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Abstract. Large-scale modeling of sea ice dynamics assumes
scale-invariance that is used to calibrate and validate current
models. Validity of this assumption, particularly its lower
spatial limit, remains poorly understood. Identifying when,
where, and why scale-invariance does not apply is essential
for linking meter-scale sea ice mechanics with large-scale sea
ice dynamics and climate models. Here we address this chal-
lenge by employing unique high-resolution ship radar im-
agery from the MOSAiC expedition in an analysis based on
novel deep learning-based optical flow technique. Together
these allow capturing sea ice kinematics consistently at un-
precedented 20 m spatial and 10 min temporal resolutions
over an entire winter season and into summer over a 10 km
spatial domain. We show that the sea ice within this domain
remains largely quiescent for extended periods. During dis-
tinct events, a 102 m lower limit for scale-invariance is ob-
served that endures as the ice cover undergoes seasonal evo-
lution. This threshold remains stable throughout the winter,
even as deformation features become more localized and dis-
tinct, which suggests an intrinsic mechanical constraint that
is invariant under varying external conditions. Once the ice
transitions to a floe-dominated configuration in summer, no
comparable scaling signature emerges. Our results provide
a possible limit under which continuum models fail to cap-
ture critical fine-scale processes, highlighting the need for
approaches accounting for detailed description of discontin-
uous spatial and temporal behavior of sea ice.

1 Introduction

Since the beginning of geophysical-scale numerical model-
ing of sea ice, rheological models have been a topic of active
discussion. Rheological models describe how sea ice moves,
fragments, and deforms under external forces caused mainly
by winds, currents, and waves (Leppäranta, 2011). Given
the direct connection between the future of sea ice and cli-
mate, accurate rheological models are essential for reliable
climate change projections. The currently available compu-
tational power allows continuum models to simulate sea ice
dynamics at very high resolutions. However, it remains an
open question whether the continuum models calibrated on
fractal properties are valid for relatively small sea ice do-
mains (Hutchings et al., 2024), and what is the lower limit
of scale invariance in sea ice dynamics (Weiss, 2017). As
the sea ice cover is becoming thinner, more fragmented, and
transitions to younger and more mobile ice (e.g. Rothrock
et al., 2008; Rampal et al., 2009; Kwok et al., 2013), un-
derstanding this lower limit is becoming increasingly criti-
cal. A more accurate rheological description able to account
for small-scale processes will be needed to predict future ice
conditions with mechanical weakening and increased frac-
turing. Our work observes this limit and discusses how this
limit connects to physical phenomena observed in sea ice.

Our work is based on novel observations of a 10km×
10km area of sea ice over a nine-month period. We use
unique ship radar observations of ice deformation collected
during the Multidisciplinary drifting Observatory for the
Study of Arctic Climate (MOSAiC) expedition (Nicolaus
et al., 2022). Sea ice deformation is rarely studied at these
scales. Conventionally, studies focus on large-scale sea ice
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deformation observed by using buoy or satellite data (Hibler
et al., 1973, 1974; Fily and Rothrock, 1986; Rampal et al.,
2008; Hutchings et al., 2011; Marsan et al., 2004; Rampal
et al., 2019; Bouchat et al., 2022) or on meters-scale ice fail-
ure processes related to ice engineering applications or de-
tailed sea ice mechanics (Sanderson, 1988; Hopkins et al.,
1999). Only recent studies have begun to fully explore sub-
kilometer intermediate-scale sea ice deformations (Oikkonen
et al., 2017; Hutchings et al., 2024), even if detailed insight
on ice behavior on this scale is essential for linking meter-
scale sea ice mechanics with large-scale sea ice dynamics
(Feltham, 2008; Weiss, 2017; Weiss and Dansereau, 2017).

We describe the general dynamics of the studied sea ice
area over one season, focus on the most active periods of ice
deformation, and discuss the scale invariance in sea ice de-
formation. The latter is the key for discussion on the limit
for continuum models for ice and often considered a key
for understanding sea ice deformation across scales (Schul-
son, 2004). This information is essential for understanding
sea ice dynamics and for model development (Leppäranta,
2011; Weiss, 2013, 2017). Previous studies have indicated
that, although larger deformation occur during storms, sea ice
is rarely completely inactive at intermediate-scales (Oikko-
nen et al., 2017). They also show that ice deformation shows
spatial and temporal localization over a wide range of scales
following power-law form scaling (Marsan et al., 2004;
Rampal et al., 2008; Stern and Lindsay, 2009; Marsan and
Weiss, 2010). It is assumed that a rheological model, linking
stresses to strains, can be developed for the range of scales
where ice deformation remains scale invariant. We employ a
novel deep-learning-based optical flow tool (Uusinoka et al.,
2025a), which allows full-field analysis of sea ice deforma-
tion at 20 m resolution. The high-resolution data enables us
to capture fine-scale deformation features and intermittent
behaviors previously unavailable, since conventional meth-
ods lead to coarser and less accurate data. High-resolution
data is crucial given the emergence of the numerical mod-
els that allow simulating hundreds-of-kilometers-scale sea
ice domains with meter-scale resolution (Åström et al., 2024;
Åström and Polojärvi, 2024).

