Articles | Volume 19, issue 12
https://doi.org/10.5194/tc-19-6493-2025
https://doi.org/10.5194/tc-19-6493-2025
Research article
 | 
03 Dec 2025
Research article |  | 03 Dec 2025

Scale invariance in kilometer-scale sea ice deformation

Matias Uusinoka, Jari Haapala, Jan Åström, Mikko Lensu, and Arttu Polojärvi

Related authors

Role of sea ice, stratification, and near-inertial oscillations in shaping the upper Siberian Arctic Ocean currents
Igor V. Polyakov, Andrey V. Pnyushkov, Eddy C. Carmack, Matthew Charette, Kyoung-Ho Cho, Steven Dykstra, Jari Haapala, Jinyoung Jung, Lauren Kipp, Eun Jin Yang, and Sergey Molodtsov
Ocean Sci., 21, 3105–3122, https://doi.org/10.5194/os-21-3105-2025,https://doi.org/10.5194/os-21-3105-2025, 2025
Short summary
Studying anomalous propagation over marine areas using an experimental AIS receiver set-up
Laura Rautiainen, Milla Johansson, Mikko Lensu, Jani Tyynelä, Jukka-Pekka Jalkanen, Ken Stenbäck, Harry Lonka, and Lauri Laakso
EGUsphere, https://doi.org/10.5194/egusphere-2025-1790,https://doi.org/10.5194/egusphere-2025-1790, 2025
Short summary
Three-dimensional discrete element simulations on pressure ridge formation
Marek Muchow and Arttu Polojärvi
The Cryosphere, 18, 4765–4774, https://doi.org/10.5194/tc-18-4765-2024,https://doi.org/10.5194/tc-18-4765-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Ice ridge density signatures in high-resolution SAR images
Mikko Lensu and Markku Similä
The Cryosphere, 16, 4363–4377, https://doi.org/10.5194/tc-16-4363-2022,https://doi.org/10.5194/tc-16-4363-2022, 2022
Short summary

Cited articles

Åström, J., Robertsen, F., Haapala, J., Polojärvi, A., Uiboupin, R., and Maljutenko, I.: A large-scale high-resolution numerical model for sea-ice fragmentation dynamics, The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024, 2024. a, b
Blockley, F. E. A.: The future of sea ice modelling. Toward defining a cutting-edge future for sea ice modelling, Bulletin of American Meterological Society, 101, E1304, https://doi.org/10.1175/BAMS-D-20-0073.1, 2020. a
Bouchat, A. and Tremblay, B.: Reassessing the quality of sea-ice deformation estimates derived from the RADARSAT Geophysical Processor System and its impact on the spatiotemporal scaling statistics, Journal of Geophysical Research: Oceans, 125, e2019JC015944, https://doi.org/10.1029/2019JC015944, 2020. a, b
Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., Lee, Y. J., Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W., Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx): 1. Scaling and statistical properties of sea-ice deformation fields, Journal of Geophysical Research: Oceans, 127, e2021JC017667, https://doi.org/10.1029/2021JC017667, 2022. a, b
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. a
Download
Short summary
We tracked sea ice deformation over a nine-month period using high-resolution ship radar data and a state-of-the-art deep learning technique. We observe that the typically consistent scale-invariant pattern in sea ice deformation has a possible lower limit of about 102 meters in winter, but this behavior disappears during summer. Our findings provide important insights for considering current modeling assumptions and for connecting the scales of interest in sea ice dynamics.
Share