Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4715-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-4715-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-frequency broadband active acoustic systems as a tool for high-latitude glacial fjord research
Department of Marine Sciences, University of Connecticut, Groton, MA 06340, USA
Grant Deane
Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92037, USA
Arnaud Le Boyer
Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92037, USA
Matthew H. Alford
Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92037, USA
Hari Vishnu
Acoustic Research Laboratory, National University of Singapore, Singapore, 119227, Singapore
Mandar Chitre
Acoustic Research Laboratory, National University of Singapore, Singapore, 119227, Singapore
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 119007, Singapore
M. Dale Stokes
Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92037, USA
Oskar Glowacki
Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland
Hayden Johnson
Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92037, USA
Fiammetta Straneo
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
Related authors
No articles found.
Alberto C. Naveira Garabato, Carl P. Spingys, Andrew J. Lucas, Tiago S. Dotto, Christian T. Wild, Scott W. Tyler, Ted A. Scambos, Christopher B. Kratt, Ethan F. Williams, Mariona Claret, Hannah E. Glover, Meagan E. Wengrove, Madison M. Smith, Michael G. Baker, Giuseppe Marra, Max Tamussino, Zitong Feng, David Lloyd, Liam Taylor, Mikael Mazur, Maria-Daphne Mangriotis, Aaron Micallef, Jennifer Ward Neale, Oleg A. Godin, Matthew H. Alford, Emma P. M. Gregory, Michael A. Clare, Angel Ruiz Angulo, Kathryn L. Gunn, Ben I. Moat, Isobel A. Yeo, Alessandro Silvano, Arthur Hartog, and Mohammad Belal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3624, https://doi.org/10.5194/egusphere-2025-3624, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Distributed optical fibre sensing (DOFS) is a technology that enables continuous, real-time measurements of environmental parameters along a fibre optic cable. Here, we review the recently emerged applications of DOFS in physical oceanography, and offer a perspective on the technology’s potential for future growth in the field.
Kathryn A. Moore, Thomas C. J. Hill, Chamika K. Madawala, Raymond J. Leibensperger III, Samantha Greeney, Christopher D. Cappa, M. Dale Stokes, Grant B. Deane, Christopher Lee, Alexei V. Tivanski, Kimberly A. Prather, and Paul J. DeMott
Atmos. Chem. Phys., 25, 3131–3159, https://doi.org/10.5194/acp-25-3131-2025, https://doi.org/10.5194/acp-25-3131-2025, 2025
Short summary
Short summary
This article presents results from the first study in a new wind–wave channel at the Scripps Institution of Oceanography. The experiment tested how wind over the ocean surface influences production of sea spray particles, which are important for radiative forcing and cloud formation in the atmosphere. We found that particle concentration and chemical composition varied with wind speed and that variations were driven by changes in wind and wave breaking rather than seawater biology or chemistry.
Meri Korhonen, Mateusz Moskalik, Oskar Głowacki, and Vineet Jain
Earth Syst. Sci. Data, 16, 4511–4527, https://doi.org/10.5194/essd-16-4511-2024, https://doi.org/10.5194/essd-16-4511-2024, 2024
Short summary
Short summary
Since 2015, temperature and salinity have been monitored in Hornsund fjord (Svalbard), where retreating glaciers add meltwater and terrestrial matter to coastal waters. Therefore, turbidity and water sampling for suspended sediment concentration and sediment deposition are measured. The monitoring spans from May to October, enabling studies on seasonality and its variability over the years, and the dataset covers the whole fjord, including the inner basins in close proximity to the glaciers.
Hari Vishnu, Mandar Chitre, Bharath Kalyan, Tan Soo Pieng, and Dale Stokes
EGUsphere, https://doi.org/10.5194/egusphere-2024-32, https://doi.org/10.5194/egusphere-2024-32, 2024
Preprint archived
Short summary
Short summary
The boundary between the ocean and the terminus of marine-terminating glaciers is under-explored, but holds the key to understanding many climate-change-induced processes. This region is too hazardous for humans to directly access, but unmanned robots can help us safely explore it. Here we present the design, development and deployment of a low-cost, modular, robust surface robotic system to study the near-terminus region, and improve our understanding of the climate-change mechanisms there.