We present two key findings that are all important to ac-
count for in the modeling of sea ice. The 10km× 10km
sea ice area we studied experienced three major and sev-
eral smaller deformation periods occurring during the winter.
Based on the major deformation periods, we observe (1) a
possible lower limit for the scale invariance for the studied
area of magnitude 102 m; and (2) this limit remained con-
stant for the deformation events until the spring, after which
it could not be defined due to the breakup of the ice pack.
The observation of highly varying deformation activity dif-
fers from the observations of Oikkonen et al. (2017) as their
results indicate deformation activity at the intermediate scale
to be constantly active although at varying magnitudes. How-
ever, their area of measurement was closer to the marginal ice
zone than that of the MOSAiC central observatory. Instead,

we find that the deformation events are strongly intermittent
and observe multiple periods during the winter season char-
acterized by little activity. (1) Is noteworthy, as the limit for
scale invariance in sea ice deformation has been discussed
for over two decades (Hibler and Schulson, 2000; Schulson,
2004), with authors hypothesizing it might apply at scales
comparable to ice thickness (Weiss, 2013, 2017). We find
spatial scaling extending down to 102 m scales, suggesting
a different relationship at smaller scales, which is consistent
with the findings of Hutchings et al. (2024). We also find that
the 102 m limit is independent of the temporal scale, while
the magnitude of error in scale invariance increases with spa-
tial and temporal scale. (2) Reflects the change in scale in-
variance due to seasonal variation in the ice field dynamics,
when it transitions from pack ice to floe ice. We are able to
capture the lower limit and the seasonal transition, whereas
earlier work extending to an average spatial scale of 250 m
did not (Oikkonen et al., 2017).

The paper is structured as follows. Section 2 introduces the
ship radar data and the tools used in the analysis. Section 3
describes the nine-month-long deformation rate record and
highlights the intermittency of the ice deformation events.
Then it describes the major deformation events in detail and
performs mean-based deformation analysis. Section 4 dis-
cusses the implications of our results and their interpretation
before Sect. 5 concludes the paper.

2 Methods

2.1 Data

Figure 1 shows examples of the radar images used as the ba-
sis of our analysis. These were collected by using a radar
signal digitizing system similar to Oikkonen et al. (2017)
deployed on RV Polarstern as part of the sea ice measure-
ment activities during MOSAiC (Nicolaus et al., 2022). The
system continuously collected images of pack ice from mid-
October 2019 until the end of September 2020. The original
data set included radar images captured at 2.4 s intervals cov-
ering a 20km×20km area with an 8.33 m resolution and ori-
ented along the bow of the ship. The quality of the backscat-
tered radar signal considerably decreased beyond 5 km from
the ship, hence we cropped the images to 10km× 10km to
ensure consistent estimation quality over the entire image.

The digitized images contained interference from other
ship and helicopter radars, which was removed by stack-
ing three consecutive images and retaining the minimum
pixel value for each point. Faulty images were identified
and removed based on missing azimuth pulses, spurious
rotation-symmetric patterns, incomplete rasterization, or nar-
row shadowed sectors. The filtered data set has a 1 min tem-
poral resolution. Despite filtering, the data still contained
high-frequency noise concentrated in specific areas of the
images. This noise was at least partly due to actual physical

The Cryosphere, 19, 6493–6506, 2025 https://doi.org/10.5194/tc-19-6493-2025



M. Uusinoka et al.: Kilometer-scale sea ice deformation and its scale invariance 6495

Figure 1. Radar images of the 10km×10km sea ice area. Light areas are deformed ice and dark areas level ice and leads. The white squares
indicate the different spatial scales, L, analyzed below.

phenomena, such as minor vertical displacements caused by
ocean swell, small-scale ice deformation, or radar vibrations
due to strong winds. The noise manifested as abrupt, high-
intensity signal variations, making it particularly challenging
to extract consistent displacement estimates from the images.
We performed spatial averaging of the images through bilin-
ear interpolation to reduce artificial noise in the radar data,
which yielded a final spatial resolution of 10 m.

2.2 Recurrent neural network-based optical flow

The ice motion was estimated from the ship radar imagery
by using a novel deep-learning-based optical flow tool de-
scribed in detail by Uusinoka et al. (2025a). The tool is built
on Recurrent All-pairs Field Transforms (RAFT) optical flow
architecture (Teed and Deng, 2020), enhanced with a tempo-
ral multi-resolution tree for increased accuracy in small pixel
displacements. We found this tool to overcome the typical
challenges involved in the analysis of the radar data while
allowing high-resolution full-field analysis of ice motion by
providing ∼ 750 000 trajectories for each radar image. The
neural network model was fine-tuned using the unique noise
maps extracted from the MOSAiC data to further avoid the
radar noise affecting the displacement estimates. To further
ensure the robustness against the high-frequency noise in the
data, described in Uusinoka et al. (2025a), we chose 10 min
intervals between sequential images for sufficient displace-
ments. Based on the sequential data, we integrate the indi-
vidual displacement fields to 24 h trajectories. We limit the
trajectory length to 24 h to avoid data loss due to artificial
rotations in the radar images.

