFEX internally interpolates the hourly values
to the 10 min model time step using linear interpolation.

2.3 Data assimilation

Data assimilation aims to bring the model state closer to
the true unknown state based on observations. The corrected
state, called the analysis (x®), can be expressed as the origi-
nal state, often referred to as the background state (xb), and
a correction term,

x? =xP +5x. (1)

Here the correction (§x), referred to as the increment, is
typically a function of the innovation vector (y° — y°) where
y° represents the observations, and y° = i (x) is the model
state in observation space, with & being a nonlinear observa-
tion operator.

According to Helmert et al. (2018), the most commonly
used method for snow data assimilation in numerical weather
prediction systems is the optimal interpolation (OI) method
(e.g., Brasnett, 1999; Liston and Hiemstra, 2008; de Ros-
nay et al., 2014; Li et al., 2022). OI uses predefined struc-
ture functions to correlate observations with grid point val-
ues based on horizontal and vertical distances, often mod-
elled with Gaussian curves (Gaspari and Cohn, 1999; Bras-
nett, 1999). When snow depth measurements are used to
correct snow water equivalent and snow density, the solu-
tion is not unique. It is common practice to assume that the
snow density is constant and only update the snow water
equivalent (see references above). With more advanced snow
models, like ISBA explicit snow, the state vector becomes
significantly larger compared to single layer models. With
a 12 layer configuration, the full control vector consists of
49 prognostic variables at every grid point patch (snow wa-
ter equivalent, snow density, snow age and snow heat, each
times 12 layers plus snow albedo). Distributing the analy-
sis increments between all the different control variables can
thus be challenging. Brangers et al. (2024) chose to distribute
the snow depth increments proportional to the background
layer thicknesses, thus assuming the profile of the snow is
unchanged. However, so called flow-dependent data assimi-
lation schemes can objectively optimize the analysis state by
taking the current conditions (errors of the day) into account
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and thus narrow down the possible solution space and po-
tentially updating the layers that actually are most likely to
explain the observed condition. The EnKF (Evensen, 2003)
uses an ensemble of model realizations to represent the back-
ground error covariance matrix and it is widely used in
snow data assimilation (Slater and Clark, 2006; Durand and
Margulis, 2007; Lannoy et al., 2010; Kumar et al., 2017;
Brangers et al., 2024). In the Kalman Filter, the increment
is written

sx =K(y° -y )
where K is called the Kalman gain matrix, and is defined as
K=PH'(HPH" + R)"! (3)

where P is the background error covariance matrix, H the
linearized observation operator and R is the observation error
covariance matrix. Furthermore, Lannoy et al. (2010) show
that the EnKF gain matrix is written

K = cov[x, h(x)][cov[h(x), h(x)] + R] L. 4

Here the error covariance matrices are computed implicitly
through the ensemble covariances.

In geophysical applications, the state vector has high
dimensionality. For example, the CARRA domain has
1000 x 800 grid points which for a model with 12 vertical
levels and 5 physical variables results in a control vector of
size ~ 5 x 107. Large ensembles can thus be computationally
expensive. Consequently, small ensembles have to be used
and sampling noise is inevitable. The sampling noise could
lead to spurious correlations between variables (Leutbecher,
2019). Essentially, the spurious correlations result in incre-
ments based on unrealistic relationships between the obser-
vation and the control vector. This behaviour is avoided by
limiting the impact of observations outside their representa-
tive area, referred to as localization. Localization can be ap-
plied by tapering the background covariance matrix, which
means that the covariances between distant grid points are
forced to zero. Another technique is the so called local anal-
ysis (Sakov and Bertino, 2011), where the data assimilation
is split into smaller regions and only nearby observations are
used.

Hunt et al. (2007) proposed a localized version of the
EnKEF, solving the filter equations individually at each grid
point. Compared to the example above, the control vector is
now only 12 x 5 =60 elements. At each point, relevant ob-
servations (typically within a radius) are selected and used in
the assimilation and inflation of observation errors as func-
tion of distance is often used to smoothly reduce observa-
tion impact over increasing distances. Due to the manageable
use of computational resources and the flexibility regarding
observation types, we have chosen their implementation of
the local ensemble transform Kalman filter (LETKF). The
LETKEF has shown promising results in both atmospheric and
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Figure 2. Illustration of remapping. (a) shows original field (rain fall), (b—e) shows the ensemble members after remapping. (f) shows
ensemble correlations between the point indicated by a star and the respective surrounding grid points.

surface data assimilation systems (Shin et al., 2016; Gastaldo
etal., 2018; Seo et al., 2021; Nerger, 2022; Lee et al., 2024).
The LETKF update equations for a grid point are:

xt =%+ X w* )
wh = Wi+ W (6)
W =P(Y") TR (5 -0 (7
W =[(k — )PY'/? (8)
P =[(k— DB+ (@o (YO)TR™)Y"]™! )

where x represents the ensemble control vector, X =x — X
the ensemble anomalies (or perturbations), bar represents
ensemble-mean, a and b indicate analysis and background,
respectively, w is the transformation weights between the
background and the analysis, Y represent the ensemble per-
turbations of the observation equivalent. P and R are the er-
ror covariance matrices. 8 controls the inflation of the back-
ground error covariance matrix. o is a location dependent
weight vector used to inflate R using element wise multipli-
cation. Each element corresponds to an observation in y. In
line with structure functions used in the CARRA OI scheme,
we use a Gaussian curve as function of distance for o,

dn\? dy\?
o = exp —2<—h) —2<—V> ,
'h Iy
where dy, and d, are horizontal and vertical distances, re-
spectively, between observations and the grid point, r, and

(10)
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ry are prescribed impact distances. Note that y holds the ob-
servations selected for the grid point. Despite that the assim-
ilation is independent in each grid point, the same observa-
tions could be used in several close grid points depending
on the specified impact distances and localization function
for R. Close grid points using the same observations thus
obtain the same weights (w) only modified by the localiza-
tion weights . The resulting increments are connected to
neighbouring points through the spatial structure of the back-
ground ensemble perturbations. This is illustrated in Fig. 2 f)
where the observation is marked by a star and the correla-
tions (indicated by colour shading) are proportional to the
increments for the surrounding area. For spatially homoge-
neous ensemble perturbations, the spatial structure of the in-
crement would be Gaussian centred on the station.

