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Abstract. Snowpack characteristics such as snow depth and
snow water equivalent (SWE) are widely studied in regions
prone to heavy snowfall and long winters. These features
are measured in the field via manual or automated observa-
tions and over larger spatial scales with stand-alone remote
sensing methods. However, individually these methods may
struggle with accurately assessing snow depth and SWE in
local spatial scales of several square kilometers. One method
for leveraging the benefits of each individual dataset is to link
field-based observations with high-resolution remote sensing
imagery and then employ machine learning techniques to es-
timate snow depth and SWE across a broader geographic re-
gion. Here, we combined field-based repeat snow depth and
SWE measurements over six instances from December 2022
to April 2023 in Sodankyld, Finland with Light Detection
and Ranging (LiDAR) and WorldView-2 (WV-2) data to es-
timate snow depth, SWE, and snow density over a 10 km? lo-
cal scale study area. This was achieved with an object-based
machine learning ensemble approach by first upscaling more
numerous snow depth field data and then utilizing the esti-
mated local scale snow depth to aid in estimating SWE over
the study area. Snow density was then calculated from snow
depth and SWE estimates. Snow depth peaked in March,
SWE shortly after in early April, and snow density at the
end of April. The ensemble-based approach had encouraging
success with upscaling snow depth and SWE. Associations
were also identified with carbon- and mineral-based forest
surface soils, alongside dry and wet peatbogs.

1 Introduction

Seasonal snow is found in regions of the globe that experi-
ence freezing temperatures and is widely studied to monitor
changes in climate and hydrology. Snow is a component of
the cryosphere that is heterogeneous over space and time.
Snowmelt provides drinking and irrigation water to approx-
imately one sixth of the world’s population (Barnett et al.,
2005). The initial layering of the snowpack is impacted by
the deposition of falling snow, windblown snow redistribu-
tion, or a combination of the two (Nienow and Campbell,
2011). Further densification can occur due to compaction and
metamorphic mechanisms, alongside meltwater, percolation,
and refreeze events (Prowse and Owens, 1984; Tuttle and Ja-
cobs, 2019; El Oufir et al., 2021; Colliander et al., 2023).
Given these factors, key elements of snow density are the
age of the snowpack, snow depth, and water content. Fresh
snow can have a snow density of 0.05-0.07 gcm™> while
fresh damp snow can range from 0.10-0.20 gcm™3 (Mus-
kett, 2012). In contrast, the snow density of older dry snow
is roughly 0.35-0.40 g cm™ and for older wet snow is up to
0.50 gc:m’3 (Seibert et al., 2015). Very wet snow and firn,
which is snow that failed to melt in the previous summer
and did not turn into ice, can contain a snow density rang-
ing from 0.40-0.80 gcm_3 (Muskett, 2012; Arenson et al.,
2021). Within the Northern Hemisphere, there is an immense
variation in average snow density which ranges from 0.05-
0.59 gcm ™3 with an overall long-term average snow density
0of 0.254+0.07¢ cm™3 (Zhao et al., 2023).
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Despite the attainability of snow density classification,
there are significant complexities with generating the esti-
mated snow density alongside the related snow depth and
snow water equivalent (SWE) over large areas and in chal-
lenging environments such as thick forests and mountainous
terrain. Snow depth is simply the total depth of snow on the
ground while SWE can be defined as the resulting depth of
water produced from the complete melt of a mass of snow
(Henkel et al., 2018). The quantity of SWE is determined
by the amount of snow accumulation alongside the amount
of snow melt and sublimation (Xu et al., 2019). Field-based
SWE datasets are both spatially and temporally scarce and
can be expensive and labor intensive to acquire (Henkel et
al., 2018; Fontrodona-Bach et al., 2023). In contrast, field-
acquired snow depth measurements are more common, and
are both easier and faster to obtain, though their spatial extent
is also limited and can be challenging to obtain in difficult or
remote areas (Collados-Lara et al., 2020; Tanniru and Ram-
sankaran, 2023). Automated stations can be utilized to col-
lect snow measurements, which are rapidly becoming more
commonplace, such as accounting for over 80 % of the snow
depth observing network north of 55° N in Canada (Brown et
al., 2021). However, such stations may sometimes be primar-
ily intended for non-climatic purposes such as for avalanche
warnings and thus not be verified nor corrected for climatic
trends (Salzmann et al., 2014).

Alternatives to field-based methods of snow observations
are the use of airborne and spaceborne sensors to estimate
snow properties which have achieved great success in re-
cent decades (Nagler and Rott, 2000; Kelly et al., 2003;
Marti et al., 2016; Cimoli et al., 2017; Tsai et al., 2019).
Such sensors achieve large spatial coverage and the ability
to clearly differentiate between snow and non-snow features
(Nolin, 2010; Raghubanshi et al., 2023). However, many
commonly used spaceborne sensors such as with the Land-
sat series, the Moderate Resolution Imaging Spectroradiome-
ter (MODIS), the Advanced Very High Resolution Radiome-
ter (AVHRR), and the Advanced Microwave Scanning Ra-
diometer (AMSR-E/AMSR?2) have limitations. These are ei-
ther not capable of directly estimating snow depth or SWE,
or, if able, have limited penetration or contain very coarse
resolutions that make local scale estimation unattainable, in
addition to potential cloud cover contamination (Rodell and
Houser, 2004; Green et al., 2012; Lu et al., 2022; Stillinger
et al., 2023). Repeat images captured via airborne Light De-
tection and Ranging (LiDAR) can serve to successfully es-
timate changes in snow depth (Deems et al., 2013; King et
al., 2023); however, the flights needed for these are costly,
weather dependent, and require trained pilots and LiDAR
specialists (Jacobs et al., 2021; Yu et al., 2022). While is-
sues are present in relying solely on remote sensing for snow
depth and SWE estimation, a blending of remote sensing im-
agery and field-based snow data can serve to significantly im-
prove snow depth and SWE estimations (Kongoli et al., 2019;

The Cryosphere, 19, 6127-6148, 2025

D. Brodylo et al.: Object-based ensemble estimation of snow depth and snow water equivalent

Pulliainen et al., 2020; Cammalleri et al., 2022; Venildinen
et al., 2023).

