Articles | Volume 19, issue 2
https://doi.org/10.5194/tc-19-911-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-911-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Potential of satellite optical imagery to monitor glacier surface flow velocity variability in the tropical Andes
Etienne Ducasse
Institut des Géosciences de l'Environnement, Université Grenoble Alpes, Saint-Martin-d'Hères, France
Romain Millan
CORRESPONDING AUTHOR
Institut des Géosciences de l'Environnement, Centre National de la Recherche Scientifique, Grenoble, France
Jonas Kvist Andersen
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, Denmark
Antoine Rabatel
CORRESPONDING AUTHOR
Institut des Géosciences de l'Environnement, Université Grenoble Alpes, Saint-Martin-d'Hères, France
Related authors
No articles found.
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
Hydrol. Earth Syst. Sci., 29, 655–682, https://doi.org/10.5194/hess-29-655-2025, https://doi.org/10.5194/hess-29-655-2025, 2025
Short summary
Short summary
This study estimated the water balance of Lake Titicaca using an integrated modeling framework that considers natural hydrological processes and net irrigation consumption. The proposed approach was implemented at a daily scale for a period of 35 years. This framework is able to simulate lake water levels with good accuracy over a wide range of hydroclimatic conditions. The findings demonstrate that a simple representation of hydrological processes is suitable for use in poorly gauged regions.
Laurane Charrier, Amaury Dehecq, Lei Guo, Fanny Brun, Romain Millan, Nathan Lioret, Luke Copland, Nathan Maier, Christine Dow, and Paul Halas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3409, https://doi.org/10.5194/egusphere-2024-3409, 2025
Short summary
Short summary
While global annual glacier velocities are openly accessible, sub-annual velocity time series are still lacking. This hinders our ability to understand flow processes and the integration of these observations in numerical models. We introduce an open source Python package called TICOI to fuses multi-temporal and multi-sensor image-pair velocities produced by different processing chains to produce standardized sub-annual velocity products.
Rasmus Meyer, Mathias Preisler Schødt, Mikkel Lydholm Rasmussen, Jonas Kvist Andersen, Mads Dømgaard, and Anders Anker Bjørk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3850, https://doi.org/10.5194/egusphere-2024-3850, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Understanding snow accumulation is important for water resource management, but measurements of snow depth in mountainous regions are sparse. We introduce a novel satellite-based approach to estimate snow depth for deep snow in mountainous regions by combining two types of satellite data: radar images and laser surface height measurements. Results suggest that our method more accurately estimate the magnitude of snowfall compared to modelled data over the Southern Norwegian Mountains.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
The Cryosphere, 18, 5965–5983, https://doi.org/10.5194/tc-18-5965-2024, https://doi.org/10.5194/tc-18-5965-2024, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60–70 % and that accounting for this effect results in less ice loss by the end of the century.
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024, https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary
Short summary
Inspired by a previous intercomparison framework, our study better constrains uncertainties in glacier evolution using an innovative method to validate Bayesian calibration. Upernavik Isstrøm, one of Greenland's largest glaciers, has lost significant mass since 1985. By integrating observational data, climate models, human emissions, and internal model parameters, we project its evolution until 2100. We show that future human emissions are the main source of uncertainty in 2100, making up half.