Diefenbach et al. (2023) shows that the analysis equation
for the ensemble-mean X* can be written as

=%+ k-1 XY TR (30— ). an

This is the common form of the Kalman Filter where
(k —1)~'X2Y2R~! corresponds to the gain matrix K map-
ping the innovations (y° — ¥°) in observation space to incre-
ments (x? — x°) in model space. Investigating the elements
of K is important for understanding the filter performance.
We recognize that xayaT g proportional to the ensemble
correlation between the model space state and the observa-
tion space state. The ensemble correlation between a model
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Table 1. Perturbation Methods and Parameters for Forcing Variables.

A. Bakketun et al.: Ensemble-based snow depth data assimilation

Variable Perturbation Method  Standard deviation o Rain LW SW Snow Ta
Rain Multiplicative 0.5 (fractional) 1.000 —0.066 0.177 0.091 0.123
LW Additive 30Wm2 —0.066 1.000 —0.246 —0.061 0.156
SW Multiplicative 0.3 (fractional) 0.177 —0.246 1.000 0.078 0.493
Snow Multiplicative 0.5 (fractional)) 0.091 —-0.061 0.078 1.000 —0.128
Ta Additive 0.5°C 0.123 0.156 0.493 —0.128 1.000

variable (i) and an observed quantity (j) is given by

xiy/"
XiXiT+yiyiT

12)

r,-j =

In situ observations of snow depth are usually placed in
flat open areas away from high vegetation. Since the sur-
face model used in this study explicitly represents low and
high vegetation one could choose to assume that the obser-
vation was more representative for the patch with low vege-
tation. However, there are some factors that complicates this
approach. First, the low vegetation patch is not defined for
all grid points. Second, not all observations are placed suf-
ficiently away from high vegetation to only represent that
patch. We consider this to be out of scope for this work. To
compute the model state in observation space, we use the fol-
lowing observation operator:

w

2 12 b
L,
W=ha®=>"> "y~
r

Pij

13)

where w and p represent the snow water equivalent and snow
density at the closest model grid point, respectively and y; is
the patch (open land or forest) fraction. The index i repre-
sents the model patch and j the snow model level.

2.4 Ensemble perturbations

For ensemble based data assimilation methods, the ensem-
ble perturbations X and Y are used to represent the uncer-
tainty of the model estimate. They also describe the relation-
ships between locations and between variables which map
innovations to increments as shown above. It thus require
care when generating the ensemble to ensure realistic rela-
tionship between the variables. The uncertainty can be sam-
pled by perturbing forcing data, model state variables, model
parameters or a combination of these (Slater and Clark,
2006; Lannoy et al., 2010; Liu et al., 2011; Kumar et al.,
2014, 2017; Blyverket et al., 2019; Draper, 2021; Seo et al.,
2021; Brangers et al., 2024). The benefit of only perturbing
the forcing data is that the resulting model states are con-
sistent with the model physics and the relationship between
variables is as realistic as the model. However, processes that
are unresolved by the model, for example redistribution by
wind in our model, will not be represented by the ensemble
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Table 2. Data assimilation and ensemble perturbation parameters.

value
0.1m

Parameter
observation error (o)

background covariance inflation (8) 1

horizontal impact length (ry,) 50km
vertical impact length (ry) 200 m
horizontal length noise 400 km

temporal auto-correlation noise 1d
spatial consistency remap 500 km
standard deviation remap 10 km

by only perturbing the forcing data. Since we in this work
introduce a multivariate control vector using the univariate
observation vector, we only perturb the forcing data (rain,
snow, longwave radiation, shortwave radiation, air temper-
ature) to reduce the chance of introducing sampling noise.
We follow the above studies and use cross-correlation be-
tween forcing variables to ensure realistic forcing conditions,
temporal auto-correlation of the noise and spatially corre-
lated noise (Reichle and Koster, 2003; Durand and Margulis,
2007; Lannoy et al., 2010). The details about the perturba-
tion parameters are found in Table 1. The cross-correlations
shown in Table 1 are computed from one year of forcing data.
Spatial and temporal correlation lengths are provided in Ta-
ble 2.

Precipitation forcing is usually perturbed by multiplying
the field with noise from a log-normal distribution to avoid
positive precipitation bias in the case of no precipitation (see
references above). This method is not able to represent the
possibility of precipitation if the original dataset has zero
precipitation. Maggioni et al. (2012) used an advanced error
model for satellite precipitation products to approach this is-
sue and saw good results for soil moisture fields. However, it
requires calibration with satellite and a radar reference which
is not generally available. In this work we introduce a novel
approach to improve the spatial representation of precipita-
tion uncertainty. By assuming that precipitation fields in the
forcing data have an error in horizontal placement, we can
introduce uncertainty in areas surrounding such fields. We
refer to the method as remapping and is based on advec-
tion using a random vector field. The approach builds on
ideas from Le Coz et al. (2019), where precipitation fields
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are remapped to better fit observations. An example of the
remapping method is shown in Fig. 2. In this case we show
a precipitation field from the CARRA dataset (Fig. 2a and
several realizations after remapping Fig. 2b—d). The ensem-
ble correlations shown in Fig. 2f) shows how an observa-
tion at the location indicated with a star can influence the
surrounding area based on the current conditions. A detailed
formulation of the method is found in Appendix A. We eval-
uated the method by comparing occurrences of snowfall at
observation locations. For snowfall greater than zero the un-
perturbed snowfall dataset had a hit rate of 83 %, while the
ensemble had 91 %. For snowfall greater than 5cm (snow
depth) over 24 h the deterministic hit rate was 21 % while the
ensemble hit rate was 56 %.