In addition to this, the inclusion of machine learning can
expand the potential to estimate snow depth and SWE over
spatial and temporal scales. Machine learning techniques
have been successfully applied to predict such features across
Earth, including high altitude and high latitude environments
(Jonas et al., 2009; Bair et al., 2018; King et al., 2020;
Zhang et al., 2021; Shao et al., 2022; Hu et al., 2023).
Commonly employed algorithms including Artificial Neu-
ral Network (ANN), K-Nearest Neighbor (KNN), Multiple
Linear Regression (MLR), Random Forest (RF), and Sup-
port Vector Machine (SVM) have achieved success in snow
depth, SWE, and snow-liquid ratio estimations (Broxton et
al., 2019; Douglas and Zhang, 2021; Ntokas et al., 2021;
Vafakhah et al., 2022; Hoopes et al., 2023; Liljestrand et al.,
2024). Deep learning models such as Convolutional Neural
Networks (CNNs) have also successfully been employed to
estimate snow cover, snow depth, and SWE at various scales
across the globe (Nijhawan et al., 2019; Xing et al., 2022;
Duan et al., 2024; Kesikoglu, 2025). Individually many of
these algorithms can produce positive results, though there
may be a tendency for disagreement in model accuracy and
outcomes (Li et al., 2023). As an alternative, a weighted
ensemble-based empirical model can be utilized to poten-
tially increase model accuracy, while also reducing estima-
tion error (Douglas and Zhang, 2021; Brodylo et al., 2024).
As each algorithm is optimized differently to generate out-
puts, each containing their pros and cons, an ensemble ap-
proach can improve feature estimation to ensure optimal re-
sults (Pes, 2020). A combination of such machine learning
models, remote sensing imagery, and field-based snow data
can thus provide the necessary foundations to map snow fea-
tures across the cryosphere, which has been experiencing ris-
ing temperatures and increasing climatic uncertainty (Pan et
al., 2017; Yang et al., 2020; Santi et al., 2022).

One region where application of such a technique is worth-
while is in northern Europe, particularly in the Lapland re-
gion located largely within the Arctic Circle. The area around
Sodankyl4, Finland is prone to long, cold winters with abun-
dant snowfall and both on-the-ground snow depth and SWE
measurements are available for multiple months or more.
Here, we sought to utilize an object-based hybrid deep learn-
ing and machine learning ensemble approach with a combi-
nation of time-series field and automated snow data, along-
side WorldView-2 (WV-2) imagery and LiDAR data to up-
scale snow depth, SWE, and snow density to a 10 km? lo-
cal scale. This was implemented over six instances from De-
cember 2022 to April 2023, with snow estimates matched to
dominant vegetative communities. Field-based snow depth
observations were upscaled first, before utilizing the esti-
mated snow depth to aid in upscaling more limited SWE
field data to the local scale, with snow density then being
mapped. Distinctive machine learning algorithms were em-
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ployed and compared to an ensemble-based technique for
both snow depth and SWE estimation.

2 Study area and data
2.1 Study area

The study area is found near the town of Sodankyli in the So-
dankyld municipality of northern Finland, which is roughly
125km north of the Arctic Circle. The 10km? site is lo-
cated along the Kitinen River and hosts the Finnish Me-
teorological Institute Arctic Space Centre (FMI-ARC) and
the Sodankyld Geophysical Observatory (Bosinger, 2021)
between 67.356°N, 26.609°E, and 67.381°N, 26.693°E
(Fig. 1). It is largely flat, with elevations ranging between
170 and 190 m above sea level. Landcover consists primar-
ily of coniferous and deciduous dominated forests and peat
bogs, contains organic and mineral soils, and portrays a stan-
dard flat northern boreal forest/taiga setting (Rautiainen et
al., 2014). Field analysis revealed a multitude of vegetative
species at the study site. Dominant tree species are Betula
pubescens (downy birch) and Pinus sylvestris (Scots pine).
Common shrub species include Andromeda polifolia (bog
rosemary), Empetrum nigrum (crowberry), Rhododendron
tomentosum (Labrador tea), Vaccinium cespitosum (dwarf
bilberry), Vaccinium myrtillus (bilberry), Vaccinium oxycoc-
cus (cranberry), and Vaccinium vitis-idaea (lingonberry).
Graminoid species were comprised of Carex lasiocarpa
(woollyfruit sedge), Danthonia decumbens (heath grass),
Eriophorum vaginatum (tussock cottongrass), Scheuchzeria
palustris (pod grass), and Trichophorum cespitosum (tufted
bulrush). Forb species include Comarum palustre (purple
marshlock) and Menyanthes trifoliata (bog bean). Lichen
and moss are also common.

The climate in Sodankyli is defined by short but relatively
warm summer season and a long and cold winter, with snow
present from October to May. Taiga snow is dominant, with
thick layering of depth hoar at the base of the snowpack
(Anttila et al., 2014). Meaningful rain-on-snow events occur
in November and early December (Bartsch et al., 2023). Be-
tween 1991 and 2020 at the FMI Sodankyld Téhteld weather
station, the average yearly precipitation was 543 mm with an
average yearly maximum snow depth of 91 cm that ranged
from 65-127 cm. The average air temperature was 0.4 °C,
the average minimum was —4.2 °C, and the average max-
imum was 4.8 °C. The absolute minimum temperature was
—49.5°C while the absolute maximum was 32.1 °C. The
mean annual air temperature has increased by 0.07 °C from
2000-2018 (Bai et al., 2021) and is expected to continue. Be-
tween the winters of 2007/08 to 2013/14 around FMI-ARC
and the Sodankyld Geophysical Observatory, the maximum
SWE ranged approximately from 150-250 mm (Essery et al.,
2016). For the winter of 2022/23, a maximum snow depth of
99 cm was recorded at the Sodankyléd Téhteld weather station
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on 31 March 2023, with rapid snow melt in April and early
May (Fig. 2). The average air temperature was generally near
or below freezing in winter and contained relatively low pre-
cipitation. The site generally contains low wind speeds that
limit windblown snow redistribution, with a monthly average
of 2.5-2.9ms~! above the forest canopy (Meinander et al.,
2020).

2.2 Ground-based and remotely sensed measurements

Field-based snow data were acquired over distinct vegeta-
tive communities on 14 December 2022, 17 January 2023,
15 February 2023, 17 March 2023, 17 April 2023, and
28 April 2023. Manually obtained snow depth was measured
with a fixed stake or manual probe, while SWE was calcu-
lated with a scale that is paired to a snow tube that is 70 cm
high and 10 cm in diameter that includes a scale on the out-
side to measure snow depth (Leppinen et al., 2016). Au-
tomated observations were performed for snow depth with
the Campbell Scientific SR50 sonic distance instrument and
for SWE with the Sommer Messtechnik SSG 1000 snow
scale instrument. A total of 88 repeat snowpack depth (cm)
measurements were taken at the same locations with 80
being manually recorded and 8 being acquired from auto-
mated stations (Fig. 1b). Of these same 88 locations, a total
of 13 repeat SWE (mm) measurements were recorded: 11
manually and 2 from automated stations. SWE values were
based on the total snowpack depth. An average daily value
was recorded from the automated stations to match with the
field-based observations, with previously strong correlations
found between the automated and manual measurements for
both snow depth and SWE with average correlation coeffi-
cients of 0.98 and 0.99, respectively (Leppinen et al., 2018).
Snow density (gcm™3) was calculated from dividing SWE
by snow depth at the same location.