Jonas Kvist Andersen, Rasmus Probst Meyer, Flora Salome Huiban, Mads Lykke Dømgaard, Romain Millan, and Anders Anker Bjørk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3382, https://doi.org/10.5194/egusphere-2024-3382, 2024
Short summary
Short summary
Storstrømmen Glacier in northeast Greenland goes through cycles of sudden flow speed-ups (known as surges) followed by long quiet phases. Currently in its quiet phase, recent measurements suggest it may be nearing conditions for a new surge, possibly between 2027 and 2040. We also observed several lake drainages that caused brief increases in glacier flow but did not trigger a surge. Continued monitoring is essential to understand how these processes influence glacier behavior.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Arthur Bayle, Bradley Z. Carlson, Anaïs Zimmer, Sophie Vallée, Antoine Rabatel, Edoardo Cremonese, Gianluca Filippa, Cédric Dentant, Christophe Randin, Andrea Mainetti, Erwan Roussel, Simon Gascoin, Dov Corenblit, and Philippe Choler
Biogeosciences, 20, 1649–1669, https://doi.org/10.5194/bg-20-1649-2023, https://doi.org/10.5194/bg-20-1649-2023, 2023
Short summary
Short summary
Glacier forefields have long provided ecologists with a model to study patterns of plant succession following glacier retreat. We used remote sensing approaches to study early succession dynamics as it allows to analyze the deglaciation, colonization, and vegetation growth within a single framework. We found that the heterogeneity of early succession dynamics is deterministic and can be explained well by local environmental context. This work has been done by an international consortium.
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
Short summary
Surface melt is a major factor driving glacier movement. Using satellite images, we have tracked the movements of 38 glaciers in the Pamirs over 7 years, capturing their responses to rapid meteorological changes with unprecedented resolution. We show that in spring, glacier accelerations propagate upglacier, while in autumn, they propagate downglacier – all resulting from changes in meltwater input. This provides critical insights into the interplay between surface melt and glacier movement.
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Short summary
We assessed the volume variation of 17 glaciers on the Antisana ice cap, near the Equator. We used aerial and satellite images for the period 1956–2016. We highlight very negative changes in 1956–1964 and 1979–1997 and slightly negative or even positive conditions in 1965–1978 and 1997–2016, the latter despite the recent increase in temperatures. Glaciers react according to regional climate variability, while local humidity and topography influence the specific behaviour of each glacier.
Romain Millan, Jeremie Mouginot, Anna Derkacheva, Eric Rignot, Pietro Milillo, Enrico Ciraci, Luigi Dini, and Anders Bjørk
The Cryosphere, 16, 3021–3031, https://doi.org/10.5194/tc-16-3021-2022, https://doi.org/10.5194/tc-16-3021-2022, 2022
Short summary
Short summary
We detect for the first time a dramatic retreat of the grounding line of Petermann Glacier, a major glacier of the Greenland Ice Sheet. Using satellite data, we also observe a speedup of the glacier and a fracturing of the ice shelf. This sequence of events is coherent with ocean warming in this region and suggests that Petermann Glacier has initiated a phase of destabilization, which is of prime importance for the stability and future contribution of the Greenland Ice Sheet to sea level rise.
L. Charrier, Y. Yan, E. Colin Koeniguer, J. Mouginot, R. Millan, and E. Trouvé
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 311–318, https://doi.org/10.5194/isprs-annals-V-3-2022-311-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-311-2022, 2022
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020, https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.
Frank Paul, Philipp Rastner, Roberto Sergio Azzoni, Guglielmina Diolaiuti, Davide Fugazza, Raymond Le Bris, Johanna Nemec, Antoine Rabatel, Mélanie Ramusovic, Gabriele Schwaizer, and Claudio Smiraglia
Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, https://doi.org/10.5194/essd-12-1805-2020, 2020
Short summary
Short summary
We have used Sentinel-2 satellite data from 2015 and 2016 to create a new glacier inventory for the European Alps. Outlines from earlier national inventories were used to guide manual corrections (e.g. ice in shadow or under debris cover) of the automatically mapped clean ice. We mapped 4395 glaciers, covering 1806 km2, an area loss of about 14 % (or −1.2 % per year) compared to the last inventory of 2003. We conclude that glacier shrinkage in the Alps has continued unabated since the mid-1980s.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, https://doi.org/10.5194/tc-14-565-2020, 2020
Short summary
Short summary
We introduce a novel approach for simulating glacier mass balances using a deep artificial neural network (i.e. deep learning) from climate and topographical data. This has been added as a component of a new open-source parameterized glacier evolution model. Deep learning is found to outperform linear machine learning methods, mainly due to its nonlinearity. Potential applications range from regional mass balance reconstructions from observations to simulations for past and future climates.