Hayden A. Johnson, Oskar Glowacki, Grant B. Deane, and M. Dale Stokes
The Cryosphere, 18, 265–272, https://doi.org/10.5194/tc-18-265-2024, https://doi.org/10.5194/tc-18-265-2024, 2024
Short summary
Short summary
This paper is about a way to make measurements close to small pieces of floating glacier ice. This is done by attaching instruments to the ice from a small boat. Making these measurements will be helpful for the study of the physics that goes on at small scales when glacier ice is in contact with ocean water. Understanding these small-scale physics may ultimately help improve our understanding of how much ice in Greenland and Antarctica will melt as a result of warming oceans.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Jarosław Tęgowski, Oskar Glowacki, Michał Ciepły, Małgorzata Błaszczyk, Jacek Jania, Mateusz Moskalik, Philippe Blondel, and Grant B. Deane
The Cryosphere, 17, 4447–4461, https://doi.org/10.5194/tc-17-4447-2023, https://doi.org/10.5194/tc-17-4447-2023, 2023
Short summary
Short summary
Receding tidewater glaciers are important contributors to sea level rise. Understanding their dynamics and developing models for their attrition has become a matter of global concern. Long-term monitoring of glacier frontal ablation is very difficult. Here we show for the first time that calving fluxes can be estimated from the underwater sounds made by icebergs impacting the sea surface. This development has important application to understanding the response of glaciers to warming oceans.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Karita Kajanto, Fiammetta Straneo, and Kerim Nisancioglu
The Cryosphere, 17, 371–390, https://doi.org/10.5194/tc-17-371-2023, https://doi.org/10.5194/tc-17-371-2023, 2023
Short summary
Short summary
Many outlet glaciers in Greenland are connected to the ocean by narrow glacial fjords, where warm water melts the glacier from underneath. Ocean water is modified in these fjords through processes that are poorly understood, particularly iceberg melt. We use a model to show how iceberg melt cools down Ilulissat Icefjord and causes circulation to take place deeper in the fjord than if there were no icebergs. This causes the glacier to melt less and from a smaller area than without icebergs.
Charlotte M. Beall, Thomas C. J. Hill, Paul J. DeMott, Tobias Köneman, Michael Pikridas, Frank Drewnick, Hartwig Harder, Christopher Pöhlker, Jos Lelieveld, Bettina Weber, Minas Iakovides, Roman Prokeš, Jean Sciare, Meinrat O. Andreae, M. Dale Stokes, and Kimberly A. Prather
Atmos. Chem. Phys., 22, 12607–12627, https://doi.org/10.5194/acp-22-12607-2022, https://doi.org/10.5194/acp-22-12607-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) are rare aerosols that can trigger ice formation in clouds and affect climate-relevant cloud properties such as phase, reflectivity and lifetime. Dust is the dominant INP source, yet few measurements have been reported near major dust sources. We report INP observations within hundreds of kilometers of the biggest dust source regions globally: the Sahara and the Arabian Peninsula. Results show that at temperatures > −15 °C, INPs are dominated by organics.
Charlotte M. Beall, Jennifer M. Michaud, Meredith A. Fish, Julie Dinasquet, Gavin C. Cornwell, M. Dale Stokes, Michael D. Burkart, Thomas C. Hill, Paul J. DeMott, and Kimberly A. Prather
Atmos. Chem. Phys., 21, 9031–9045, https://doi.org/10.5194/acp-21-9031-2021, https://doi.org/10.5194/acp-21-9031-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) can influence multiple climate-relevant cloud properties by triggering droplet freezing at relative humidities below or temperatures above the freezing point of water. The ocean is a significant INP source; however, the specific identities of marine INPs remain largely unknown. Here, we identify 14 ice-nucleating microbes from aerosol and precipitation samples collected at a coastal site in southern California, two or more of which are likely marine.