2.3 Strains and spatiotemporal scaling

We calculate deformation estimates using quadrilateral cells
in accordance with Bouchat and Tremblay (2020) to avoid
overestimation of deformation rates due to increased bound-
ary-definition errors (Lindsay and Stern, 2003; Bouillon and
Rampal, 2015). Instead of assuming infinitesimal strains,
commonly used in sea ice dynamics, we apply Green-

Lagrange strains (Appendix A). This choice was made to ac-
count for large strains and rigid body rotations; infinitesimal
strains are prone to yield erroneous results when these occur
(Gurtin, 1982). Strain estimates for large-scale ice drift are
around 9 % over 24-hour-period and often higher at smaller
scales due to localized ice deformation (Leppäranta and Hi-
bler III, 1987; Hibler et al., 1973). We derive the estimates
from finite strains to rotation-fixed infinitesimal strains, l, to
relate our results to prior research (Derived in Appendix A).

We use total deformation rate, Ėt, to perform spatiotempo-
ral scaling analysis on the ice cover. Localization and inter-
mittency of sea ice deformation has been shown to follow the
mean-based power-law forms (Marsan et al., 2004; Rampal
et al., 2008)

〈Ėt(L,T )〉 ∼ L
−β and 〈Ėt(L,T )〉 ∼ T

−α, (1)

where 〈Ė〉 is the mean total deformation rate over the entire
field, L and T are the spatial and temporal scales, respec-
tively, and the exponents β and α represent the correspond-
ing spatial and temporal scaling. β quantifies the degree of
spatial localization, ranging from β = 0 (perfectly homoge-
neous viscous-like deformations) to β = 2 (deformation lo-
calized into a single point). Similarly, α quantifies the degree
of temporal localization, ranging from 0 (continuous flow) to
1 (a single “event”).

Our scaling analysis uses the dispersion method (Ram-
pal et al., 2008; Oikkonen et al., 2017; Rampal et al.,
2019), where we extract velocity gradients with in-
creasing spatial and temporal intervals corresponding
to specific nominal scales. This extraction is based
on the initial coordinates of the corresponding trajec-
tories and involves estimating deformation rates over
larger scales to highlight broader patterns. The nominal
spatial and temporal scales for computing deformation
rates were L= [20,50,100,200,300,500,650,800]m and
T = [10 min, 30 min, 60 min, 3 h, 6 h, 12 h], respectively. It
is important that averaged spatial scales below 250 m are
considered, as Oikkonen et al. (2017) demonstrate the scale-
invariance extending down to this scale.
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Figure 2. Time series of (a) divergence rate, Ėd, (b) shear rate, Ės, and (c) total deformation rate, Ėt, calculated with a 10 min temporal
and 20 m spatial resolution as an average over the deformation field. Note that the y-axis limits are adjusted individually for each subplot to
highlight the distinct behavior of the different deformation components and periods.

3 Results

3.1 Ice cover deformation

Figure 2 shows deformation rate averaged over the 10km×
10km sea ice area around the MOSAiC central observatory.
These records were derived using a 10 min temporal resolu-
tion and a 20 m spatial resolution and they cover data from
November 2019 to April 2020. The time series is extended
with deformation estimates from July 2020 to include sum-
mer conditions in the marginal ice zone (MIZ).

Figure 2 shows that for most of the winter, sea ice within
the radar range experienced only vanishingly small deforma-
tion rates. The recurring and extended periods of inactivity
are noteworthy, especially the three-week period in Febru-
ary. Only minor shearing could be detected during the qui-
escent periods. Visual inspection of the radar imagery shows
that this low-magnitude shearing resulted from a mixture of
subtle ice displacements, rather than significant changes in
the ice cover. The high-frequency noise in the radar data
may also contribute partially to the low-magnitude shear
observed. Further, the figure shows several intermittent de-
formation events that occurred during three periods of ma-
jor ice deformation. These periods are highlighted in gray
in the figure and occurred in November 2019, January–
February 2020, and mid-March 2020. The last one of these
is noted for exceptionally high mean deformation rates ap-
proaching 0.4 h−1. During these three periods, the ice de-

formed rapidly in various modes, including events with all
deformation occurring within few-hour periods. Inactive pe-
riods are not seen in July data, which describes ice deforma-
tion within the MIZ. In this case the time series describes a
significantly different system with practically continuous ice
deformation. The deformation rates increase by an order of
magnitude compared to winter, and the peak values are much
higher than those reported for similar conditions by Oikko-
nen et al. (2017).