On-the-ground vegetation data were acquired between
31 July and 4 August 2023 from collaborative efforts by FMI
and the U.S. Army Corps of Engineers (USACE). Plots were
established randomly along the snow depth measurement
route to encompass major plant community types, primar-
ily coniferous and hardwood forests, and forested and herba-
ceous bogs. At each plot, a center point was established, flags
were placed in each cardinal direction to create a circular plot
with a 7.3 m radius, and GPS coordinates of the center point
and flags were recorded. In each plot, all trees with diame-
ter at breast height (DBH) greater than 10 cm were recorded
by species and DBH. Five 0.5 m” quadrats were randomly
placed in each plot quadrant and aerial cover of the under-
story vegetation was estimated in 5 % increments for the
following functional groups: moss, lichen, shrub, forb, and
graminoid.

Cloud free and high spatial resolution (2m) spaceborne
WV-2 images from MAXAR were acquired on 2 Au-
gust 2021 and 27 April 2023. The summer imagery con-
tained spectral readings that matched with distinct vegeta-
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Figure 1. Study area (a) in Sodankyld, Finland and (b) automated and manual snow depth and snow water equivalent measurements within
the 10 km? local scale study site. Image credits: Esri, Earthstar Geographics, and Maxar.
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Figure 2. Daily average air temperature (°C), precipitation (mm), and snow depth (cm) from the FMI Sodankyld Tahteld weather station

from 1 October 202227 May 2023.

tive communities, while the winter imagery served to identify
snow and non-snow features. Snow-free LiDAR data from
2020 was gathered from the National Land Survey of Fin-
land (NLS) at a density of 5 pulsesm~2. Airborne LiDAR
data were obtained on 27 April and 11 May 2023 by NV5
Geospatial and contained full to partial snow cover. This was
captured with a Leica City Mapper-2/Hypersion 2+ system
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containing an average pulse density of > 25 pulses m~2, ab-
solute vertical accuracy of < 6 cm, relative vertical accuracy
of < 15cm, and horizontal accuracy of < 14cm. The Li-
DAR data were further separated into a Digital Terrain Model
(DTM), Digital Surface Model (DSM), and Canopy Height
Model (CHM). No major landcover changes impacted the
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study site during these time periods that would have necessi-
tated the need for repeat sets of imagery.

Land Use Land Cover (LULC) data were acquired from
CORINE (Coordination of Information on the Environment)
Land Cover (CLC) at 20 m resolution from 2018. CLC is a
LULC monitoring program that is coordinated by the Eu-
ropean Environment Agency (EEA) and is a current product
of the Copernicus Land Monitoring Service (Aune-Lundberg
and Strand, 2021). The LULC data was utilized to link veg-
etative communities to snow depth and SWE in the study
area, while excluding artificial features and water bodies.
We downscaled the dataset to match the 2 m resolution WV-
2 imagery and then updated land cover boundaries where
there were evident differences with the obtained summer
imagery, thereby providing an updated, higher-resolution
LULC. In addition, a modified classification scheme was em-
ployed that sought to separate forest communities by soil
type and wetlands by moisture content. A RF-based classi-
fication scheme was employed for the final land cover pre-
dictions and achieved an Overall Accuracy (OA) of 91.7 %
and a Kappa value of 0.91, which indicated high LULC clas-
sification accuracy. A summary of gathered field and remote
sensing variables can be seen in Table 1.

3 Methodology
3.1 Image segmentation

An Object-Based Image Analysis (OBIA) technique was uti-
lized to make estimations of snow depth and SWE at the
10km? local site scale. In OBIA an image is separated into
similar groupings of homogeneous pixels known as image
objects or segments, which are then utilized as the spatial
unit for image assessment (Ye et al., 2018). This contrasts
with more traditional pixel-based classification methods, in
which image assessment is performed on a pixel-by-pixel ba-
sis. The OBIA approach was selected as it has been found
to deliver enhanced accuracy and results over traditional
pixel-based approaches, especially with high-resolution im-
agery (Sibaruddin et al., 2018; Shayeganpour et al., 2021;
Ez-zahouani et al., 2023). Additionally, outputs generated
from traditional pixel-based approaches can be susceptible
to high local spatial heterogeneity between adjacent pixels,
commonly known as the “salt-and-pepper” effect, which is
not evident with OBIA (Wang et al., 2020).

Image segmentation was accomplished with the Segment
Mean Shift tool in ArcGIS Pro software, a desktop GIS
application. It contains a nonparametric iterative technique
that utilizes kernel density estimation to generate image ob-
jects from a maximum of three image bands by grouping
nearby pixels that contain similar spectral characteristics
(Goldberg et al., 2021). The red, green, and near-infrared
bands were utilized from the summer WV-2 imagery to
carry out image segmentation. For parameters, the spectral
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detail was set to 19 (near maximum) while spatial detail
was set to 1 (minimum) to improve segmentation as both
heterogeneous and homogenous areas were present. A to-
tal of 37917 unique image objects were created. Mean and
standard deviation were calculated for each image object
from the LiDAR and WV-2 datasets. Additional indices uti-
lized included the Green Chlorophyll Index (GCI), Red-Edge
Chlorophyll Index (RECI), Normalized Difference Vege-
tation Index (NDVI), Normalized Difference Water Index
(NDWI), and Soil-Adjusted Vegetation Index (SAVI). De-
scriptions of these widely utilized indices, beyond the scope
of this work, are available in Gaitan et al. (2013), Xue and
Su (2017), and Nadjla et al. (2022). The automated and
field-based snow depth and SWE measurements were spa-
tially joined to polygons with a 3 m radius at each observed
field point that each contained average and standard deviation
raster band values. This was done to ensure that the input data
in this approach better incorporated the spatial context of sur-
rounding features and to improve modeling performance.