Charlotte M. Beall, Dolan Lucero, Thomas C. Hill, Paul J. DeMott, M. Dale Stokes, and Kimberly A. Prather
Atmos. Meas. Tech., 13, 6473–6486, https://doi.org/10.5194/amt-13-6473-2020, https://doi.org/10.5194/amt-13-6473-2020, 2020
Short summary
Short summary
Ice-nucleating particles (INPs) can influence multiple climate-relevant cloud properties. Previous studies report INP observations from precipitation samples that were stored prior to analysis, yet storage protocols vary widely, and little is known about how storage impacts INPs. This study finds that storing samples at −20 °C best preserves INP concentrations and that significant losses of small INPs occur across all storage protocols.
Cited articles
Abib, N., Sutherland, D. A., Amundson, J. M., Duncan, D., Eidam, E. F., Jackson, R. H., Kienholz, C., Morlighem, M., Motyka, R. J., Nash, J. D., Ovall, B., and Pettit, E. C.: Persistent overcut regions dominate the terminus morphology of a rapidly melting tidewater glacier, Ann. Glaciol., 64, 1–12, https://doi.org/10.1017/aog.2023.38, 2023.
Abib, N., Sutherland, D. A., Peterson, R., Catania, G., Nash, J. D., Shroyer, E. L., Stearns, L. A., and Bartholomaus, T. C.: Ice mélange melt changes observed water column stratification at a tidewater glacier in Greenland, The Cryosphere, 18, 4817–4829, https://doi.org/10.5194/tc-18-4817-2024, 2024.
Amiri-Simkooei, A. R., Snellen, M., and Simons, D. G.: Principal Component Analysis of Single-Beam Echo-Sounder Signal Features for Seafloor Classification, IEEE Journal of Oceanic Engineering, 36, 259–272, https://doi.org/10.1109/JOE.2011.2122630, 2011.
Andersen, L. N., Chu, D., Handegard, N. O., Heimvoll, H., Korneliussen, R., Macaulay, G. J., Ona, E., Patel, R., and Pedersen, G.: Quantitative processing of broadband data as implemented in a scientific split-beam echosounder, Meth. Ecol. Evol., 15, 317–328, https://doi.org/10.1111/2041-210X.14261, 2024.
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.: Recent large increases in freshwater fluxes from Greenland into the North Atlantic, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052552, 2012.
Bamber, J. L., Westaway, R. M., Marzeion, B., and Wouters, B.: The land ice contribution to sea level during the satellite era, Environ. Res. Lett., 13, 063008, https://doi.org/10.1088/1748-9326/aac2f0, 2018.
Bassett, C., Lavery, A. C., Lyons, A. P., Wilkinson, J. P., and Maksym, T.: Direct inference of first-year sea ice thickness using broadband acoustic backscattering, J. Acoust. Soc. Am., 147, 824–838, https://doi.org/10.1121/10.0000619, 2020.
Bassett, C., Lavery, A. C., Ralston, D., Geyer, W. R., Jurisa, J. T., Thomson, J., Honegger, D. A., Simpson, A., Scully, M. E., and Haller, M. C.: Acoustic backscattering at a tidal intrusion front, Prog. Oceanogr., 219, 103167, https://doi.org/10.1016/j.pocean.2023.103167, 2023.
Batchelor, G. K.: Small-scale variation of convective quantities like temperature in a turbulent fluid, J. Fluid Mech., 5, 113–133, 1959.
Beaird, N. L., Straneo, F., Le Bras, I., Pickart, R., and Jenkins, W. J.: Glacial Meltwater in the Current System of Southern Greenland, J. Geophys. Res.-Oceans, 128, e2023JC019658, https://doi.org/10.1029/2023JC019658, 2023.
Bemis, K., Lowell, R. P., and Farough, A.: Diffuse Flow: On and Around Hydrothermal Vents at Mid-Ocean Ridges, Oceanography, 25, 182–191, 2012.
Bendtsen, J., Mortensen, J., Lennert, K., and Rysgaard, S.: Heat sources for glacial ice melt in a west Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge, Geophys. Res. Lett., 42, 4089–4095, https://doi.org/10.1002/2015GL063846, 2015.
Benoit-Bird, K. J., Cowles, T. J., and Wingard, C. E.: Edge gradients provide evidence of ecological interactions in planktonic thin layers, Limnol. Oceanogr., 54, 1382–1392, https://doi.org/10.4319/lo.2009.54.4.1382, 2009.