Thomas Condom, Marie Dumont, Lise Mourre, Jean Emmanuel Sicart, Antoine Rabatel, Alessandra Viani, and Alvaro Soruco
Geosci. Instrum. Method. Data Syst., 7, 169–178, https://doi.org/10.5194/gi-7-169-2018, https://doi.org/10.5194/gi-7-169-2018, 2018
Short summary
Short summary
This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. We demonstrate that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost.
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, https://doi.org/10.5194/tc-12-1367-2018, 2018
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Lucas Davaze, Antoine Rabatel, Yves Arnaud, Pascal Sirguey, Delphine Six, Anne Letreguilly, and Marie Dumont
The Cryosphere, 12, 271–286, https://doi.org/10.5194/tc-12-271-2018, https://doi.org/10.5194/tc-12-271-2018, 2018
Short summary
Short summary
About 150 of the 250 000 inventoried glaciers are currently monitored with surface mass balance (SMB) measurements. To increase this number, we propose a method to retrieve annual and summer SMB from optical satellite imagery, with an application over 30 glaciers in the French Alps. Computing the glacier-wide averaged albedo allows us to reconstruct annual and summer SMB of most of the studied glaciers, highlighting the potential of this method to retrieve SMB of unmonitored glaciers.
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
L. Maisincho, V. Favier, P. Wagnon, V. Jomelli, R. Basantes Serrano, B. Francou, M. Villacis, A. Rabatel, M. Ménégoz, L. Mourre, and B. Cáceres
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-105, https://doi.org/10.5194/tc-2016-105, 2016
Revised manuscript not accepted
Short summary
Short summary
Studies performed in the outer tropics suggested that Positive Degree-Day (PDD) model should be used with caution in tropical areas because temperature is not directly linked to the main local melting processes. Using an enhanced PDD model in the inner tropics during nine years allowed an accurate modelling of the glacier-wide mass balances and ablation on the Antizana glacier. This proves the high sensitivity of glaciers to temperature changes in Ecuador.
A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon
The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, https://doi.org/10.5194/tc-7-81-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Tropical Glaciers
El Niño enhances snow-line rise and ice loss on the Quelccaya Ice Cap, Peru
New insights into the decadal variability in glacier volume of a tropical ice cap, Antisana (0°29′ S, 78°09′ W), explained by the morpho-topographic and climatic context
Brief communication: Glacier thickness reconstruction on Mt. Kilimanjaro
The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier
Kara A. Lamantia, Laura J. Larocca, Lonnie G. Thompson, and Bryan G. Mark
The Cryosphere, 18, 4633–4644, https://doi.org/10.5194/tc-18-4633-2024, https://doi.org/10.5194/tc-18-4633-2024, 2024
Short summary
Short summary
Glaciers that exist within tropical regions are vital water resources and excellent indicators of a changing climate. We use satellite imagery analysis to detect the boundary between snow and ice on the Quelccaya Ice Cap (QIC), Peru, which indicates the ice cap's overall health. These results are analyzed with other variables, such as temperature, precipitation, and sea surface temperature anomalies, to better understand the factors and timelines driving the ice retreat.
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Short summary
We assessed the volume variation of 17 glaciers on the Antisana ice cap, near the Equator. We used aerial and satellite images for the period 1956–2016. We highlight very negative changes in 1956–1964 and 1979–1997 and slightly negative or even positive conditions in 1965–1978 and 1997–2016, the latter despite the recent increase in temperatures. Glaciers react according to regional climate variability, while local humidity and topography influence the specific behaviour of each glacier.
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020, https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro are unique indicators for climatic changes in the tropical midtroposphere of Africa. A history of severe glacier area loss raises concerns about an imminent future disappearance. Yet the remaining ice volume is not well known. Here, we reconstruct ice thickness maps for the two largest remaining ice bodies to assess the current glacier state. We believe that our approach could provide a means for a glacier-specific calibration of reconstructions on different scales.