Figure 3a–c provide a more detailed view of three active
two-week winter time periods identified in Fig. 2. The three
time series exhibit a consistent intermittency similar to that
described above for the seasonal analysis. Increased intermit-
tency is observed during the cases of January–February and
March (Fig. 3b–c) in relation to the observations of Oikko-
nen et al. (2017), whose results indicated more continuous
deformation in conditions closer to the MIZ. For Novem-
ber (Fig. 3a), the data shows several deformation events and
brief inactive periods, likely due to the low load-bearing ca-
pacity of the relatively thin ice (Itkin et al., 2023). In con-
trast, the active period in February (Fig. 3b) is character-
ized by few intermittent deformation events and long inac-
tive phases, possibly owing to the thickened ice cover. Data
for March (Fig. 3c) depict a blend of patterns observed dur-
ing the preceding months and it is characterized by signif-
icant deformations, which suggests a shift from the winter
towards the spring. In July (Fig. 3d), within the MIZ, ice un-
dergoes constant deformations with few extreme peak defor-
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Figure 3. Time series of the three deformation rate components during the three active periods highlighted in Fig. 2: (a) the November
period, (b) the January–February period, (c) the March period. An additional time series of the first two weeks of July is provided in (d) for
comparison between different systems. The July case has a larger scale on the vertical axis due to the constant intensity of deformation.

mation events, which in this case signify a uniformly intense
deformation across the area studied.

The deformation fields displayed similar seasonal char-
acteristics, as shown by Fig. 4, which visualizes the mean
total deformation rate over the 24 h periods highlighted in
Fig. 3. Examples of individual 10 min deformation fields can
be found in Uusinoka et al. (2025a). The November case
(Fig. 4a) has the deformation distributed across several larger
scale fractures with numerous smaller deformation features
emerging from them and indicating localized activity around
them. The February case (Fig. 4b) has the deformation con-
centrated along a line-like lead, with smaller perpendicular
deformation features appearing, which indicates secondary

failure processes. By March (Fig. 4c), nearly all activity be-
comes localized along a single quasi-linear fracture, repre-
senting a large lead. This main feature is flanked by smaller
regions where ice fragments collide and form a complex in-
teraction network. Deformation field for July (Fig. 4d) is
markedly different from the rest, as the entire area studied un-
dergoes viscous-like deformation as it is located in the MIZ
during summer conditions.

3.2 Spatiotemporal scaling and limit of scale invariance

We conducted a spatiotemporal power-law analysis using the
mean total deformation rates of the four 2-week periods high-
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Figure 4. Total deformation (Eq. A5) fields for the 24 h periods highlighted in Fig. 3. Each field shows mean deformation for 20 m× 20 m
cells during the period considered. Features exiting the radar images have been neglected and no filtering has been used. In (d) all trajectories
exiting the radar image during the 24 h period have been removed.

lighted in Fig. 2. We focus the analysis on cases studies from
active periods to ensure high enough signal-to-noise ratios.
Figure 5a depicts how the scaling exponent β behaved in the
case of observations made over various spatial and tempo-
ral scales, L and T . Figure 5c shows β as function of T for
data with L≤ 150 and L≥ 150 m in comparison to the July
case. In Fig. 6, similar analysis is performed for the tempo-
ral scaling exponent, α, as a function of L to explore similar
limitations of scale invariance in the temporal domain. In the
analysis, we use the July case as a reference point for when
the continuum approach and fractal analysis are appropri-
ate, given its relatively uniform and diffuse deformation field
(Fig. 4d). The July case helps in illustrating how the fractal
properties diminish when a continuum perspective begins to
break down.

Figure 5 shows that β varies between 0.4 and 0.6 for the
winter cases when L≥ 150 m and T = 10 min. The β val-
ues align well with the observations of increasing β towards
smaller spatial scales in Hutchings et al. (2024), although
they are about∼ 25% smaller than those observed by Oikko-
nen et al. (2017). Further, the β values decrease with increas-
ing T in all winter cases as expected. For data L≥ 150 m,
the two-week period in January showed the highest values
of β, even if this period showed the lowest peak values for
total deformation rates (Fig. 3). Additionally, the November
and March periods exhibit nearly identical scaling behavior,
even if their deformation time series and deformation fields
are not alike (Figs. 3 and 4). Values of β for July data are low,
which is expected based on the deformation field in Fig. 4d.

For scales L≤ 150 m, a notable shift in system behavior
occurs, with the values of β being about constant for all T
used in the analysis. At the smaller spatial scales, mean strain
rates are similar across different time scales, suggesting a
dominance of the largest deformation features in the over-
all deformation field. Figure 1 illustrates scales L≤ 150 m,
which are often less than the typical width of deformation

features such as leads. At larger scales of L≥ 150 m, β
stabilizes around 0.2 for all winter cases around T ≈ 1. . .3
h, which is the value of β for scales L≤ 150 m for all
T . Data for July does not show a scale-dependent shift as
β ≈ 0.1 to 0.2 for all T for both L≤ 150 m and L≥ 150 m.
ForL≤ 150 m, the values of β in the winter and the July case
exhibit comparable magnitudes and similar behavior, sug-
gesting that at sufficiently small spatial scales (or, as seen in
Fig. 5a, at longer averaging times) with the given spatial do-
main size of 10km× 10km, the deformation processes tend
to lose the typically observed fractal properties.