Björk, G., Jakobsson, M., Assmann, K., Andersson, L. G., Nilsson, J., Stranne, C., and Mayer, L.: Bathymetry and oceanic flow structure at two deep passages crossing the Lomonosov Ridge, Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, 2018.
Błaszczyk, M., Jania, J. A., and Kolondra, L.: Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century, Polish Polar Research, 34, 327–352, https://doi.org/10.2478/popore-2013-0024, 2013.
Błaszczyk, M., Ignatiuk, D., Grabiec, M., Kolondra, L., Laska, M., Decaux, L., Jania, J., Berthier, E., Luks, B., Barzycka, B., and Czapla, M.: Quality Assessment and Glaciological Applications of Digital Elevation Models Derived from Space-Borne and Aerial Images over Two Tidewater Glaciers of Southern Spitsbergen, Remote Sens., 11, 1121, https://doi.org/10.3390/rs11091121, 2019.
Błaszczyk, M., Jania, J.A., Ciepły, M., Grabiec, M., Ignatiuk, D., Kolondra, L., Kruss, A., Luks, B., Moskalik, M., Pastusiak, T., Strzelewicz, A., Walczowski, W., and Wawrzyniak, T.: Factors Controlling Terminus Position of Hansbreen, a Tidewater Glacier in Svalbard, J. Geophys. Res.-Earth Surf., 126, e2020JF005763, https://doi.org/10.1029/2020JF005763, 2021.
Błaszczyk, M., Moskalik, M., Grabiec, M., Jania, J., Walczowski, W., Wawrzyniak, T., Strzelewicz, A., Malnes, E., Lauknes, T. R., and Pfeffer, W.: The Response of Tidewater Glacier Termini Positions in Hornsund (Svalbard) to Climate Forcing, 1992–2020, J. Geophys. Res.-Earth Surf., 128, e2022JF006911, https://doi.org/10.1029/2022JF006911, 2023.
Blomberg, A. E. A., Weber, T. C., and Austeng, A.: Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence, Sensors, 18, 2033, https://doi.org/10.3390/s18072033, 2018.
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., and Bamber, J. L.: Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean, Nature Geosci., 9, 523–527, https://doi.org/10.1038/ngeo2740, 2016.
Bourke, R. H. and Garrett, R. P.: Sea ice thickness distribution in the Arctic Ocean, Cold Reg. Sci. Technol., 13, 259–280. https://doi.org/10.1016/0165-232X(87)90007-3, 1987.
Brierley, A. S., Goss, C., Watkins, J. L., and Woodroffe, P.: Variations in echosounder calibration with temperature, and some possible implications for acoustic surveys of krill biomass, CCAMLR Science, 5, 276–281, 1998.
Burdic, W. S.: Underwater Acoustic System Analysis, 2nd edn., 328–331, Prentice Hall, Upper Saddle River, N. J., 1991.
Chauché, N., Hubbard, A., Gascard, J.-C., Box, J. E., Bates, R., Koppes, M., Sole, A., Christoffersen, P., and Patton, H.: Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers, The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014, 2014.
Chu, D. and Stanton, T. K.: Application of pulse compression techniques to broadband acoustic scattering by live individual zooplankton, The Journal of the Acoustical Society of America, 104, 39–55, https://doi.org/10.1121/1.424056, 1998.
Cotter, E., Murphy, P., Bassett, C., Williamson, B., and Polagye, B.: Acoustic characterization of sensors used for marine environmental monitoring, Marine Pollution Bulletin, 144, 205–215, https://doi.org/10.1016/j.marpolbul.2019.04.079, 2019.
Cotter, E., Bassett, C., and Lavery, A.: Classification of broadband target spectra in the mesopelagic using physics-informed machine learning, The Journal of the Acoustical Society of America, 149, 3889–3901, https://doi.org/10.1121/10.0005114, 2021.
Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., and Griffiths, C.: Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard, J. Geophys. Res.-Oceans, 110, https://doi.org/10.1029/2004JC002757, 2005.
Cowton, T., Slater, D., Sole, A., Goldberg, D., and Nienow, P.: Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes, J. Geophys. Res.-Oceans, 120, 796–812, https://doi.org/10.1002/2014JC010324, 2015.
