Articles | Volume 19, issue 11
https://doi.org/10.5194/tc-19-6127-2025
https://doi.org/10.5194/tc-19-6127-2025
Research article
 | 
24 Nov 2025
Research article |  | 24 Nov 2025

Object-based ensemble estimation of snow depth and snow water equivalent over multiple months in Sodankylä, Finland

David Brodylo, Lauren V. Bosche, Ryan R. Busby, Elias J. Deeb, Thomas A. Douglas, and Juha Lemmetyinen

Related authors

Effects of permafrost thaw on seasonal soil CO2 efflux dynamics in a boreal forest site
Dragos A. Vas, Jaimie R. West, David Brodylo, Amanda J. Barker, William B. Baxter, and Robyn A. Barbato
EGUsphere, https://doi.org/10.5194/egusphere-2025-1204,https://doi.org/10.5194/egusphere-2025-1204, 2025
Short summary

Cited articles

Abriha, D., Srivastava, P. K., and Szabó, S.: Smaller is better? Unduly nice accuracy assessments in roof detection using remote sensing data with machine learning and k-fold cross-validation, Heliyon, 9, e14045, https://doi.org/10.1016/j.heliyon.2023.e14045, 2023. 
Anttila, K., Manninen, T., Karjalainen, T., Lahtinen, P., Riihelä, A., and Siljamo, N.: The temporal and spatial variability in submeter scale surface roughness of seasonal snow in Sodankylä Finnish Lapland in 2009–2010, J. Geophys. Res.-Atmos., 119, 9236–9252, https://doi.org/10.1002/2014JD021597, 2014. 
Arenson, L., Colgan, W., and Marshall, H. P.: Physical, thermal, and mechanical properties of snow, ice, and permafrost, in: Snow and Ice-Related Hazards, Risks, and Disasters, Elsevier, 35–71, https://doi.org/10.1016/B978-0-12-817129-5.00007-X, 2021. 
Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R., and Wilson, C. J.: Influences and interactions of inundation, peat, and snow on active layer thickness, Geophysical Research Letters, 43, 5116–5123, https://doi.org/10.1002/2016GL068550, 2016. 
Aune-Lundberg, L. and Strand, G.-H.: The content and accuracy of the CORINE Land Cover dataset for Norway, International Journal of Applied Earth Observation and Geoinformation, 96, 102266, https://doi.org/10.1016/j.jag.2020.102266, 2021. 
Download
Short summary
We combined field-based snow depth and snow water equivalent (SWE) measurements, remote sensing data, and machine learning to estimate snow depth and SWE over a 10 km2 local scale area in Sodankylä, Finland. Associations were found for snow depth and SWE with carbon- and mineral-based forest surface soils, alongside dry and wet peatbogs. This approach to upscale field-based snow depth and SWE measurements to a local scale can be used in regions that regularly experience snowfall.
Share