From the above, it is clear that the mean-based scaling
does not apply for all L, as data for L≤ 150 m behave dif-
ferently than those for the larger scales. Therefore we looked
for a critical length scale, Lc, for the scale invariance, using
the data for the case in Fig. 5a with a 10 min temporal resolu-
tion. Figure 5b illustrates how this was done. We performed
a least-squares linear fit to the data points {(Lj , Ėj )}nj=1
on a log-log scale. If the coefficient of determination was
R2
≤ 0.95, we excluded the data points with the smallest L,

then repeated the fitting with the remaining n− i data points,
where i is the number of excluded points. This was continued
until R2

≥ 0.95. Then Lc was defined as L where the relative
difference between the fit and the data exceeded 10 %.

Figure 5b shows that the magnitude of Lc ∼ 102 m
throughout the winter season, with only minor variations ob-
served between the three winter time periods of active defor-
mation. Based on the deformation patterns of Fig. 4, Lc in
November appears to be related to multiple minor deforma-
tion features across the whole 10 km× 10 km sea ice area,
whereas later during the winter, it appears to be related to few
major features. We also tested that this estimate is consis-
tent for other deformation events occurring during the win-
tertime. However, we could not find Lc for July. This was
expected due to the diffuse nature of summer time ice de-

The Cryosphere, 19, 6493–6506, 2025 https://doi.org/10.5194/tc-19-6493-2025



M. Uusinoka et al.: Kilometer-scale sea ice deformation and its scale invariance 6499

Figure 5. (a) Mean-based spatial scaling properties of total deformation rate (Eq. A5) during the four periods highlighted in Fig. 2. The linear
fits are for the data with length scale L≥ 150 m. (b) Limit for the scale invariance for the four two-week periods of Fig. 3 with T = 10 min.
Coefficient of determination R2 and scaling coefficient β are for the fit applied on the data points that follow the mean-based scaling (marked
with white dots). The dashed line represents the scale of Lc determined as the point where the relative difference between the fit and the data
exceeds 10 %. (c) The development of the spatial scaling exponents, β, over different temporal scales. The development of β is considered
individually for both L≥ 150 m and L≤ 150 m in comparison with the July case.

formation, already seen in the analysis of deformation time
series and deformation fields above (Figs. 2 and 4).

Figure 6a shows the behavior of the system over tempo-
ral scales, T , and Fig. 6b compares the derived values of
α with the summer conditions. Values of α derived for our
data, describing the intermittency of the deformation events,
also showed a spatial-scale dependent change. For scales
L≤ 150 m, α was about constant for all winter time cases as
Fig. 6b shows. This stabilization of α suggests that to main-
tain the typically observed scaling behavior, one must con-
sider spatial scales significantly larger than 150 m. For obser-
vations with L≥ 150 m, on the other hand, α decreased with
increasing L. July data does not show this feature. Overall,
the alpha α values were about 30 % lower than those reported
by Oikkonen et al. (2017), despite our time series exhibiting
stronger intermittency. This is likely because of our analysis

considering only active deformation periods, where the aver-
age deformation rates even over longer temporal scales stay
consistently larger.

4 Discussion

Our study presents new insights into sea ice dynamics by ex-
tending the scaling analysis towards smaller scales. We ob-
serve a possible limit for scale invariance at approximately
Lc ∼ 102 m for winter pack ice. For Lc > 102 m, our results
align with previous observations of fractal properties at sim-
ilar scales (Oikkonen et al., 2016, 2017). Scale invariance
at intermediate scales has been thoroughly investigated only
by Oikkonen et al. (2017), who analyzed a 15 km× 15 km
with L≥ 250 m and T ≥ 10 min, with the results consid-
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Figure 6. (a) Mean-based temporal scaling properties of total deformation rate similarly to Fig. 5. The linear fits for all the presented
temporal scales. (b) The development of the temporal scaling exponents, α, over different spatial scales. The development of α is presented
in comparison with the July case.

ered evidence for scale invariance extending at least down
to L= 250 m (Weiss, 2017; Rampal et al., 2019). Our find-
ings now provide observations on the lower limit for the
scale invariance. Since our analysis was conducted on the
same 10 km× 10 km area over the winter season, it can be
argued a different region might have produced a different
magnitude for Lc. With this in mind, it is intriguing that
Lc ∼ 102 m remained constant, even if the ice cover proper-
ties went through changes over the winter (Itkin et al., 2023).

