Articles | Volume 19, issue 11
https://doi.org/10.5194/tc-19-6261-2025
https://doi.org/10.5194/tc-19-6261-2025
Research article
 | 
27 Nov 2025
Research article |  | 27 Nov 2025

Surface nuclear magnetic resonance for studying an englacial channel on Rhonegletscher (Switzerland): possibilities and limitations in a high-noise environment

Laura Gabriel, Marian Hertrich, Christophe Ogier, Mike Müller-Petke, Raphael Moser, Hansruedi Maurer, and Daniel Farinotti

Related authors

Updating induced seismic hazard assessments during hydraulic stimulation experiments in underground laboratories: workflow and limitations
Valentin Samuel Gischig, Antonio Pio Rinaldi, Andres Alcolea, Falko Bethman, Marco Broccardo, Kai Bröker, Raymi Castilla, Federico Ciardo, Victor Clasen Repollés, Virginie Durand, Nima Gholizadeh Doonechaly, Marian Hertrich, Rebecca Hochreutener, Philipp Kästli, Dimitrios Karvounis, Xiaodong Ma, Men-Andrin Meier, Peter Meier, Maria Mesimeri, Arnaud Mignan, Anne Obermann, Katrin Plenkers, Martina Rosskopf, Francisco Serbeto, Paul Selvadurai, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Jordan Aaron, Hansruedi Maurer, Domenico Giardini, and Stefan Wiemer
Solid Earth, 16, 1153–1180, https://doi.org/10.5194/se-16-1153-2025,https://doi.org/10.5194/se-16-1153-2025, 2025
Short summary
Multi-Scale Hydraulic and Petrophysical Characterization of a Heterogeneous Fault Zone in the Gotthard Massif's Crystalline Basement
Tom Schaber, Mohammedreza Jalali, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Valentin Gischig, Marian Hertrich, Men-Andrin Meier, Timo Seemann, Hannes Claes, Yves Guglielmi, Domenico Giardini, Stefan Wiemer, Massimo Cocco, and Florian Amann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4733,https://doi.org/10.5194/egusphere-2025-4733, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
4D GPR imaging of a near-terminus glacier collapse feature
Bastien Ruols, Johanna Klahold, Daniel Farinotti, and James Irving
The Cryosphere, 19, 4045–4059, https://doi.org/10.5194/tc-19-4045-2025,https://doi.org/10.5194/tc-19-4045-2025, 2025
Short summary
Sediment transport capacity response to variations in water discharge in pressurized subglacial channels
Ian Delaney, Andrew J. Tedstone, Mauro A. Werder, and Daniel Farinotti
The Cryosphere, 19, 2779–2795, https://doi.org/10.5194/tc-19-2779-2025,https://doi.org/10.5194/tc-19-2779-2025, 2025
Short summary
Field-scale modelling reveals dynamic groundwater flow and transport patterns in a high-energy subterranean estuary
Janek Greskowiak, Rena Meyer, Jairo Cueto, Nico Skibbe, Anja Reckhardt, Thomas Günther, Stephan Ludger Seibert, Kai Schwalfenberg, Dietmar Pommerin, Mike Müller-Petke, and Gudrun Massmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3132,https://doi.org/10.5194/egusphere-2025-3132, 2025
Short summary

Cited articles

Behroozmand, A. A., Keating, K., and Auken, E.: A Review of the Principles and Applications of the NMR Technique for Near-Surface Characterization, Surveys in Geophysics, 36, 27–85, https://doi.org/10.1007/s10712-014-9304-0, 2015. a, b, c, d
Brown, G. H.: Glacier meltwater hydrochemistry, Applied Geochemistry, 17, 855–883, https://doi.org/10.1016/S0883-2927(01)00123-8, 2002. a
Brown, G. H. and Fuge, R.: Trace element chemistry of glacial meltwaters in an Alpine headwater catchment, Hydrology, Water Resources and Ecology in Headwaters, 248, 435–442, 1998. a
Church, G., Bauder, A., Grab, M., Rabenstein, L., Singh, S., and Maurer, H.: Detecting and characterising an englacial conduit network within a temperate Swiss glacier using active seismic, ground penetrating radar and borehole analysis, Annals of Glaciology, 60, 193–205, https://doi.org/10.1017/aog.2019.19, 2019. a, b, c, d
Church, G., Grab, M., Schmelzbach, C., Bauder, A., and Maurer, H.: Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements, The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, 2020. a, b, c, d, e, f
Download
Short summary
Surface nuclear magnetic resonance (SNMR) is a geophysical technique directly sensitive to liquid water. We expand the limited applications of SNMR on glaciers by detecting water within Rhonegletscher, Switzerland. By carefully processing the data to reduce noise, we identified signals indicating a water layer near the base of the glacier, surrounded by ice with low water content. Our findings, validated by radar measurements, show SNMR's potential and limitations in studying water in glaciers.
Share