Adrien Gilbert, Anna Sinisalo, Tika R. Gurung, Koji Fujita, Sudan B. Maharjan, Tenzing C. Sherpa, and Takehiro Fukuda
The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, https://doi.org/10.5194/tc-14-1273-2020, 2020
Cited articles
Autin, P., Sicart, J. E., Rabatel, A., Soruco, A., and Hock, R.: Climate controls on the interseasonal and interannual variability of the surface mass and energy balances of a tropical glacier (Zongo Glacier, Bolivia, 16° S): new insights from the multi-year application of a distributed energy balance model, J. Geophys. Res.-Atmos., 127, e2021JD035410, https://doi.org/10.1029/2021JD035410, 2022.
Basantes-Serrano, R., Rabatel, A., Francou, B., Vincent, C., Soruco, A., Condom, T., and Ruíz, J. C.: New insights into the decadal variability in glacier volume of a tropical ice cap, Antisana (0°29′ S, 78°09′ W), explained by the morpho-topographic and climatic context, The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, 2022.
Cusicanqui, D., Lacroix, P., Bodin, X., Robson, B. A., Kääb, A., and MacDonell, S.: Detection and reconstruction of rock glaciers kinematic over 24 years (2000–2024) from Landsat imagery, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2393, 2024.
Derkacheva, A., Mouginot, J., Millan, R., Maier, N., and Gillet-Chaulet, F.: Data reduction using statistical and regression approaches for ice velocity derived by Landsat-8, Sentinel-1 and Sentinel-2, Remote Sens.-Basel, 12, 1935, https://doi.org/10.3390/rs12121935, 2020.
Ducasse, E., Millan, R., and Rabatel, A.: Annual glacier surface flow velocity product from Sentinel-2 data for some mountain ranges in the Tropical Andes, Recherche Data Gouv [data set], https://doi.org/10.57745/OJBTSE, 2024.
Francou, B., Vuille, M., Wagnon, P., Mendoza, J., and Sicart, J. E.: Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16° S, J. Geophys. Res.-Atmos., 108, 4154, https://doi.org/10.1029/2002JD002959, 2003.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: MEaSUREs ITS_LIVE Landsat image-pair glacier and ice sheet surface velocities: Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.5067/IMR9D3PEI28U, 2024.
Gilbert, A., Leinss, S., Kargel, J., Kääb, A., Gascoin, S., Leonard, G., Berthier, E., Karki, A., and Yao, T.: Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet, The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, 2018.
Gilbert, A., Gimbert, F., Thøgersen, K., Schuler, T. V., and Kääb, A.: A consistent framework for coupling basal friction with subglacial hydrology on hard-bedded glaciers, Geophys. Res. Lett., 49, e2021GL097507, https://doi.org/10.1029/2021GL097507, 2022.
Hastenrath, S. and Ames, A.: Recession of Yanamarey glacier in Cordillera Blanca, Peru, during the 20th century, J. Glaciol., 41, 191–196, https://doi.org/10.3189/S0022143000017883, 1995.
Hubbard, B. and Clemmens, S.: Recent high-resolution surface velocities and elevation change at a high-altitude, debris-covered glacier: Chacraraju, Peru, J. Glaciol., 54, 479–486, https://doi.org/10.3189/002214308785837057, 2008.
Hugonnet, R., Millan, R., Mouginot, J., Rabatel, A., and Berthier, E.: Un atlas mondial pour caractériser la réponse des glaciers au changement climatique, La Météorologie, 120, 037, https://doi.org/10.37053/lameteorologie-2023-0015, 2023.
Jager, E., Gillet-Chaulet, F., Mouginot, J., and Millan, R.: Validating ensemble historical simulations of Upernavik Isstrøm (1985–2019) using observations of surface velocity and elevation, J. Glaciol., 70, 1–18, https://doi.org/10.1017/jog.2024.10, 2024.