We highlight several points of evidence to provide in-
creased certainty to the result of observing a spatial lower
bound for scale invariance. The synthetic tests in Uusinoka
et al. (2025a) confirm that the neural network optical flow
algorithm retrieves accurate pixel displacements even when
faced with artificial radar-like noise. Secondly, the signal-
to-noise estimates – based on Bouchat and Tremblay (2020)
and presented in Uusinoka et al. (2025a, Supplement S2) –
demonstrate that localized deformation signals dominate ran-
dom fluctuations in the data yielding a considerably high ra-
tio even at the finest resolutions. Thirdly, the lower bound
consistently appears during active fracturing events in win-
ter pack ice (when signal-to-noise ratios are high), while the
summer conditions with similar noise patterns do not exhibit
any such cutoff. This would suggest that the observed phe-
nomenon relies on mechanical processes rather than mea-
surement error resulting from radar noise. The observed ∼
102 m length scale coincides with a typical width of major
leads and shear zones observed in the radar data, giving a po-

tential physical explanation for why scale invariance would
break at such limit. Still, it remains possible that the smallest
deformation features are indistinguishable in the radar data,
which would result in stagnation of the spatial scaling expo-
nent at low scales. Furthermore, the checkerboard pattern of
noise seen in Fig. 4 around active deformation zones could
have an unidentified effect on the power-law scaling. Further
error estimation and consideration of the checkerboard pat-
tern is provided in Appendix B. To fully validate the obser-
vation of a lower bound for scale invariance, further indepen-
dent analysis is required. This analysis needs to be based on
additional field campaigns, alternative deformation detection
methodologies, or complementary datasets.

It is well-established that large-scale sea ice deformation
fields are multifractal in both spatial and temporal dimen-
sions (Marsan et al., 2004; Weiss, 2013), which suggests that
different statistical moments could reveal further complexi-
ties. A multifractal analysis of the MOSAiC ship radar data
presented in Uusinoka et al. (2025b) shows a similar limita-
tion for scaling around L∼ 102 m over the higher moments
where the deformation signal is more distinguishable. The re-
sults of Uusinoka et al. (2025b) on multifractal analysis also
distinguishes between the early winter deformation fields,
characterized by more continuous spatial and temporal defor-
mation, from the late-winter fields dominated by only a few
large deformation features. The results of this paper together
with the multifractal observations provide a more complete
picture of the scaling relations applicable in ice dynamics.
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The variation of the spatial scaling exponent β with in-
creasing spatial scale was recently observed by Hutchings
et al. (2024), suggesting that the sea ice deformation rate does
not actually exhibit scale invariance. Their analysis consid-
ered buoy data down to spatial scales of 1 km, below which
they did not have sufficient data points to support claims
about smaller scales. By extending these observations to spa-
tial scales smaller than 1 km, we similarly observe a distinct
change in the behavior of β at approximately L∼ 102 m,
thereby complementing the observations of Hutchings et al.
(2024). However, in contrast to the buoy data, we observe
a clear stagnation in the values of β for L≤ 102 m. This is
likely due to the dominance of larger, distinct deformation
features clearly observable with coarser spatial resolutions–
mainly leads and shear zones–over smaller deformation fea-
tures. We also observe that this relationship depends on the
temporal scale of the observations. Unlike the buoy data, we
have approximately 4× 108 data points over a two-week pe-
riod at spatial scales of L= 20 m and temporal scales of
T = 10 min. Our results complement the analysis of the buoy
data by revealing system regime changes with varying spatial
and temporal scales.

Our results have several implications, particularly for
modeling sea ice using the continuum approach. Rheological
models applied on spatial resolutions larger than Lc may not
capture ice behavior belowLc, where the continuum assump-
tions may break down altogether for the ice pack during win-
ter. We see that at the scales studied here, the largest discon-
tinuities dominate the overall deformation field (Fig. 4). The
size of these features is approximately Lc (Fig. 1). This is
particularly pronounced during mid- and late-winter, where
the ice field is akin to rigid bodies separated by large de-
formation features. Early winter conditions exhibit simul-
taneous deformation at multiple locations, resulting in less
distinct deformation features. In contrast, the summer ice
pack behaved drastically differently with no Lc found, high-
lighting the need for general rheological models to account
for seasonal variation. Moreover, our observations suggest
that ice deformation in winter is driven by short-lived (hour-
scale) and spatially localized events that generate features on
the order of 102 m. While scale invariance provides a valu-
able benchmark for large-scale sea ice rheologies, we note
that it is not the only measure for model accuracy. Bouchat
et al. (2022) show that multiple numerical models can repro-
duce similar fractal dimensions while diverging in other im-
portant ice properties. Our findings should be complemented
with other diagnostics and comparisons to ensure a compre-
hensive model evaluation and development.

How can we model sea ice cover if there is no continuum
description at small scales? The discrete element method
(DEM) has been used in ice mechanics and dynamics studies
on various scales for decades (Hopkins et al., 1991; Hop-
kins and Hibler, 1991; Hopkins, 1994, 1996, 2004; Hopkins
and Thorndike, 2006) and seen as a tool for future studies as
well (Blockley, 2020; Hunke et al., 2020). Current DEM de-

velopments enable modeling multifracture of sea ice, three-
dimensional deformation processes, and interactions of ice
features over large sea ice domains, without requiring a con-
tinuum model (Manucharyan and Montemuro, 2022; Åström
et al., 2024; Åström and Polojärvi, 2024; Muchow and Polo-
järvi, 2024; Tsarau et al., 2024); apart from that for intact
level ice, high resolution DEM tools do not need a rheologi-
cal model.