Cummins, P. F., Armi, L., and Vagle, S.: Upstream Internal Hydraulic Jumps, J. Phys. Oceanogr., 36, 753–769, https://doi.org/10.1175/JPO2894.1, 2006.
Ćwiąkała, J., Moskalik, M., Forwick, M., Wojtysiak, K., Giżejewski, J., and Szczuciński, W.: Submarine geomorphology at the front of the retreating Hansbreen tidewater glacier, Hornsund fjord, southwest Spitsbergen, J. Maps, 14, 123–134, https://doi.org/10.1080/17445647.2018.1441757, 2018.
Demer, D. A. and Hewitt, R. P.: Calibration of an acoustic echo-integration system in a deep tank, with gain comparisons over standard sphere material, water temperature and time, SC-CAMLR Selected Scientific Papers, 9, 127–144, 1993.
Demer, D. A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., Dunford, A., Fassler, S., Gauthier, S., Hufnagle, L. T., Jech, J. M., Bouffant, N., Lebourges-Dhaussy, A., Lurton, X., Macaulay, G. J., Perrot, Y., Ryan, T., Parker-Stetter, S., Stienessen, S., Weber, T., and Williamson, N.: Calibration of acoustic instruments, Report, International Council for the Exploration of the Sea (ICES), https://doi.org/10.25607/OBP-185, 2015.
Demer, D. A., Andersen, L. N., Bassett, C., Berger, L., Chu, D., Condiotty, J. G. R. C., Hutton, B., Korneliussen, R., Bouffant, N. L., Macaulay, G., Michaels, W. L., Murfin, D., Pobitzer, A., Renfree, J. S., Sessions, T. S., Stierhoff, K. L., and Thompson, C. H.: 2016 USA–Norway EK80 Workshop Report: Evaluation of a wideband echosounder for fisheries and marine ecosystem science (report), ICES Cooperative Research Reports (CRR), https://doi.org/10.17895/ices.pub.2318, 2017.
Ehrenberg, J. E. and Torkelson, T. C.: FM slide (chirp) signals: a technique for significantly improving the signal-to-noise performance in hydroacoustic assessment systems, Fish. Res., 47, 193–199, https://doi.org/10.1016/S0165-7836(00)00169-7, 2000.
Enderlin, E. M. and Hamilton, G. S.: Estimates of iceberg submarine melting from high-resolution digital elevation models: application to Sermilik Fjord, East Greenland, J. Glaciol., 60, 1084–1092, https://doi.org/10.3189/2014JoG14J085, 2014.
England, M. R., Eisenman, I., Lutsko, N. J., and Wagner, T. J. W.: The Recent Emergence of Arctic Amplification, Geophys. Res. Lett., 48, e2021GL094086, https://doi.org/10.1029/2021GL094086, 2021.
Everett, A., Kohler, J., Sundfjord, A., Kovacs, K. M., Torsvik, T., Pramanik, A., Boehme, L., and Lydersen, C.: Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals, Sci. Rep., 8, 13467, https://doi.org/10.1038/s41598-018-31875-8, 2018.
Farmer, D. and Armi, L.: Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment, P. Roy. Soc. Lond. A, 455, 3221–3258, https://doi.org/10.1098/rspa.1999.0448, 1999.
Farmer, D. M. and Dungan Smith, J.: Tidal interaction of stratified flow with a sill in Knight Inlet, Deep-Sea Res. Pt. A, 27, 239–254, https://doi.org/10.1016/0198-0149(80)90015-1, 1980.
Fichefet, T., Poncin, C., Goosse, H., Huybrechts, P., Janssens, I., and Le Treut, H.: Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century, Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017826, 2003.
Fonseca, L. and Mayer, L.: Remote estimation of surficial seafloor properties through the application Angular Range Analysis to multibeam sonar data, Mar. Geophys. Res., 28, 119–126, https://doi.org/10.1007/s11001-007-9019-4, 2007.
Francois, R. E. and Garrison, G. R.: Sound absorption based on ocean measurements: Part I: Pure water and magnesium sulfate contributions, Journal of the Acoustical Society of America, 72, 896–907, 1982.