Kaser, G.: Glacier-climate interaction at low latitudes, J. Glaciol., 47, 195–204, https://doi.org/10.3189/172756501781832296, 2001.
Millan, R., Mouginot, J., Rabatel, A., Jeong, S., Cusicanqui, D., Derkacheva, A., and Chekki, M.: Mapping surface flow velocity of glaciers at regional scale using a multiple sensors approach, Remote Sens.-Basel, 11, 2498, https://doi.org/10.3390/rs11212498, 2019.
Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Ice velocity and thickness of the world's glaciers, Nat. Geosci. 15, 124–129, https://doi.org/10.1038/s41561-021-00885-z, 2022.
Millan, R., Jager, E., Mouginot, J., Wood, M. H., Larsen, S. H., Mathiot, P., Jourdain, N. C., and Bjørk, A.: Rapid disintegration and weakening of ice shelves in North Greenland, Nat. Commun., 14, 6914, https://doi.org/10.1038/s41467-023-42198-2, 2023.
Mouginot, J., Rabatel, A., Ducasse, E., and Millan, R.: Optimization of cross correlation algorithm for annual mapping of alpine glacier flow velocities; application to Sentinel-2, IEEE T. Geosci. Remote, 61, 1–12, https://doi.org/10.1109/TGRS.2022.3223259, 2023.
Rabatel, A., Jomelli, V., Naveau, P., Francou, B., and Grancher, D.: Dating of Little Ice Age glacier fluctuations in the tropical Andes: Charquini glaciers, Bolivia, 16° S, C. R. Geosci., 337, 1311–1322, https://doi.org/10.1016/j.crte.2005.07.009, 2005.
Rabatel, A., Bermejo, A., Loarte, E., Soruco, A., Gomez, J., Leonardini, G., Vincent, C., and Sicart, J. E.: Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics?, J. Glaciol., 58, 1027–1036, https://doi.org/10.3189/2012JoG12J027, 2012.
Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J.-E., Huggel, C., Scheel, M., Lejeune, Y., Arnaud, Y., Collet, M., Condom, T., Consoli, G., Favier, V., Jomelli, V., Galarraga, R., Ginot, P., Maisincho, L., Mendoza, J., Ménégoz, M., Ramirez, E., Ribstein, P., Suarez, W., Villacis, M., and Wagnon, P.: Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change, The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, 2013.
Rabatel, A., Ducasse, E., Millan, R., and Mouginot, J.: Satellite-derived annual glacier surface flow velocity products for the European Alps, 2015–2021, Data, 8, 66, https://doi.org/10.3390/data8040066, 2023.
Réveillet, M., Rabatel, A., Gillet-Chaulet, F., Soruco, A.: Simulations of changes to Glaciar Zongo, Bolivia (16° S), over the 21st century using a 3-D full-Stokes model and CMIP5 climate projections, Ann. Glaciol., 56, 89–97, https://doi.org/10.3189/2015AoG70A113, 2015.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, https://doi.org/10.7265/N5-RGI-60, 2017.
Scambos, T., Fahnestock, M., Moon, T., Gardner, A., and Klinger, M.: Global land ice velocity extraction from Landsat 8 (GoLIVE), Version 1, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.7265/N5ZP442B, 2016.
Van Wyk de Vries, M., Carchipulla-Morales, D., Wickert, A. D., and Minaya, V. G.: Glacier thickness and ice volume of the Northern Andes, Sci. Data, 9, 342, https://doi.org/10.1038/s41597-022-01446-8, 2022.
Short summary
Our study examines glacier movement in the tropical Andes from 2013 to 2022 using satellite data. Despite challenges like small glacier size and frequent cloud cover, we tracked annual speeds and seasonal changes. We found stable annual speeds but significant shifts between wet and dry seasons, likely due to changes in meltwater production and glacier–bedrock conditions. This research enhances understanding of how tropical glaciers react to climate change.
Our study examines glacier movement in the tropical Andes from 2013 to 2022 using satellite...