5 Conclusions

Our analysis of high-resolution MOSAiC deformation data
observes a 102 m lower bound to the scale-invariance of sea
ice deformation. The results challenge conventional assump-
tions that scale invariance might reach even down to scales
comparable to ice thickness and highlights the need for fur-
ther consideration of the applicable models at smaller scales.
We show that sea ice deformation below the 102 m scale is
dominated by large features such as leads and fracture zones.
These features disrupt the traditional continuum assumption
that underlies most high-resolution sea ice models. Seasonal
differences further reinforce the complexity of these mechan-
ics: what holds true for winter pack ice breaks down as the ice
transitions towards the marginal ice zone in summer. During
winter, intermittency and spatial localization in deformation
persist, while in summer deformation becomes more gran-
ular, defying the applicability of the fractal analysis. The
seasonal transition highlights the influence of ice proper-
ties, thickness, and external forcing on deformation patterns.
Our study was based on unique field observations from ship
radar data gathered during MOSAiC expedition and on their
analysis by using novel deep learning-based tools; our re-
sults demonstrate that such high-resolution empirical data
can guide the development of hybrid modeling frameworks
that combine continuum modeling with models explicitly ac-
counting for the discontinuities in ice. These approaches will
help in understanding of scale dependency in sea ice defor-
mation and in improving predictions of ice-covered seas in
the future and estimates related to climate warming.

Appendix A: Strain measures

Any strain tensor can be described in terms of deforma-
tion gradient F= I+ ∂u/∂X, where u= u(X, t) is a time-
dependent displacement vector of a material point and the
partial derivative taken with respect to its position vector X in
a reference configuration. By polar decomposition, F= RU,
where R and U are the rotation matrix and stretch tensor, re-
spectively, describing the rigid body rotation and the actual
deformation. Green-Lagrange strain tensor is then defined as
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Gurtin (1982)

E=
1
2

(
FT · F− I

)
=

1
2

(
UT · RT · R ·U− I

)
=

1
2

(
UT · U− I

)
, (A1)

since RT ·R= I for rotations. The last form of this definition
shows that E is independent of rotations. The components
of E defined as a function of the displacement gradients are
given by

Eij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi
+
∂uk

∂xi

∂uk

∂xj

)
(A2)

and differ from the components of the infinitesimal strain
tensor, ε, by the inclusion of quadratic terms, negligible for
small deformations. Above we compare our results to previ-
ous large-scale estimates, that have typically used ε. For this
it is practical to introduce unit extensions

lii =
√

1+ 2Eii − 1 and

lxy = sin−1

 2Exy√
(1+ 2Exx)

(
1+ 2Eyy

)
 (A3)

which in the case of small deformations or deformations
leading to normal strains only reduce to components εii of
ε. The principal values of l are given by

E1,2 =
lxx + lyy

2
±

√(
lxx − lyy

2

)2

+ l2xy (A4)

and can be used to express the divergence, maximum shear,
and the total deformation as

Ed = E1+E2, Es =
1
2
(E1−E2) and

Et =

√
E2

d +E
2
s . (A5)

Similar operations can be applied in strain-rate analysis to
derive Ėt, since the strain-rate tensor is derivable from the
two strain tensors defined for two consecutive time steps
within analyzed data.

Appendix B: Deformation estimate uncertainties

B1 Error propagation and noise distributions

In addition to the error estimates presented in Uusinoka et al.
(2025a), we estimate uncertainties in velocity and deforma-
tion by propagating position errors following Hutchings et al.
(2012) and its ship-radar implementation in Oikkonen et al.
(2017). In this framework, uncertainty depends on the per-fix
position error σx , the time interval between sequential esti-
mates T , the cell area A, and the ice velocity v. Following

Figure B1. Noise distributions in an inactive region during active
(March case) and quiescent (February) periods. The distributions
are derived from the same region in the radar coverage. The dis-
tribution is slightly narrower during the active period and broader
during quiescence with mean deformation levels of 10−3 h−1 dur-
ing both periods.

Oikkonen et al. (2017), we consider the error estimates with
speed V = ‖v‖ = 0.01ms−1, which corresponds to 6 pixels
with 10-min temporal intervals. Based on Uusinoka et al.
(2025a, Supplement S2), the optical flow end-point error is
approximately constant per frame and can be approximated
as 0.06 pixels with this chosen speed. With higher speeds, the
relative error becomes smaller. Based on the synthetic data,
a practical lower limit of applicability was suggested at 0.21
pixels displacement between frames, which corresponds to a
speed of ice at V = 0.0035ms−1 with the temporal interval
of 10 min. With a pixel size of 10 m and temporal interval of
10 min, we estimate our position error to σx = 0.60m. For a
cell with N vertices and area A, the area error is

σA = 2
√

2 N
√
A σx, (B1)

so that σA/A becomes negligible as A� 8N2σ 2
x . For our

quadrilateral cells, this condition becomes A� 46m2. With
our smallest nominal spatial scale of A= 400 m2, we have
σA
A
= 0.34. Furthermore, the strain rate error through propa-

gation of position and time error is estimated as

σE

E
= 2

(
4
σ 2
x

A
+ 2

σ 2
x

V 2T 2 +
σ 2
T

T 2 +
σ 2
A

A2

)1/2

. (B2)