Geyer, W. R. and Ralston, D. K.: 2.03 – The Dynamics of Strongly Stratified Estuaries, in: Treatise on Estuarine and Coastal Science, edited by: Wolanski, E. and McLusky, D., Academic Press, Waltham, 37–51, https://doi.org/10.1016/B978-0-12-374711-2.00206-0, 2011.
Geyer, W. R., Ralston, D. K., and Holleman, R. C.: Hydraulics and mixing in a laterally divergent channel of a highly stratified estuary, J. Geophys. Res.-Oceans, 122, 4743–4760, https://doi.org/10.1002/2016JC012455, 2017.
Geyman, E. C., van Pelt, J. J. W., Maloof, A. C., Aas, H. F., and Kohler, J.: Historical glacier change on Svalbard predicts doubling of mass loss by 2100, Nature, 601, 374–379, https://doi.org/10.1038/s41586-021-04314-4, 2022.
Godø, O. R., Handegard, N. O., Browman, H. I., Macaulay, G. J., Kaartvedt, S., Giske, J., Ona, E., Huse, G., and Johnsen, E.: Marine ecosystem acoustics (MEA): quantifying processes in the sea at the spatio-temporal scales on which they occur, ICES Journal of Marine Science, 71, 2357–2369, https://doi.org/10.1093/icesjms/fsu116, 2014.
Goodman, L.: Acoustic scattering from ocean microstructure, J. Geophys. Res.-Oceans, 95, 11557–11573, https://doi.org/10.1029/JC095iC07p11557, 1990.
Goodman, L. and Forbes, M. J.: Acoustic scattering from ocean microstructure, J. Acoust. Soc. Amer., 87, S6, https://doi.org/10.1121/1.2028334, 1990.
Grabiec, M., Ignatiuk, D., Jania, J. A., Moskalik, M., Głowacki, P., Błaszczyk, M., Budzik, T., and Walczowski, W.: Coast formation in an Arctic area due to glacier surge and retreat: The Hornbreen–Hambergbreen case from Spistbergen, Earth Surf. Process. Landf., 43, 387–400, https://doi.org/10.1002/esp.4251, 2018.
Hager, A. O., Sutherland, D. A., Amundson, J. M., Jackson, R. H., Kienholz, C., Motyka, R. J., and Nash, J. D.: Subglacial Discharge Reflux and Buoyancy Forcing Drive Seasonality in a Silled Glacial Fjord, J. Geophys. Res.-Oceans, 127, e2021JC018355, https://doi.org/10.1029/2021JC018355, 2022.
Holbrook, W. S., Páramo, P., Pearse, S., and Schmitt, R. W.: Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling, Science, 301, 821–824, https://doi.org/10.1126/science.1085116, 2003.
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., and Lyberth, B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters, Nature Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008.
Hopwood, M. J., Carroll, D., Browning, T. J., Meire, L., Mortensen, J., Krisch, S., and Achterberg, E. P.: Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland, Nat. Commun., 9, 3256, https://doi.org/10.1038/s41467-018-05488-8, 2018.
Hopwood, M. J., Carroll, D., Dunse, T., Hodson, A., Holding, J. M., Iriarte, J. L., Ribeiro, S., Achterberg, E. P., Cantoni, C., Carlson, D. F., Chierici, M., Clarke, J. S., Cozzi, S., Fransson, A., Juul-Pedersen, T., Winding, M. H. S., and Meire, L.: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?, The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, 2020.
Howat, I. M., Joughin, I., and Scambos, T. A.: Rapid Changes in Ice Discharge from Greenland Outlet Glaciers, Science, 315, 1559–1561, https://doi.org/10.1126/science.1138478, 2007.
Jackson, R. H., Nash, J. D., Kienholz, C., Sutherland, D. A., Amundson, J. M., Motyka, R. J., Winters, D., Skyllingstad, E., and Pettit, E. C.: Meltwater Intrusions Reveal Mechanisms for Rapid Submarine Melt at a Tidewater Glacier, Geophys. Res. Lett., 47, e2019GL085335, https://doi.org/10.1029/2019GL085335, 2020.