2.5 Conditioning of ensemble states

In the SURFEX model, snow water equivalent is defined in
all model points. In grid points with no snow, the snow water
equivalent is zero and the other prognostic variables (den-
sity, age, albedo and heat) are undefined. In order to include
these grid points in the analysis and potentially add snow
to snow free members, undefined values need to be initial-
ized. While some predefined values can be used, e.g. cor-
responding to freshly fallen snow, such simplifications can
quickly introduce nonlinear relationships between ensemble
members. For example, during melting season, one member
becomes snow free while the other members still have old
and very dense snow. A different approach is to use a sample
from the members containing snow to initialize zero snow
members. Even though this method might not produce a rep-
resentative spread for the snow, it avoids the filter to produce
unrealistic analyses. In this work we initialized zero snow
members with the ensemble-mean of members with snow.
We use the ensemble-mean because it will have a neutral
impact on the analysis ensemble spread. If all members are
snow free, the filter is unable to add snow.

After the data assimilation is performed, the analysed state
is the best estimate given that the assumptions of the fil-
ter hold. However, it might not be physically consistent, nor
within the model bounds. The result can thus cause instabili-
ties in the preceding model integration For example, negative
snow water equivalent can in theory occur in the analysed
state. In the data assimilation system, we use the ensemble-
mean approach as mentioned above for all snow related vari-
ables given that a member violates any of the conditions in
Table 3. This method prioritizes stability of the model inte-
gration over optimal performance of the filter.

2.6 Validation and observation data
In situ snow depth observations used in the data assimilation
are obtained from the Meteorological Archival and Retrieval

System (MARS) of the European Centre for Medium-Range
Weather Forecasts (ECMWF). The observation dataset is not
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Table 3. Valid ranges for snowpack quantities.

snow water equivalent w O<w

snow density p 50<p <9173
snow temperature (diagnostic) 7 200 <T

snow heat h h <0

identical to the one used in CARRA, as CARRA uses ad-
ditional local observations and a different quality control.
Thus, we can bin observations into three sets. Let A be the
observations used in CARRA-Land-Pv1 and B the observa-
tions used in CARRA. Further let C = AN B be the obser-
vations used in both systems, A = A — B the stations only
used in CARRA-Land-Pv1 and B = B — A the stations only
used in CARRA. In the following we will denote dataset
A as “OBS-ONLY-Pv1”, B as “OBS-ONLY-CARRA” and
C as “OBS-BOTH”. In addition, snow water equivalent from
6 snow pillow stations (Tollan, 1970; Egli et al., 2009) are
used to evaluate the unobserved (by the assimilation sys-
tem) snow water equivalent state. In CARRA, satellite de-
rived snow cover maps are converted to in situ pseudo ob-
servations and assimilated in a similar way as real in situ
snow depth. We considered to assimilate satellite snow cover
in this study, but chose to focus on point observations. We
suggest that satellite snow cover products are included in a
follow up study.

2.7 Experimental setup

Our experiments are set up on the eastern domain of the
CARRA reanalysis, covering northern Scandinavia and Sval-
bard with 2.5 km grid spacing. The simulations are initialized
on 1 September 2015 after a 2 month spin up without data as-
similation, and cover the next four consecutive winters. Snow
data assimilation is performed daily at 06:00 UTC using in
situ snow depth measurements. The assimilation control vec-
tor includes snow water equivalent, snow density and snow
heat. Snow albedo and snow age are not included since we
focus on snow depth observations in this study. However,
albedo and snow age might change after the analysis if snow
is removed entirely or added on snow free grid points. In
line with Yin et al. (2015); Brangers et al. (2024) and refer-
ences therein, the number of ensemble members was chosen
after comparing shorter experiments with different ensem-
ble sizes. Compared to using 20 members, a 10-member en-
semble gave no considerable degradation in performance, we
therefore opted for a 10 member ensemble. Additionally, an
unperturbed control member was run without data assimila-
tion for evaluation purposes. Hereafter, we refer to the unper-
turbed run as CTRL and the analysed ensemble simulation
as CARRA-Land-Pv1 (Prototype version 1). The purpose of
CARRA-Land-Pv1 is to provide a more realistic description
of the snowpack covering the region.
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Figure 3. Mean/standard deviation (over time) increments of (a,d) total snow depth (§diot), (b,e€) snow water equivalent (Swiot) and
(c,f) snow density (8p0t). Dots in (a) indicate mean innovation at assimilated observations and their size indicates the number of obser-

vations.

3 Results

In this section, we present the evaluation of the CARRA-
Land-Pv1 dataset covering 1 November 2015 to 1 August
2019. First, in Sect. 3.1 we show diagnostics of the data as-
similation system, including average analysis increments and
ensemble correlations. Subsequently, we present the evalua-
tion of the resulting snow depth dataset (Sect. 3.2) and vali-
dation against in situ observations compared to CARRA and
CTRL (Sect. 3.3). Finally, in Sect. 3.4 we present a verifica-
tion of modelled snow water equivalent versus snow pillow
observations.