3.2 Machine learning models

In addition to a deep learning Convolutional Neural Net-
work (CNN), other commonly utilized and unique super-
vised regression-based machine learning models entailing of
Random Forest (RF), Support Vector Machine (SVM), Arti-
ficial Neural Network (ANN), and Multiple Linear Regres-
sion (MLR) were chosen to estimate snow depth and SWE
for the image objects. RF works by training a large collec-
tion of decision trees to generate an optimal output via boot-
strap aggregation (Hwang et al., 2023). In contrast, SVM is
a supervised algorithm that relies on an optimal hyperplane
that minimizes error bounds and seeks to identify a func-
tion that best predicts a continuous output value (Pimentel
et al., 2021). ANN may be explained as a feed-forward Di-
rected Acyclic Graph (DAG) connected with artificial neu-
rons with nonlinear activation functions (Li et al., 2022).
The architecture of the ANN machine learning model used
in this manuscript was a feed-forward network (FFN) model
with a single hidden layer. MLR models the linear relation-
ship between independent variables to a dependent variable
by finding the best-fitting linear equation (Kim et al., 2020).
CNN is a more advanced ANN model that includes at least
one convolutional layer (Santry, 2023), though often contains
some combination of convolutional layers, pooling layers,
and dense layers. Here, a 1D CNN model was utilized as all
models relied on the same tabular data provided from all im-
age objects. The tuneGrid parameter found in the caret pack-
age in R was used to specify a grid of hyperparameter values
for tuning the model training process to optimize machine
learning performance. Further details on the hyperparameter
values can be found in Appendix A. To aid in reducing poten-
tial modeling bias and overfitting, a k-fold cross-validation
technique was employed. With this, matched data samples
are randomly split into k¥ number of subsets, with k — 1 be-

The Cryosphere, 19, 6127-6148, 2025



6132

Table 1. Summary of field and remote sensing variables.
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Data Variables Resolution Source
Repeat Field Observations ~ Snow depth (cm) and SWE (mm)  In-situ FMI

Field Vegetation Survey Vegetative type and species In-situ USACE; FMI
WorldView-2 Multispectral bands 2m MAXAR

Snow-free LIDAR
Snow-on LiDAR
Land Use Land Cover

DTM, DSM, CHM, and slope
DTM, DSM, CHM, and slope
Land cover and vegetation

5 pulses m~2 NLS
25 pulses m~2 NV5 Geospatial
20m CORINE

ing utilized to train models and the remainder to test mod-
els (Abriha et al., 2023). Here, a k-fold of 10 was utilized
whereby in each subset 90 % of the data is assigned for train-
ing and 10 % is for testing, with model performance deter-
mined from the average of all iterations. Thus, each subset of
randomly split data is utilized for testing only once, before
rejoining the training set. For preprocessing, all inputs were
standardized with centering and scaling leading to attributes
containing a mean value of 0 and a standard deviation of 1.
Subsequently, Principal Component Analysis (PCA) was uti-
lized prior to running each model, which also aided to lessen
model overfitting. A threshold of 95 % of the variance cap-
tured was set for PCA to ensure that the number of chosen
components would sufficiently represent the variance of the
data. The result was 17 components for snow depth and 9
components for SWE.

3.3 Object-based ensemble machine learning

An object-based hybrid deep learning and machine learning
ensemble approach was applied from a combined weighted
output of the CNN, RF, SVM, FFN, and MLR models which
is referred to here as Ensemble Analysis (EA). Given that
these individual models compute predictions differently and
will have varying accuracies and errors, EA can result in
a more robust model that considers more accurate models
while minimizing the influence of less accurate ones. This
is relevant for repeat predictions over the same study site as
a model may perform well in one scenario while underper-
form in another, such as with estimating snow depth during
a period of low or high snowfall. All five models were in-
cluded to estimate snow depth and SWE. The model weights
for EA were determined by the coefficient of determination
(R?) in which a model with a larger R? value would be given
a higher weight, and the sum of weights equal to 1.0 (Zhang
et al., 2020). For EA, the weighted average value for each
predicted output were calculated by:
(e -wp) + (- w2) 4.+ G- wp)

X= (H
w)+wr2+...+wy,

Where x is the weighted average, n is the nth machine learn-
ing model, x is the predicted snow depth or SWE value, and
w is the weighted model R* value. Combined model uncer-
tainty for EA predictions was based on the standard deviation
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of model outputs and is referred to as the standard devia-
tion to ensemble prediction (STDE). Other statistical metrics
included the Mean Absolute Error (MAE), which is the ab-
solute error between the observed and predicted values, and
the Root Mean Square Error (RMSE), which is more sensi-
tive to outliers and is the square root of the mean squared
error between observed and predicted values. Larger differ-
ences between MAE and RMSE would serve to indicate a
high variance of the individual errors from the test samples.
Final output metrics were generated from the relationship
between actual and estimated outputs. Local scale estima-
tions were generated for snow depth via the ensemble-based
approach, which were then utilized as added inputs to aid
in upscaling the more limited field acquired SWE data to
the same local scale. Snow density was measured by divid-
ing the estimated SWE by the estimated snow depth in each
respective instance. A summary of the methodology frame-
work can be found in Fig. 3. Image objects were generated
from multispectral imagery via image segmentation, with av-
eraged remote sensing and field snow depth values assigned
to each unique image object (1). Standardization and PCA
were applied to the spatially matched data before then being
evaluated through the base machine learning models (CNN,
RF, SVM, FFN, and MLR) to predict snow depth before be-
ing ascertained with EA by combining model outputs with
weighted averaging based on the R? value of each model (2).
Model metrics were obtained from each model alongside the
mapped estimated local scale snow depth, with the estimated
snow depth from EA and field SWE values then being spa-
tially joined to the previously matched input data (3). Stan-
dardization and PCA were again applied to the updated spa-
tially matched data and was analyzed by the same base ma-
chine learning models (CNN, RF, SVM, FFN, and MLR) to
predict SWE before being finalized with EA (4). Model met-
rics were generated along with the mapped estimated local
scale SWE in each instance (5).

While the methodology is similar to that found in Brodylo
et al. (2024), that work was solely intent on upscaling 1 m>
permafrost active layer thickness (ALT) field data to three
1 km? local scale sites in Alaska before then further upscal-
ing the ALT estimates to a 100 km? regional scale over mul-
tiple years. Here, we focused on first upscaling repeat field
snow depth measurements to a 10km? local scale in Fin-
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Figure 3. Methodology framework to upscale field snow depth data
to a local scale by using an object-based ensemble machine learn-
ing approach and then joining the produced snow depth outputs and
matched input data with the field SWE data to generate local scale
SWE outputs. Blue indicates input data, purple indicates outcome
variables, yellow indicates processed data, red indicates machine
learning, and green indicates model metrics. CNN is Convolutional
Neural Network, RF is Random Forest, SVM is Support Vector Ma-
chine, FFN is Feed-Forward Network, MLR is Multiple Linear Re-
gression, and EA is Ensemble Analysis.