Jakacki, J., Przyborska, A., Kosecki, S., Sundfjord, A., and Albretsen, J.: Modelling of the Svalbard fjord Hornsund, Oceanologia, 59, 473–495, https://doi.org/10.1016/j.oceano.2017.04.004, 2017.
Jakobsson, M., Mayer, L. A., Nilsson, J., Stranne, C., Calder, B., O'Regan, M., Farrell, J. W., Cronin, T. M., Brüchert, V., Chawarski, J., Eriksson, B., Fredriksson, J., Gemery, L., Glueder, A., Holmes, F. A., Jerram, K., Kirchner, N., Mix, A., Muchowski, J., Prakash, A., Reilly, B., Thornton, B., Ulfsbo, A., Weidner, E., Åkesson, H., Handl, T., Ståhl, E., Boze, L.-G., Reed, S., West, G., and Padman, J.: Ryder Glacier in northwest Greenland is shielded from warm Atlantic water by a bathymetric sill, Commun. Earth Environ., 1, 1–10, https://doi.org/10.1038/s43247-020-00043-0, 2020.
Jech, J. M., Foote, K. G., Chu, D., and Hufnagle, L. C. Jr.: Comparing two 38-kHz scientific echosounders, ICES J Mar Sci, 62, 1168–1179, https://doi.org/10.1016/j.icesjms.2005.02.014, 2005.
Jech, J. M.: What can you do with twenty years of water column sonar data? Plenty!, The Journal of the Acoustical Society of America, 149, A61, https://doi.org/10.1121/10.0004515, 2021.
Jech, J. M. and Michaels, W. L.: A multifrequency method to classify and evaluate fisheries acoustics data, Can. J. Fish. Aquat. Sci., 63, 2225–2235, https://doi.org/10.1139/f06-126, 2006.
Jenkins, A.: Convection-Driven Melting near the Grounding Lines of Ice Shelves and Tidewater Glaciers, J. Phys. Oceanogr., 41, 2279–2294, https://doi.org/10.1175/JPO-D-11-03.1, 2011.
Jerram, K., Weber, T. C., and Beaudoin, J.: Split-beam echo sounder observations of natural methane seep variability in the northern Gulf of Mexico, Geochem. Geophys. Geosyst., 16, 736–750, https://doi.org/10.1002/2014GC005429, 2015.
Joughin, I., Abdalati, W., and Fahnestock, M.: Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier, Nature, 432, 608–610, https://doi.org/10.1038/nature03130, 2004.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-Sheet Response to Oceanic Forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481, 2012.
Kilcher, L. F. and Nash, J. D.: Structure and dynamics of the Columbia River tidal plume front, J. Geophys. Res.-Oceans, 115, https://doi.org/10.1029/2009JC006066, 2010.
Kohler, J.: How close should boats come to the fronts of Svalbard's calving glaciers?, Commissioned report, Governor of Svalbard, http://hdl.handle.net/11250/173174 (last access: 1 August 2025), 2009.
Konik, M., Darecki, M., Pavlov, A. K., Sagan, S., and Kowalczuk, P.: Darkening of the Svalbard Fjords Waters Observed With Satellite Ocean Color Imagery in 1997–2019, Front. Mar. Sci., 8, https://doi.org/10.3389/fmars.2021.699318, 2021.
Kosiba, A.: Some of Results of Glaciological Investigations in SW-Spitsbergen: Carried Out During the Polish I.G.Y. Spitsbergen Expeditions in 1957, 1958 and 1959, Państwowe Wydawn, Nauk, 1960.
Kowalik, Z., Marchenko, A., Brazhnikov, D., and Marchenko, N.: Tidal currents in the western Svalbard Fjords, Oceanologia, 57, 318–327, https://doi.org/10.1016/j.oceano.2015.06.003, 2015.
Ladroit, Y., Escobar-Flores, P. C., and Maurice, A.: ESP3: Fisheries acoustics data processing software, SourceForge [EPS3], https://sourceforge.net/p/esp3/wiki/ESP3/ (last access: 1 August 2025), 2023.