3.1 Data assimilation diagnostics

We focus on vertically aggregated values, summarizing the
values in the 12 layers of the model and define

12 12
w
diot = E diwor = E Wi Prot = o (14)
i i

dtot

for snow depth, snow water equivalent and snow density, re-
spectively, where i indicates the model layer of the snow.
The increments presented below are computed from the ag-
gregated variables. For example, the total snow depth incre-
ment is written 8dyo = d2, —d®,, where a denote analysis
and b denote background.
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Figure 3 shows maps of the time averaged increments
for snow depth ddy (Fig. 3a), snow water equivalent §wig
(Fig. 3b), snow density 8y (Fig. 3c) and their respective
standard deviations in Fig. 3d—e. Snow depth and snow wa-
ter equivalent increments are consistently positive over the
domain, while snow density increments are mainly negative.
The mean snow depth increments corresponds to several mil-
limetres each day which roughly accumulates to a metre over
1 year. For snow water equivalent, about 200 mm of water
is added each year through the increments. The time aver-

aged snow depth innovations (y° — ) are shown together
with the average snow depth increments (Fig. 3a). Some ob-
servation sites are surrounded by increments with non-zero
mean, particularly in the inland areas. The patterns of these
increments are similar to the Gaussian localization function
(Eq. 10) limiting the impact of the observations and shows
the impacted area from each station. The systematic positive
increments are related to positive innovations, indicating too
little snow in the model. Similar patterns but with opposite
sign are not seen around stations with negative innovations
(indicating too much snow in the model). The stations with
mean negative innovations are situated in mountainous ar-
eas and have small impact on the analysis. This is due too
the large vertical distance between model and observation
and thus the increment is dampened by the localization (not
shown). For snow density, the stations are not as pronounced
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Figure 4. Mean (domain average) increments of (a) total snow depth (8dtot), (b) snow water equivalent wior and (¢) snow density (8 ptot)-

as for snow water equivalent and snow depth, and the largest
values are found in mountain areas. The maps of standard
deviations indicate larger increment magnitude over moun-
tain areas for all variables, and smaller over the inland ar-
eas. Inland, the pattern around stations seen in mean incre-
ments are not as strong, indicating that the areas suffer from
a systematic underestimation. On the other hand, the moun-
tain regions are more exposed to random errors which cause
larger increments, but with less systematic signal. The stan-
dard deviations of snow density increments (Fig. 3f) show
fine spatial structure compared to the smoother snow water
equivalent (Fig. 3e). This suggests that the topography and
thus temperature forcing might play a bigger role than pre-
cipitation for the density uncertainty.

Time series of domain averaged increments are shown in
Fig. 4 for the same variables as Fig. 3. Largest positive snow
depth increments are seen during spring where snow water
equivalent increments are positive and density increments are
negative. The early accumulation phase is also dominated by
positive snow depth increments, but with smaller density in-
crements. During the winter, snow depth increments decrease
and in some years they become slightly negative before the
melting phase begins. The figure suggests that snow is melt-
ing (loosing mass and compacting) too rapidly during spring,
and that there is a slight underestimation of snowfall in the
early accumulation phase.

We continue by investigating the structures of the Kalman
gain matrix K through the ensemble correlations according to
Eq. (12). Figure 5 presents ensemble-mean snow profile time
series with ensemble correlations between observation and
model variables. Large positive correlations, as seen for snow
water equivalent, indicate that a positive innovation (model
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snow depth is too small) will cause a positive increment to
the control variable (increasing snow water equivalent). We
note that the upper and lower layers have weak correlations
for deep snow, this is a result of the vertical discretization of
the snow scheme. The thickness of these boundary layers are
limited to resolve the diurnal energy transfer between snow
and air and snow and soil. For snow density (Fig. 4b), there
is a positive correlation between snow depth and density in
the lower layers during accumulation. This can be explained
by the compaction of the lower layers in the snowpack due
to increased mass in the upper layers during snowfall. The
upper layers have negative correlations and strongest in the
melting phase. Given a positive innovation in snow depth,
the negative correlations would cause the analysis to de-
crease the density (increase snow depth) to compensate for
too high compaction in the model simulation. The introduc-
tion of density in the control vector allows the snow depth
to be adjusted (1) without changing the snow mass (negative
correlations between total snow depth and snow density) and
(2) larger change in snow mass compared to only updating
mass in the case of positive density correlation.

3.2 Seasonal snow characteristics

Figure 6 shows the evolution of domain average snow depth
(Fig. 6a), snow water equivalent (Fig. 6b) and snow density
(Fig. 6¢) for the CARRA-Land-Pvl, CTRL and CARRA.
In terms of snow water equivalent, CTRL and CARRA-
Land-Pv1 have higher values at the yearly maximum com-
pared to CARRA. In general, there are relatively small dif-
ferences between CARRA-Land-Pvl and CTRL. In CTRL
and CARRA-Land-Pv1 the evolution of snow water equiv-
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Figure 5. Time series of domain average ensemble-mean snow depth dior With colour-contoured ensemble correlations between total snow
depth diot and snow water equivalent w; (a) and between dior and snow density p; (b) per model level using Eq. (12). Only grid points with
snow are used, thus the depth is only representative for snow covered grid cells.