A

Local Scale SWE

land over multiple instances with a novel object-based hybrid
deep learning and machine learning ensemble approach and
then combined the estimated snow depth data to the origi-
nal machine learning input data. The addition of snow depth
as an input variable enabled a separate, enhanced estimate of
SWE at the same 10 km? local scale with more limited repeat
field SWE measurements over the same multiple instances in
a single winter period. This then permitted snow density to be
calculated at each moment in time from snow depth and SWE
estimations. The approach was applied to a shorter temporal
analysis for snow depth, SWE, and snow density. It revealed
how each of these variables were interconnected during the
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initial, middle, and late winter, how machine learning models
performed over the course of the winter period, and how the
studied variables related to landcover types over these differ-
ent instances. In addition, machine learning snow depth esti-
mates were directly compared to independent LiDAR-based
snow depth estimation.

4 Results
4.1 Snow depth

All tested models performed relatively well with the snow
depth estimations. The best R%, MAE, and RMSE values
were observed with RE, SVM, FFN, and EA (Fig. 4). Ow-
ing to the lower snow depth in December, MAE and RMSE
were the smallest out of all six instances at 1.7 and 2.4 cm
for EA, respectively. MAE and RMSE steadily increased for
all models from roughly 1.5-2.7 and 2.0-3.4 cm in Decem-
ber to 4.5-6.1 and 5.1-8.1 cm at the end of April. This was
expected given increased snowfall and snow depth over time,
alongside minor periods of snowmelt throughout and accel-
erated snowmelt in April that would increase model uncer-
tainty. The R? value for EA was strongest during peak snow
depth in March (0.92), while being somewhat lowered in De-
cember (0.79) during the lowest observed snow depth. RF
and EA tended to have the most consistent and best or sec-
ond best R2, MAE, and RMSE values across all six instances.
This was in contrast with metrics produced from CNN, SVM,
FFN, and MLR. CNN contained metrics that were relatively
in-line with other models in the first and second instances.
However, during the last four instances there was a more
noticeable drop in metric performance. SVM and FFN per-
formed well and were able to match or exceed RF and EA
in several instances, though never generated the highest R?
values. MLR lagged in metric performance to most models,
yet it still provided respectable metric values. More informa-
tion about outputs produced with EA for each instance can
be seen in Fig. 5, with each instance containing a 1: 1 line,
fitted linear regression line, and scatterplot with STDE er-
ror bars in blue. With minor exceptions, there was largely
an overall agreement between the field and estimated snow
depth values, and between the individual model outputs.
The snow depth average and standard deviation at each of
the vegetative land cover types with the field data and lo-
cal scale EA outputs are in Fig. 6. Mapped snow depth at the
field scale and local scale estimates with EA for each instance
from December 2022—April 2023 can be seen in Fig. 7. There
was a general agreement and similar snow depth patterns in
LULC’s that contained both field and local scale data. The
average snow depth was lowest for the field data at 29 cm
and local scale at 32 cm in December, while the highest read-
ings were in March at 75 and 80cm, with a rapid decline
at the end of April at 36 and 40 cm. Standard deviation was
lowest in December (+5 and £4 cm) for both while high-

The Cryosphere, 19, 6127-6148, 2025



6134 D. Brodylo et al.: Object-based ensemble estimation of snow depth and snow water equivalent

R? by Model and Date Model

1.00 B

0.75 . RF
& 0.50 B sw
0.25 i . FFN
0.00 | MLR
P P P 2

o/ 7/ 7 K/ K/ &/ EA
© N @ © R R
\b‘/o (\/ \G:)/Q <\/® (\/ (f,b/
Date
MAE and RMSE by Model and Date
MAE RMSE Model
10.0 . CNN
’g 7.5 - . RE
o 5.0 B sw
>
¢ = L bl e H i H e
0.0 H | MLR
v gl gl gl > 3] Jo) EA
e,()/rl/ (\/q/ Q/rl/ Q‘/q/ Q&/ Q‘/ @o/q/ Q/q’ 0/(L é/% Q&/ Q&/
P /5’0 /(<® /@ X N QO /Sb f<® ﬁ‘ X X
RN N A () N - A (R
Date

Figure 4. Machine learning model metrics for estimated snow depth with CNN, RF, SVM, FFN, MLR, and EA. MAE and RMSE are in cm.
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est at the end of April (£13 and £9 cm) when there was in-
creased snowmelt. At the field scale there was up to a 10—
11 cm difference between coniferous forest (peat soil) and
coniferous forest (mineral soil) from January to early April.
The exception is at the end of April during the period of
snowmelt when field coniferous forest (mineral soil) con-
tained higher snow depth at 43 cm than coniferous forest
(peat soil) at 40 cm. A similar pattern was evident with the
field transitional woodland/shrub (peat soil) repeatedly con-
taining higher snow depths than transitional woodland/shrub
(mineral soil) with a maximum difference of 10 cm in early
April. However, at the end of April both were equal at 36 cm
of snow depth. Field-based peatbog (wet) and open area con-
tained the lowest levels of snow depth in all instances, rang-
ing from 26-70 and 25-70 cm, respectively, with the latter
experiencing elevated standard deviation of +20 and £22 cm
in the last two instances.

At peak snow depth at the local scale in March, both dry
and wet peatbogs contained the lowest average snow depth
at 77 and 74 cm, alongside having the lowest snow depths in
all other instances, particularly for wet peatbogs. Dry, unsat-
urated peatbog was found to have snow depths greater than
wet, saturated peatbog, with differences ranging from 2 to
3cm, apart from early April when wet, saturated peatbog
had 2 cm more snow depth. Arable and open area contained
similar estimated snow depth values in all instances except
in the end of April with a 5cm difference and were higher
than dry and wet peatbogs from December to the end of
April. Forests and transitional woodlands largely contained
the higher average values in March with broad-leaved forest
recording 85 cm (mineral soil) and 86 cm (peat soil), conif-
erous forest (peat soil) with 85cm, and transitional wood-
land/shrub containing 87 cm (mineral soil). There was also
a consistent 0-2 cm snow depth difference between the lo-
cal scale broad-leaved forest mineral soils and peat soils,
with a slight reversal of 1 cm in March. Transitional wood-
land/shrub contained higher snow depth in mineral soil than
in peat soil in all instances despite the field data having the
opposite pattern, which may be due to certain terrain and veg-
etative factors being higher prioritized in model performance
for areas further away from gathered field observations. Lo-
cal scale coniferous forest (peat soil) consistently contained
snow depth values greater than coniferous forest (mineral
soil), with up to a 6 cm difference from December to early
April. At the end of April both had the same average snow
depth of 45 cm. In addition, field and local scale snow depth
estimates from 28 April were compared to the difference be-
tween snow covered DTM from the prior day and snow-free
DTM from 2020. Results indicate field snow depth measure-
ments generally exceeded the estimated LiDAR-based snow
depth estimations by an average of 9.6 cm, while for the local
scale with EA it was higher at 13.1 cm.
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4.2 Snow water equivalent

