Articles | Volume 19, issue 11
https://doi.org/10.5194/tc-19-5693-2025
https://doi.org/10.5194/tc-19-5693-2025
Research article
 | 
14 Nov 2025
Research article |  | 14 Nov 2025

Doomed descent? How fast sulphate signals diffuse in the EPICA Dome C ice column

Felix S. L. Ng, Rachael H. Rhodes, Tyler J. Fudge, and Eric W. Wolff

Related authors

Review article: AntArchitecture – building an age–depth model from Antarctica's radiostratigraphy to explore ice-sheet evolution
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. MacKie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Vjeran Višnjević, Rodrigo Zamora, and Alexandra Zuhr
The Cryosphere, 19, 4611–4655, https://doi.org/10.5194/tc-19-4611-2025,https://doi.org/10.5194/tc-19-4611-2025, 2025
Short summary
The grain-scale signature of isotopic diffusion in ice
Felix S. L. Ng
The Cryosphere, 18, 4645–4669, https://doi.org/10.5194/tc-18-4645-2024,https://doi.org/10.5194/tc-18-4645-2024, 2024
Short summary
Isotopic diffusion in ice enhanced by vein-water flow
Felix S. L. Ng
The Cryosphere, 17, 3063–3082, https://doi.org/10.5194/tc-17-3063-2023,https://doi.org/10.5194/tc-17-3063-2023, 2023
Short summary
Pervasive diffusion of climate signals recorded in ice-vein ionic impurities
Felix S. L. Ng
The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021,https://doi.org/10.5194/tc-15-1787-2021, 2021
Short summary

Cited articles

Barnes, P. R. F. and Wolff, E. W.: Distribution of soluble impurities in cold glacial ice, J. Glaciol., 50, 311–324, https://doi.org/10.3189/172756504781829918, 2004. 
Barnes, P. R. F., Wolff, E. W., Mader, H. M., Udisti, R., Castellano, E., and Röthlisberger, R.: Evolution of chemical peak shapes in the Dome C, Antarctica, ice core, J. Geophys. Res., 108, 4126, https://doi.org/10.1029/2002JD002538, 2003. 
BE-OI: Beyond EPICA – Oldest Ice, https://www.beyondepica.eu/en/ (last access: 1 March 2025), 2017. 
Bohleber, P., Stoll, N., Larkman, P., Rhodes, R. H., and Clases, D.: New evidence on the microstructural localization of sulfur and chlorine in polar ice cores with implications for impurity diffusion, The Cryosphere, 19, 5485–5498, https://doi.org/10.5194/tc-19-5485-2025, 2025. 
Download
Short summary
Impurity diffusion in ice destroys climate history. We give a new way to find the diffusion rate from ice-core records. Its use on sulphate of the European Project for Ice Coring in Antarctica Dome C core reveals rapid diffusion in snow (suggesting H2SO4 vapour diffusion in air pores) and slow diffusion in the ice below (involving signal relocation between crystal interfaces). We estimate a maximum sulphate diffusion length of 2 cm for the old ice sought by the coring projects on Little Dome C.
Share