(a)

[m]

0.0+

200 1

100 4

kg m—2]

400 A

[kg m~3]

200 1

2016 2017
—— CTRL

CARRA-Land-Pv1

2018 2019

CARRA —— rho_clim

Figure 6. Time series of domain average: total snow depth diot (@), snow water equivalent wiot (b) and snow density prot (¢) for CTRL (blue),
CARRA-Land-Pv1 (orange) and CARRA (green). Black line indicates climatological snow densities used for converting observations to

snow water equivalent in the CARRA system

alent is smoother compared to CARRA. CARRA tends to
have lower snow depth than CARRA-Land-Pv1 and CTRL
during the accumulation phase and higher during the melt
phase. These characteristics are consistent for all years. The
density evolves quite differently in the two snow models
(CARRA vs CTRL and CARRA-Land-Pvl). In the single
layer snow scheme used in CARRA, the maximum snow
density is 300 kgm~> while the explicit snow scheme (CTRL

The Cryosphere, 20, 737-756, 2026

and CARRA-Land-Pv1) has an upper limit at 973 kgm .
The snow density reach high values in the melting phase in
the multi-layer snow scheme. In CARRA, snow density is in-
creasing faster in the accumulation phase, and stabilises ear-
lier in the winter. During the melting phase the snow density
in CARRA decreases compared to the density in the multi-
layer models. There is a discrepancy between the CARRA
snow density and the climatological values used in its snow
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Figure 7. Differences between model and observation snow
depth diot averaged over all observation locations.

analysis. On average, this climatological density is less than
the CARRA density before April and greater after May. This
coincides with the snow depth differences described above.
Comparing CARRA-Land-Pvl and CTRL shows a slightly
increased density in the assimilation experiment.

Time series of mean errors in total snow depth averaged
over all observation sites (assimilated and independent) are
shown in Fig. 7. All datasets have negative bias in snow depth
and the largest bias is seen in CARRA. CARRA-Land-Pv1
has smallest negative bias indicating larger snow depth com-
pared to both CARRA and CTRL.

3.3 Evaluation of snow depth

Time series of continuous rank probability score (CRPS) (for
ensemble) and mean absolute error (MAE) (for determinis-
tic) over the three different observational sets are shown in
Fig. 8 and Table 4. The CRPS is equal to the MAE for a sin-
gle member ensemble, or deterministic dataset. Largest er-
rors are seen for CTRL in all sets and yearly maximum varies
between 15 and 30cm. Comparing the three observation
sets, the largest errors overall are in OBS-ONLY-CARRA
(Fig. 8c). CARRA has larger errors than CARRA-Land-Pv1
in OBS-ONLY-Pv1l and OBS-BOTH (Fig. 8a and b), with
values ranging from 10 to 20 cm and 5 to 10 cm, respectively.
For CARRA-Land-Pv1 a degradation compared to CARRA
is seen for OBS-ONLY-CARRA (Fig. 8c) but it is consis-
tently better than CTRL for all observation sets. We also note
a significant drop in errors in CARRA during spring, this
is seen for all years. This drop coincides with the transition
from March to April and thus new values for climatological
density used in CARRASs snow data assimilation From Fig. 6
(c), April is the month where the climatological densities fit
best with the model density in CARRA.

We have included both CRPS and MAE of the ensemble-
mean to highlight the benefit of CARRA-Land-Pv1 being an
ensemble product. The CRPS values are consistently lower
than the MAE of the ensemble-mean. However, relative to
the other datasets, the CRPS and MAE of ensemble-mean are
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quite close. When CRPS for CARRA-Land-Pvl and MAE
of the other products are compared, the advantage of using
the ensemble is only marginally contributing to the differ-
ences. Furthermore, the largest differences between MAE
of ensemble-mean and CRPS are seen in the OBS-ONLY-
CARRA. This shows how the uncertainty is increased in re-
gions with few observations.

Maps of the difference in CRPS between CARRA-Land-
Pvl and CARRA for the three observation sets are shown
in Fig. 9. For the stations in OBS-BOTH (Fig. 9a) and
OBS-ONLY-Pvl1 (Fig. 9b), CARRA-Land-Pv1 performs bet-
ter than CARRA/CTRL (CTRL not shown) for most station
points. This is also the case for the OBS-ONLY-CARRA set
(Fig. 9c), except for a number of stations along the Norwe-
gian mountains and a few scattered inland stations. A closer
investigation of the points where CARRA has smaller errors,
reveals the following characteristics. (1) The station is iso-
lated, through the localization, from other stations, (2) the
point is close to another (assimilated) station with different
local conditions and systematic differences. In one case we
found up to 50 cm difference in snow depth between obser-
vations at neighbouring grid points (not shown). We also
note that the spatial distribution of observations in each set
differs. In OBS-ONLY-Pv1, more observations are found in
the southern part of the domain compared to OBS-ONLY-
CARRA.

Summary scores are presented in Table 5. To assess the
statistical robustness of the values we use bootstrapping with
1000 samples to compute the 95 % confidence interval. The
intervals did not overlap between the models which indicates
statistical robustness of the presented values. Compared to
CTRL, CARRA-Land-Pv1 improves on all scores in all ob-
servation sets. Relative to CARRA, scores are worse over
OBS-ONLY-CARRA, except for bias which is improved
by 85 %. Over OBS-ONLY-Pv1 and OBS-BOTH, CARRA-
Land-Pv1 performs better than the other datasets.