Machine learning model performance for SWE estimation
between CNN, RF, SVM, FFN, MLR, and EA can be seen in
Fig. 8. Given more limited field-based SWE measurements
with 13 samples, the models would have encountered more
pronounced challenges matching estimations to real-world
data yet were generally able to produce acceptable results
in part due to the inclusion of snow depth data. FFN and
EA largely contained the most stable and positive metrics
for R? in most instances. SVM, FFN, and EA generally pro-
duced the best overall metrics, although MLR was able to
provide the second-best metrics in some instances for MAE
and RMSE. Metrics from CNN were somewhat on-par with
other models in December and end of April though it had
poor performance between January and early April. SVM
varied to a lesser extent, with it being on-par with models in
most instances except with poorer overall metrics in Febru-
ary and March, along with notably high MAE and RMSE
values at the end of April. While the best base model perfor-
mance for EA inputs was RF, SVM, and FFN over different
instances for snow depth, for SWE it was largely from FFN
and MLR, and to a lesser extent RF and SVM in different in-
stances. In both cases, EA was able to provide positive met-
rics and never poor metrics. A scatterplot, 1 : 1 line, and fitted
linear regression line for each instance of SWE predictions
produced by EA alongside STDE can be seen in Fig. 9. Simi-
larly with the snow depth metrics over the same period, MAE
and RMSE were lowest in December from roughly 0.4-2.9
and 1.0-4.6 mm before rising to become the highest at the
end of April at 7.0-32.0 and 10.0-39.0 mm.

The average and standard deviation of SWE field data and
local scale EA outputs at the vegetative land cover types for
all instances can be seen in Fig. 10. A distribution of SWE
over the 10 km? site for each instance from December 2022—
April 2023 can be seen in Fig. 11, which illustrates where
and how much SWE varied over time for the field data and
EA-based local scale outputs. SWE maximums occurred in
early April and were after peak snow depth in March. With
the field data, the average SWE was lowest at 34 mm in De-
cember and then peaking at 177 mm in early April before
dropping to 131 mm in late April. A similar pattern was evi-
dent with the local scale average SWE outputs with 37 mm in
December that later peaked at 184 mm in early April before
dropping to 133 mm at the end of April. From the field data,
coniferous forest (mineral soil) largely had the lowest SWE
values from December (30 mm) to early April (173 mm).
This was in sharp contrast to transitional woodland/shrub
(peat soil) which had the highest SWE values during that
same period from 38 to 183 mm before dropping sharply to
119 mm at the end of April. Open area tended to have higher
SWE values, while peatbog (wet) gravitated to lower SWE
values. Largely corresponding to the SWE quantity and time,
standard deviation was lowest in December ranging from 43
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Blank values indicate no field data.

to =9 mm while highest at the end of April between £34 to
480 mm.

At the local scale, the landcover types with the highest
SWE values in all instances were arable, open area, and
transitional woodland/shrub (mineral soil). These areas were
similar in that they contained little to no inundated land along
with a lack of bushes and trees. The highest SWE values were
in early April for all three landcover types at 195, 201, and
202 mm respectively. The lowest SWE values in all instances
tended to be found in coniferous forest (mineral soil), peat-
bog (dry), peatbog (wet), and transitional woodland/shrub
(peat soil). Peatbog (wet) contained some of the lowest SWE
values from January (111 mm) to the end of April (100 mm),
which was somewhat in contrast to peatbog (dry) during the
same period from 110 mm in January to 125 mm at the end
of April. SWE values for broad-leaved forest in mineral and
peat soil tended be similar and slightly above average, while
there was greater variation for coniferous forest. Coniferous
forest (mineral soil) consistently contained lower SWE val-
ues than did coniferous forest (peat soil) with differences
between 2 to 12 mm. Transitional woodland/shrub (mineral
soil) also repeatedly had higher SWE values than transitional
woodland/shrub (peat soil) in all instances, with differences
varying from 1 to 25 mm. The standard deviation values for
the EA values were less volatile than with the field data, with
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it ranging from 4 mm in December to 30 mm at the end of
April.

4.3 Snow density

Snow density is the ratio between the volume of water pro-
duced by melting a given volume of snow and the original
volume of snow itself. This percentage refers to the water
content within a given volume of snow. In general, fresh
snowfall has low density while older, compacted, or wind-
effected snow will have a higher density. Figure 12 contains
the mean and standard deviation of the snow density percent-
age for each vegetative landcover type from December to the
end of April. The average snow density percentage for field
and local scale data was lowest in December with 12 % for
both, while the highest was at the end of April at 36 % and
34 %, respectively. Standard deviation for the combined av-
erages were generally low, with a maximum of £4 % in late
April for both field and local scale EA estimates. While the
field standard deviation for specific landcover types could in-
crease to £3 % prior to early April, for the local scale EA es-
timates it only reached £2 % for open area once during that
same period. For the first five instances the field snow density
percentages were slightly higher with the canopy-free open
area and peatbog (wet), which ranged from 14 %-31 % and
13 %-29 %. In contrast, the more tree-covered coniferous
forest (mineral soil) and transitional woodland/shrub (peat
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LiDAR.

soil) routinely experienced lower percentages ranging from
11 %27 % and 13 %27 %. In the final instance, field transi-
tional woodland/shrub (peat soil) and peatbog (wet) had the
highest snow density percentages at 42 % and 39 %, while
open area and coniferous forest (mineral soil) were markedly
lower at 33 % and 32 %.

As with the field averages, for the local scale averages
from December to early April there were generally mini-
mal differences in snow density between different land cover
types while experiencing greater fluctuations at the end of
April with a maximum difference of 9 %. The highest snow
densities were generally found with open area and more so
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with peatbog (wet) and peatbog (dry). Peatbog (wet) con-
tained percentages equal or up to 2 % higher than peatbog
(dry) from December to March. However, in both early and
end of April it reversed with peatbog (dry) containing higher
snow densities at 30 % and 40 % compared to peatbog (wet)
at 28 % and 34 %. The lowest values were generally found
with broad-leaved forest (mineral soil) and broad-leaved for-
est (peat soil), which always differed by less than 1 %. Conif-
erous forest (mineral soil) and coniferous forest (peat soil)
also tended to have similar values. However, by late April the
snow density in coniferous forest (peat soil) was 3 % higher
during that period of rapid snow melt, with coniferous forest
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(mineral soil) having the lowest snow density at 31 %. Aver-
age snow density percentage on transitional woodland/shrub
(mineral soil) and transitional woodland/shrub (peat soil)
were similar with a maximum difference of 2 %. A spatial
view of the gradual increase in the snow density percentage
across the six instances with the rapid rise at the end of April
can be seen in Fig. 13.