Similarly to previous implementations we assume
σT /T ≈ 0. With the highest available spatial (20 m) and tem-
poral (10 min) resolutions, and for V = 0.01ms−1, we have
σE
E
= 0.75, which is comparable to the value of 0.58 pre-

sented in Oikkonen et al. (2017) for their estimates with 50 m
and 10 min. Since σ 2

x /A and σA/A become negligible with
larger spatial resolutions, the dominant term is
σE

E
≈ 2
√

2
σx

V T
. (B3)
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Figure B2. Cumulative total deformation rate over the quiescent period between 17 and 22 February at the nominal resolutions of 10 min
and 20 m over (a) the full radar coverage and (c) on the inactive subregion. The inactive subregion is marked in (a) as the rectangle. Spatial
scaling of the quiescent period over (b) the full radar coverage and (d) on the inactive subregion. The power law fits for all scales retained
with R2

≥ 0.95 indicating that a similar lower-bound is not observed as during the active periods.

With the larger nominal spatial scales we have σE
E
∈

[0.283,0.094,0.047,0.016,0.008,0.004] for the temporal
intervals of 10 min, 30 min, 1 h, 3 h, 6 h, and 12 h, re-
spectively. As shown in Uusinoka et al. (2025a), the es-
timate for relative errors for displacements decrease with
displacement magnitude, similar values of σE

E
can be

achieved with lower ice speeds (e.g. for 0.0033ms−1 σE
E
∈

[0.424,0.141,0.071,0.024,0.012,0.006]).
Since these estimates are based on the synthetic tests pre-

sented in Uusinoka et al. (2025a) and do not include all the
possible noise artifacts caused by the field measurement con-
ditions, we analyze the noise distributions of the MOSAiC
data over an inactive region (shown in Fig. B2a) in the radar
coverage. We compare the deformation distributions within
the same inactive region for two periods: during an active
period (March case), and during a quiescent period with
minimal motion across the radar coverage (February 17th
to 22nd). Distributions are computed at the highest nominal
scales of 10 min and 20 m.

Figure B1 shows that the deformation distribution is wider
during the quiescent period. The mean deformation rate and
thus the mean noise level is approximately 10−3 h−1 dur-
ing both periods, which is approximately an order of mag-
nitude smaller than the mean deformation estimates during
an active period in Fig. 5a. The slightly increased variabil-
ity can be assumed due to the expectation that with large-
scale displacement magnitudes the deep learning-based opti-
cal flow algorithm converges more confidently and thus pro-
duces tighter residuals off features. During the quiescent pe-
riod, the gradient-based search of the optical flow algorithm
explores more ambiguously and results in increased the stan-
dard deviation. The difference in the noise distributions com-
bined with Eq. (B2) suggests further that the scaling analysis
can be assumed to be more reliable during active periods.

B2 Scaling during a quiescent period

Since the noise pattern in the deformation estimates contain a
checkerboard-like pattern, which could affect the observation
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of the lower bound with spatial scaling during winter events,
we assess this possibility by repeating the mean-based scal-
ing, first on a quiescent period between 17 and 22 February,
and second on an inactive subregion within this period that
exhibits the checkerboard artifact.

Figure B2a shows the cumulative deformation over the
full quiescent period at highest available nominal resolutions.
Since little deformation is observable during the quiescent
period, the deformation field reveals a strong checkerboard
pattern. The spatial scaling shown in Fig. B2b exhibits the
power-law behavior down to L= 20m with R2

≥ 0.95. Al-
though no clear lower bound similarly to the active periods
is observed, we note a slight increase in 〈Ėt(L,T )〉 near
L∼ 102 m similarly to the spatial scaling of active periods,
but this does not produce a clear scale break. The spatial scal-
ing also has a similar slope as the higher spatial scales during
an active period. Since it is impossible to suggest this slight
increase to result from the small deformations or the checker-
board pattern, in Fig. B2c–d we then analyze an inactive sub-
region of the radar coverage within the same period with the
highest available temporal resolutions to isolate noise struc-
ture. When we compute scaling over this subregion, the fits
for different T are nearly coinciding. The scaling can be de-
scribed by a single power law across all L and here no clear
deviations can be seen from the power-law fit. Over this sub-
region, the slope of the fits is smaller than over the whole
area of radar coverage.

Although these error estimates and data checks suggest re-
liability in the main results of this paper, we note that during
an active period the checkerboard pattern noise is intensified
around the deformation features as seen in Fig. 4. To fully
explore the robustness of the lower bound around L∼ 102 m,
other datasets and deformation detection tools need to be uti-
lized.

Code and data availability. The source code of the deformation de-
tection method is archived in Zenodo (Uusinoka, 2024). The ship
radar raw data is available in PANGAEA (Krumpen et al., 2021).
The time series and mean-based scaling data can be requested from
Matias Uusinoka.
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