3.4 Evaluation of snow water equivalent

In the following comparison, we compute the MAE between
CTRL, CARRA and CARRA-Land-Pvl (ensemble-mean)
and the six snow water equivalent observation stations avail-
able over the domain. Figure 10 shows differences in MAE
(CARRA-Land-Pvl minus CTRL (Fig. 10a) and CARRA-
Land-Pvl minus CARRA (Fig. 10b)) for each station. The
dots indicate that snow water equivalent is improved through
snow depth data assimilation in four stations and has neu-
tral impact in two. Compared to CARRA, CARRA-Land-
Pv1 has improved snow water equivalent in three, neutral in
two and degraded in one station. The areas surrounding the
stations with reduced errors compared to CARRA are associ-
ated with larger snow water equivalent values. The degraded
station is on the other hand surrounded by negative snow wa-
ter equivalent differences. In inland areas, the snow water
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Figure 8. Time series of CRPS (for CARRA-Land-Pv1 ensemble) and MAE (for deterministic products) for three different observational
sets. (a) shows scores based on OBS-BOTH, (b) OBS-ONLY-Pv1 and (¢) OBS-ONLY-CARRA

Table 4. Observation sets with corresponding acronyms, total number of stations and total number of observations during the experiment

period.
Set  Assimilated in Acronym num. stations  num. observations
A CARRA-Land-Pv1 OBS-ONLY-Pv1 178 122590
B CARRA OBS-ONLY-CARRA 111 108 652
C CARRA and CARRA-Land-Pvl  OBS-BOTH 144 124416

equivalent differences are smaller in magnitude, but mostly
positive.

4 Discussion

Our evaluation of the new regional land reanalysis system
(CARRA-Land-Pv1) shows promising results in terms of er-
rors of snow depth estimates compared to CTRL also over
independent observations not included in the assimilation.
Compared to CARRA, scores are improved in locations
where both systems use the observation. However, CARRA-
Land-Pv1 is not able to outperform CARRA in locations
where only CARRA assimilates the observation. The multi-
layer snow scheme also shows the ability to accumulate more
mass within the snowpack during the winter, with about
10 % more than CARRA at maximum snow depth. Addition-
ally, the data assimilation scheme adds substantial amounts
of snow compared to CTRL. The multi-layer scheme al-
lows for much higher snow density during the melting phase,
however, this is slightly moderated by the data assimilation
increments (negative increments in density). Systematic in-
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crements of snow mass over inland areas indicate a nega-
tive bias in the precipitation forcing or to rapid melting of
the model snow. The snow density increments are smaller
over these areas, thus smaller uncertainty of snow density,
suggests that precipitation amount is the dominant cause of
the underestimation. Over mountain areas systematic incre-
ments are smaller for snow mass but higher for snow den-
sity. The steep topography leads to larger uncertainties in the
forcing temperature, which again impacts precipitation phase
and melting processes. The time series of mean analysis in-
crements (Fig. 4) indicates systematic errors during spring.
The snow depth errors in CTRL are also largest during this
period. This suggests a limitation in the model parametriza-
tion for melting, or an underestimation of precipitation in the
CARRA forcing. A similar underestimation of snow depth
is also seen in the CARRA dataset, strengthening the latter
suspicion. While these results are not sufficient to conclude
about potential forcing biases, they demonstrate how the en-
semble based analysis method is able to account for different,
flow-dependent, situations and regions. Significant improve-
ments due to model configuration was obtained by Monteiro
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Figure 9. Difference in CRPS/MAE scores (CARRA-Land-Pvl minus CARRA) averaged over time for each observation site. Blue colour
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Table 5. Summary statistics for the different datasets. Each cell contains values for the three observation sets (OBS-BOTH/OBS-ONLY-
Pv1/OBS-ONLY-CARRA). Relative improvements are shown in the two rightmost columns as 100(ref — CARRA-Land-Pv1) /ref.

CARRA CTRL CARRA-Land-Pv1 rel CARRA (%) rel CTRL (%)
CRPS/MAE  0.05/0.05/0.06 0.06/0.06/0.09 0.02/0.03/0.07 52.68/47.85/-20.79  66.53/59.57/21.53
Bias —0.03/-0.04/-0.04  —0.03/-0.03/-0.01 —0.01/-0.01/-0.01  78.11/70.31/85.15 76.83/63.25/51.15
Stderr 0.08/0.08/0.14 0.12/0.11/0.22 0.05/0.07/0.20 32.14/15.14/—46.50  55.34/42.53/6.09
Corr 0.96/0.98/0.92 0.89/0.92/0.81 0.98/0.98/0.83 —2.22/—0.41/9.93 —9.64/—5.93/-2.63

[kgm~2]

Figure 10. Dots representing difference between MAE of CARRA-
Land-Pvl ensemble-mean and references. The references are
CTRL (a) and CARRA (b). The MAE is computed from modelled
total snow water equivalent wior and observed snow water equiva-
lent from snow pillow observations. Blue dots indicate smaller ab-
solute errors in CARRA-Land-Pv1 compared to the reference ex-
periment. Colour-shading represents the mean difference in snow
water equivalent between the experiments.

et al. (2024) related to the melting season. Adopting all their
settings will be considered in future work.

Investigation of the ensemble correlations (Fig. 5), indi-
rectly by the Kalman gain matrix, gives insight in how the
snow depth observations are used to update the multivariate
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control vector. The correlation between total snow depth and
snow water equivalent is close to 1, stating a strong relation-
ship. This indicates that the common approach in the litera-
ture to only update snow water equivalent in snow data as-
similation systems is efficient and reasonable, also for multi-
layer schemes. By keeping the density constant, snow water
equivalent can easily be adjusted to correct the total snow
depth. However, the ensemble correlation between total snow
depth and snow density (Fig. 5b)) indicates important contri-
butions from snow density. Two main processes are repre-
sented by the correlations: 1) compaction during accumula-
tion and 2) compaction due to melting. These correspond to
positive and negative correlations between total snow depth
and snow density, respectively. The first in lower layers and
the latter in the upper layers. These results highlight the ben-
efit of including snow density in the data assimilation even
if only total snow depth observations are used. Neglecting
the error in snow density, by keeping it constant in the as-
similation, could lead to errors in snow mass both during the
accumulation and the melting phase. During the accumula-
tion, when the increased snow depth is related to increased
snow density, increments are on average close to zero which
indicates less systematic difference between snow depth and
observations. The increments of snow density are on average
largest in magnitude and negative during the melting phase
(Fig. 4c)). This indicates positive innovations (model snow
depth too low) during melting. If only the snow water equiv-
alent was updated, more snow mass would have to be added
in order to adjust the snow depth towards the observation.
During melting season, this would impact the amount of run-
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off and potentially downstream use. According to Giinther
et al. (2019), input data is the most important source of snow-
pack uncertainty. However, model structure and parameters
had larger contributions during the melting season. In this
study we only perturb input data, the ensemble correlations
are thus only a result of the forcing data and relationships
of opposite sign could occur if model parameter uncertainty
was considered.