5 Discussion

With snow depth estimation, all models performed well, with
RF, SVM, FFN, and EA particularly being capable of gen-
erating encouraging statistics. As is common for the study
region the snow depth was lowest in December and highest
in March before daily temperatures began exceeding 0 °C in
April. There were consistent differences in snow depth be-
tween different vegetative communities. This was most ap-
parent with higher snow depth being associated with broad-
leaved forests, transitional woodland/shrubs, and particularly
with coniferous forest (peat soil). Shallower snow depth was
recorded at coniferous forest (mineral soil), open areas, and
both dry and wet peatbogs. With peatbogs, wet peat conducts
heat better than dry peat resulting in heat flowing more effort-
lessly in wet peat layers in winter (Kujala et al., 2008), which
may result in increased snowmelt and compaction. Further-
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more, mineral soil is more thermally conductive than peat
soil (Atchley et al., 2016), which may promote snowmelt
and compaction in similar vegetation communities contain-
ing mineral soil compared with peat soil where snowmelt
and compaction would be reduced. Forests with drier mineral
soils were generally more shielded from saturated soil found
in peatbogs, while forests with peat soil were oftentimes ad-
jacent to peatbogs. As the water table in many parts was
at or near the surface, adjacent soils would contain greater
soil saturation while the shielded mineral soils would in the-
ory be more unsaturated. A notable exception is for approx-
imately half of the broad-leaved forest (mineral soil) that is
along the Kitinen River, which may have especially influ-
enced snow depth, SWE, and snow density readings for that
LULC. Given that saturated soil needs greater energy to heat
than does unsaturated soil (Howe and Smith, 2021), saturated
soil would require greater energy to warm in the spring and
remain warmer in the winter than the unsaturated soil, which
would have a resulting impact on snow cover. Post winter
soil thaw varied with five FMI Campbell Scientific 109-L soil
temperature sensors in the study area at 5 and 10 cm below
the surface. For two sensors found in coniferous forest and
one in an open area with mineral soil, the soil fully thawed
out between 10-25 April, while for the two sensors in the
peatland, the soil thawed out from 11-13 May, which would
have aided in accelerating overlaying snow cover melt for the
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former. It should be noted the impact that direct solar radia-
tion may have on the energy balance of the snowpack and
melt processes, along with wind impacted (open areas) ver-
sus wind protected (forest) vegetative communities. Lastly,
snow interception and sublimation are major factors in for-
est communities, especially with conifers, which can lead to
a notable diversity of snow accumulation on the forest floor
(Helbig et al., 2020).

For the SWE estimations, model results were more mixed,
but nonetheless promising. RF, SVM, FFN, and EA were all
able to produce positive metrics, while there was elevated
variation with both CNN and to a lesser extent SVM. MLR
also performed well despite being the simplest form of ma-
chine learning in this study. While the higher snow depth
sample size may have benefited more complex models for
snow depth modeling, simpler models seemed to perform
better with the more limited SWE sample size. A greater
number of SWE field samples would have provided enhanced
findings; however, these field measurements can be time-
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consuming and expensive to collect across a large geographic
region, with SWE measurements taking approximately 20
times as long to complete compared to snow depth measure-
ments (Sturm et al., 2010). Nonetheless SWE was found to
be lowest in December and highest in early April, which was
post-peak snow depth. With the field data, it was found that
SWE was higher in transitional woodland/shrub (peat soil)
than with coniferous forest (mineral soil), which may be at-
tributed to potentially more saturated peat soil allowing for
greater water retention within the snow cover, while the un-
saturated mineral soil drained slightly more liquid from the
overlaying snow cover. Mineral soils across the study site are
sand-rich and would be dry most of the time at the surface
and likely never reach saturation, with any melted snow be-
ing drained in these soils. The one exception was with the end
of April when there was a notable reversal, which may have
been due to increased snow interception, snowmelt, sublima-
tion, and windblown snow from branches in some vegetation
types. A similar trend was observed at the local scale. Lo-
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cal scale coniferous forest (peat soil) continually contained
higher average SWE than coniferous forest (mineral soil)
which may be the result of the unsaturated mineral soil ab-
sorbing water from the overlaying snow while the saturated
peat soil slowed the draining of water through the snowpack
and into the soils. Dry and especially wet peatbogs largely
contained the lowest SWE measurements. These low open
areas likely experienced enhanced wind activity that blew
snow laterally away while also leading to greater sublima-
tion. This would have led to greater snow particle cohesion
and denser wind slab layer formation at the surface of the
snowpack due to sintering after snow was mobilized in the
wind (Mott et al., 2018).

Lastly, snow density was lowest in December and in-
creased until the end of April when it was highest, which was
during a period of rapid snowmelt. This was to be expected
given that the beginning and middle winter typically contain
larger quantities of fresh snowfall, while by the end of winter
the snowpack would have compacted over time and become
denser as the snowpack reaches an equilibrium temperature
state of 0 °C (e.g., isothermal). As the snowpack develops, a
larger snow grain size (depth hoar) results in a lower density
in shallow snowpack. However, as the snowpack becomes
isothermal, the depth hoar layer will metamorphose and be-
come denser, especially near the ground (Gu et al., 2019).
With the field data, a higher snow density percentage was
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observed at the end of April in peatbog (wet) and transitional
woodland/shrub (peat soil) which contrasted with coniferous
forest (mineral soil) and open area and may be attributed to
soil saturation for those specific locations. At the end of April
for the local scale the highest snow density percentages were
found in vegetative communities that were more impacted
by wind such as arable along with peatbog (wet) and peat-
bog (dry). In contrast, both broad-leaved forest and conifer-
ous forest in mineral and peat soils typically had the lowest
percentages. Local scale wet peatbog was found to generally
contain slightly higher amounts than dry peatbog. This may
be attributed to dry peatbog being on average ~ 2.2 m higher
in elevation than wet peatbog in our study area, which may
have contributed to the movement of water over time to wet
peatbogs at incrementally lower elevations.