Unfortunately, collocated observations of snow depth,
snow water equivalent and snow density are (to our knowl-
edge) not available in our study area. The few snow water
equivalent observations show mixed results, but indicate an
overall positive impact of the system. Since snow depth is
generally improved, the uncertainty of snow water equivalent
lies mainly in the snow density. Our investigation of ensem-
ble correlations suggests that the assimilation scheme is able
to produce reasonable corrections also to density. In studies
where more snow water equivalent measurements for valida-
tion was available, comparable ensemble-based data assim-
ilation systems gave improved snow water equivalent esti-
mates (Magnusson et al., 2017; Smyth et al., 2020).

By exploring the different observation sets used in
CARRA and CARRA-Land-Pvl, we evaluate the analysis
performance at grid points where observations are not avail-
able for assimilation. Despite that CARRA-Land-Pv1 per-
forms worse than CARRA over OBS-ONLY-CARRA, errors
are consistently reduced compared to CTRL for these sta-
tions. The errors of CARRA are also relatively large over the
same observation sites in OBS-ONLY-CARRA. These find-
ings are in line with results in Oberrauch et al. (2024). Nev-
ertheless, the distance based localization used in CARRA-
Land-Pv1 cause several stations in OBS-ONLY-CARRA to
be unreachable in the analysis causing no impact of the as-
similation. The degradation compared to CTRL thus come
from the perturbed forcing.

Comparison studies should assimilate an identical set of
observations in both systems and reserve a fully indepen-
dent dataset for evaluation. Such a setup would allow a more
rigorous assessment of the spatial performance of the two
data assimilation methods (CARRA vs CARRA-Land-Pv1).
While this was not feasible in the present study due to practi-
cal constraints, we highlight it as an important recommenda-
tion for future work. The comparison between CARRA and
CARRA-Land-Pv1 in this study is thus non-conclusive and
should be read with this is mind. However, the comparison
between CARRA-Land-Pv1l and CTRL is rigour and is not
limited by the experiment configuration.

Cluzet et al. (2022) evaluated different localization strate-
gies for in situ snow depth measurements in mountain re-
gions and found that using ensemble correlation between
variables at different grid points rather than distance to local-
ize the analysis was beneficial. Such method should also be
evaluated for our system and study area. Although smaller
improvements are seen over mountain areas for CARRA-
Land-Pv1 comparing to in situ observations, the topography
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has strong impact on precipitation. This suggests that also
the uncertainties should be modified in these areas. We ac-
count for topography in the precipitation remapping, but not
in the spatial structure of the other noise fields perturbing
the amplitudes. We thus suggest that more work is needed to
improve the quality of spatial structures for the forcing en-
semble.

In this study we used the model grid average snow depth as
observation equivalent. However, we found cases where ob-
servations close to each other had very different snow depths,
which indicates large sub-grid variability. There are also po-
tentially systematic differences in snow conditions between
the low and high vegetation patches, and, likely, the observa-
tion is not representative of the grid average value. This de-
ficiency could also explain the systematic increments during
melting phase as discussed above. For example, in a grid cell
represented by 50 % low and 50 % high vegetation, a snow
depth observation reads 40 cm. Furthermore, in the high veg-
etation (forest) patch of the model, the snow is gone, while
in the low vegetation patch (where most snow observations
are located) the model has 50cm of snow. Using the grid
average observation operator will give an observation equiv-
alent of 25 cm resulting in an innovation of 15cm. Conse-
quently, this will typically cause snow to be added. However,
given that the observation is representative of an open area,
we could use the low vegetation patch only to compute the
observation equivalent which results in a negative innovation
of —10cm, and snow will be removed. Another important
case is areas where snow is redistributed by wind (Gisnas
etal., 2016; Aas et al., 2017). This process is not represented
in the ISBA explicit snow model, however if accounted for
in the observation operator the observations can still be used
to correct the model values. In emission modelling, statisti-
cal models for subgrid processes have been used to counter
similar problems (Koohkan and Bocquet, 2012).

A fundamental difference between CARRA and CARRA-
Land-Pv1 systems is the flow dependency of the ensemble-
based CARRA-Land-Pv1 versus the static CARRA assimila-
tion scheme. Where the CARRA system will treat any value
of an observation equally, but CARRA-Land-Pv1 will ac-
count for the background uncertainties. For instance, if all
members are snow-free, no observation of snow depth results
in non-zero increments. This has potential weaknesses, how-
ever, as long as the ensemble has reliable uncertainties it can
prevent unwanted increments due to erroneous observations.
Although not presented, we found several cases of inconsis-
tencies within the CARRA dataset. On the other hand, the
CARRA-Land-Pv1 shows more consistent time series and
spatial patterns. Due to more confidence in the model back-
ground, single observations have less impact. However, we
have seen that small increments over time ensures that the
estimates follow observations closely.