Solar radiation increased throughout the timeframe and
was not uniform over the study area, such as with thick
forests sometimes obscuring adjacent canopy-free areas from
solar radiation. As this would have impacted real-world snow
estimates, we incorporated end of winter WV-2 imagery in
the framework as it was able to aid in capturing such ir-
regularities. A limited quantity and spatial extent of field
measurements restricted further associations with vegetative
communities, especially for SWE and, in turn, snow den-
sity. Had additional measurements been taken at communi-
ties missing field data, there would be a more comprehen-
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(d) 17 March 2023, (e) 17 April 2023, and (f) 28 April 2023 alongside (g) a LULC map.

sive understanding of snow-landcover relationships. Addi-
tional datasets would have likely improved the model statis-
tics and estimation of all three studied features. Soil mois-
ture and air/subsurface temperature data were accessible in
the study area yet were excluded, despite their strong associ-
ation with snow depth and SWE (Contosta et al., 2016). This
was due to a limited number of these measurements that cor-
responded to the six instances, with some containing gaps
or missing data which would hinder spatial mapping and
association with landcover types. Furthermore, very few of
these measurements were located on or adjacent to the field
snow depth and SWE measurements, which severely lim-
ited a proper linkage between the field data with soil mois-
ture and temperature. Additional remote sensing-based data
could have been utilized as an add-on to assist in mapping
soil moisture and temperature for the study, alongside im-
proving estimations for snow depth and SWE. However, due
to the vegetative heterogeneity at the 10km? site and clus-
tering of the field data, medium and low-resolution imagery
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would have provided questionable benefit. High-resolution
hyperspectral imagery and Synthetic Aperture Radar (SAR)
are particularly relevant, given the additional available spec-
tral bands of the former and the proven application with snow
depth and SWE detection in the latter (Patil et al., 2020) and
would have likely benefited the findings.

The applied model was able to establish connections be-
tween remote sensing data and snow measurements to esti-
mate surrounding snow depth, SWE, and snow density over
multiple instances. In terms of performance, it was seen with
the more numerous field snow depth data that more complex
machine learning and a deep learning model could perform
well, while in instances of very limited data for SWE, sim-
pler models were more prone to succeed. Regardless of the
sample size, an ensemble approach of different models was
able to perform well in both circumstances whereby it can
adapt its effectiveness in the case of changing the output
variable and sample size. In terms of model transferability
from this effort, in conditions where there are plentiful in-
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put data for model training, more complex deep learning and
machine learning models should be utilized to better iden-
tify intricate patterns. However, with a more limited training
sample size it would be imperative to ensure that the gath-
ered data is of high quality and covers differing topographic
and vegetative features to aid with model predictions over an
area. This added flexibility in the types of base models to be
used for such an ensemble approach allows it to be applied
to smaller snow-related datasets covering local scale areas,
to larger datasets with hundreds or thousands of data points
that can cover regional and potentially global scales. In any
case, model inputs would need to be appropriately defined
regarding the type of terrain and data to be utilized, such as
for example field data along mountain ranges compared to
low-lying open areas.

6 Conclusions

We employed an object-based hybrid deep learning and
machine learning ensemble approach with time-series field
snow depth and SWE data in northern Finland to first esti-
mate snow depth at a local scale, before incorporating the
snow depth outputs to estimate SWE at the same local scale
alongside generating snow density estimations from six in-
stances between December 2022 and April 2023. Snow depth
peaked in March, SWE peaked shortly after in early April,
and snow density peaked with the final available data at
the end of April. Multiple machine learning models, par-
ticularly with the ensemble approach, were shown to posi-
tively estimate key snowpack attributes over the period at the
study site in Sodankyl4 despite limited field snow depth and
SWE observations. We established that there are direct spa-
tial and temporal connections between three commonly stud-
ied snowpack elements with vegetation and soil types, with
more research recommended to further characterize these
associations. Although there is promise with intricate deep
learning and machine learning techniques, this study also
highlights opportunities to assess where less complex meth-
ods may be employed for computational efficiency and per-
formance, especially when scaling up. While performed over
a small portion of northern Finland, when matched with other
field-based snowpack and remote sensing data across the re-
gion it would be possible to further upscale the studied snow-
based estimates over a wider, regional-scale over various pe-
riods in time. This would also need to account for differ-
ing types of snowpack, terrain, and vegetative communities
found throughout the pan-Arctic domain. As average tem-
peratures around the Arctic are projected to increase with
fewer days below freezing, more uncertain climactic condi-
tions and precipitation events would affect the quantity, rate,
and timing of snowfall, snow-on/snow-off, and snowmelt
runoff in the region. Given that waterbodies such as lakes,
ponds, and rivers in Finland and other high latitude areas are
fed by the annual snowmelt, any changes to this natural pro-

https://doi.org/10.5194/tc-19-6127-2025

cess would meaningfully alter the hydrological makeup. The
hybrid-based methodology applied in this effort can serve to
benefit future snow-related analyses in high latitude regions,
alongside other areas on Earth that regularly experience sea-
sonal snow.
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Appendix A

In this appendix, we present relevant model hyperparame-
ters utilized in the study. Model parameters remained the
same during each of the six instances to ensure fair compar-
isons, with the best optimization values being automatically
selected.

Table A1. List of model summaries and hyperparameters.

D. Brodylo et al.: Object-based ensemble estimation of snow depth and snow water equivalent

Model Description

Hyperparameters Method in R

Convolutional Neural Network

A neural network that includes at least
one convolutional layer. Typically has
some combination of convolutional,
pooling, and dense layers.

Filters: 32
Kernel size: 2
Max pool size: 2
Activation: relu
Epochs: 100
Batch size: 4
Optimizer: adam

layer_conv_1d

Random Forest

output value.

Combines outputs from a collection of
decision trees to generate an optimal

Mtry: 3 (snow depth), 4  1f
(SWE)

Support Vector Machine Relies on an optimal hyperplane that Degree: 2 (snow svmPoly
minimizes error bounds and here uses a  depth), 3 (SWE)
polynomial kernal. C: 1.0
Scale: 0.05
Feed-Forward Network A feed-forward neural network with a Size: 2 nnet
single hidden layer. Decay: 0.04 (snow
depth), 0.03 (SWE)
Multiple Linear Regression Quantifies the linear relationship Intercept: True Im

between multiple independent
variables and a dependent variable by
finding the best-fitting linear equation.

Code and data availability. Field snow depth and snow water
equivalent data is maintained by the Finnish Meteorologi-
cal Institute and is available at https://litdb.fmi.fi/index.php
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https://doi.org/10.5281/zenodo.17636114, Brodylo et al., 2025)
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