Since the data assimilation method is ensemble based, the
uncertainty of the output variables can also be made available
for the user. We found that the CRPS was marginally smaller

https://doi.org/10.5194/tc-20-737-2026



A. Bakketun et al.: Ensemble-based snow depth data assimilation 751

than the MAE of the ensemble-mean, but larger differences
(more benefit of the ensemble) was seen in the OBS-ONLY-
CARRA observation locations Fig. 8 c). This demonstrates
that where less or no observations are available the uncer-
tainty increases. For the areas with good observation cover-
age, the uncertainty should be smaller, thus a narrower en-
semble spread.

5 Conclusions

In this study, we implement a system for regional land reanal-
ysis with enhanced representation of snow processes through
a multi-layer snow scheme and the ensemble-based LETKF
for data assimilation. A 4 year dataset is produced with the
system assimilating in situ snow depth observations. The
dataset is evaluated and compared to existing products cov-
ering the European Arctic. The snow depth estimates show
reduced errors compared to the reference datasets and consis-
tent positive impact of the data assimilation. However, lim-
ited impact is found in mountain regions along the Norwe-
gian coast, which highlights fundamental challenges of snow
modelling and assimilation in these regions.

Through perturbation of forcing data, the ensemble is able
to represent uncertainty related to compaction processes.
This allows the data assimilation to make corrections to the
state variables accounting for these processes which are usu-
ally neglected when only snow water equivalent is updated.
Furthermore, the method presented demonstrates how season
dependent processes can be accounted for in the assimilation
which is not possible with the reference OI method.

Systematic positive snow depth increments during spring
are discussed and model parametrization and precipitation
bias in the forcing data are highlighted as possible explana-
tions. However, both of these deficiencies are corrected by
the assimilation. Conversely, the representativeness errors of
the observations are found to be large and, in some cases,
impact the assimilation performance negatively. We thus sug-
gest future studies to develop more advanced observation op-
erators for in situ snow measurements accounting for sub grid
conditions (e.g. following Koohkan and Bocquet, 2012).

For seasonal stream flow predictions, accurate estimates
of snow water equivalent are crucial (Casson et al., 2018).
The multi-layer surface scheme shows up to 10 % differ-
ence in accumulated snow water during the maximum snow
depth compared to CARRA. Moreover, the dataset shows
less jumpy time series of snow water equivalent and its er-
rors. This suggests that there is a potential impact on down-
stream usage of this product, with more reliable estimates of
snow water equivalent through the snow season.

While the assimilation of in situ snow depth observations
gives an overall positive impact, the spatial coverage is a lim-
itation of these observations. This is seen through the com-
parison with CARRA over the OBS-ONLY-CARRA obser-
vations. To provide realistic snow estimates covering all parts
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of the domain, observational sources are crucial. In addition
to in situ stations, more observations need to be included in
the assimilation system. Satellite based instruments operat-
ing in both visual and microwave frequencies have shown
to provide accurate estimates of different snow quantities
(De Lannoy et al., 2012; de Rosnay et al., 2014; Charrois
et al., 2016; Micheletty et al., 2022; Gichamo and Draper,
2022). With relatively frequent revisit times at high latitudes,
these are attractive sources of information. Including new
types of observations requires the implementation of an ob-
servation operator. For satellite observations, this can either
be radiative transfer models like the Snow Microwave Radia-
tive Transfer (SMRT) (Picard et al., 2018) or machine learn-
ing based observation operators (Kwon et al., 2019).

The system presented is also flexible in terms of extending
the analyses to more than snow state. Herbert et al. (2024)
demonstrated the benefit of unified surface data assimilation.
The system used in this work is well suited for combining
soil and snow data assimilation in a unified approach.

Appendix A: Appendix

In the following, the remapping procedure is described step
by step.

1. Construct a spatial correlated vector field v. In this
study, a 2D convolution with a Gaussian kernel func-
tion was used to obtain spatial correlations of a 2D ran-
dom variable. This controls the spatial consistency of
the magnitude and direction of the advection. To con-
strain displacement of precipitation over mountainous
regions, the vector field is multiplied with a scalar
field y given:

1
~ T+exp(15(7 —0.3))

where y is a normalized quantity derived from the
smoothed product of surface elevation and slope mag-

(AD)

14

nitude:
- 0 — min(yp)
Y= " y (A2)
max(yp) — min(yp)
70 =K x ([[Vzsllzs) (A3)

Here: z; is the surface elevation field, ||Vz;|| is the gra-
dient magnitude of the elevation, K is a Gaussian kernel
used for spatial smoothing via convolution, y € [0, 1]
after normalization. The sigmoid function applied to y
sharpens the transition around the threshold value 0.3,
controlling the influence of terrain features.

2. Let the vector I be the grid indices of the domain, map-
ping P — P. Here P is the field to be remapped.

3. Advect I by v to obtain I’
I =1-v-VI (A4)
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4. Compute P’ by bilinear interpolation of P(I')

Pl/,] = (1 —a)[ﬂpi—/’jdr/ + (1 — ,B)Pl'—/’jf/]

+a[BPiv jr+ (1 —B)Pi 1, (A5)
where o =i’ —i~/, B=j — j~/, the superscripts —/
and + indicate the advected index i’ rounded down and
up to nearest integer, respectively.

Since precipitation has moved within the domain, the
phase might have changed and a redistribution of snow and
rain is necessary. If a grid cell have precipitation before the
remapping, the original ratio r between snow and total pre-
cipitation is used. However, if it does not exist (total precipi-
tation was zero), the forcing temperature 7 is used as

1if T <272

— A2 272 < T <275 (A6)

0if T > 275

r=11
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