Lavery, A. C., Schmitt, R. W., and Stanton, T. K.: High frequency acoustic scattering from turbulent oceanic microstructure: The importance of density fluctuations, J. Acoust. Soc. Amer., 114, 2685, https://doi.org/10.1121/1.1614258, 2003.
Lavery, A. C., Chu, D., and Moum, J. N.: Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder, ICES Journal of Marine Science, 67, 379–394, https://doi.org/10.1093/icesjms/fsp242, 2010.
Lavery, A. C., Geyer, W. R., and Scully, M. E.: Broadband acoustic quantification of stratified turbulence, The Journal of the Acoustical Society of America, 134, 40–54, https://doi.org/10.1121/1.4807780, 2013.
Lavery, A. C., Bassett, C., Lawson, G. L., and Jech, J. M.: Exploiting signal processing approaches for broadband echosounders, ICES Journal of Marine Science, 74, 2262–2275, https://doi.org/10.1093/icesjms/fsx155, 2017.
LeBlanc, L. R., Mayer, L., Rufino, M., Schock, S. G., and King, J.: Marine sediment classification using the chirp sonar, The Journal of the Acoustical Society of America, 91, 107–115, https://doi.org/10.1121/1.402758, 1992.
Le Boyer, A., Alford, M. H., Couto, N., Goldin, M., Lastuka, S., Goheen, S., Nguyen, S., Lucas, A. J., and Hennon, T. D.: Modular, Flexible, Low-cost Microstructure Measurements: The Epsilometer, J. Atmos. Ocean. Tech., 38, 657–668, https://doi.org/10.1175/JTECH-D-20-0116.1, 2021.
Lee, W., Mayorga, E., Setiawan, L., Majeed, I., Nguyen, K., and Staneva, V.: Echopype: A Python library for interoperable and scalable processing of water column sonar data for biological information, arXiv [preprint], arXiv:2111.00187, 2021.
Leon, G. R., Sandal, G. M., and Larsen, E.: Human performance in polar environments, Journal of Environmental Psychology, 31, 353–360, https://doi.org/10.1016/j.jenvp.2011.08.001, 2011.
Li, J., Roche, B., Bull, J. M., White, P. R., Leighton, T. G., Provenzano, G., Dewar, M., and Henstock, T. J.: Broadband Acoustic Inversion for Gas Flux Quantification – Application to a Methane Plume at Scanner Pockmark, Central North Sea, J. Geophys. Res.-Oceans, 125, e2020JC016360, https://doi.org/10.1029/2020JC016360, 2020.
Lilly, D. K.: A Severe Downslope Windstorm and Aircraft Turbulence Event Induced by a Mountain Wave, J. Atmos. Sci., 35, 59–77, https://doi.org/10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2, 1978.
Loranger, S. and Weber, T. C.: Shipboard Acoustic Observations of Flow Rate From a Seafloor-Sourced Oil Spill, J. Geophys. Res.-Oceans, 125, e2020JC016274, https://doi.org/10.1029/2020JC016274, 2020.
Loranger, S., Jech, M. J., and Lavery, A. C.: Broadband acoustic quantification of mixed biological aggregations at the New England shelf break, The Journal of the Acoustical Society of America, 152, 2319–2335, https://doi.org/10.1121/10.0014910, 2022.
Lurton, X.: An Introduction to Underwater Acoustics: Principles and Applications, Springer Science & Business Media, Springer, Berlin, Heidelberg, ISBN 978-3-540-78480-7, 2002.
Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M., Reigstad, M., Steen, H., Strøm, H., Sundfjord, A., Varpe, Ø., Walczowski, W., Weslawski, J. M., and Zajaczkowski, M.: The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway, J. Marine Syst., 129, 452–471, https://doi.org/10.1016/j.jmarsys.2013.09.006, 2014.
MacLennan, D. N.: The theory of solid spheres as sonar calibration targets, Scottish Fisheries Research, 22, 17 pp., 1981.
Mankoff, K. D., Straneo, F., Cenedese, C., Das, S. B., Richards, C. G., and Singh, H.: Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord, J. Geophys. Res.-Oceans, 121, 8670–8688, https://doi.org/10.1002/2016JC011764, 2016.
Marston, T. M., Bassett, C., Plotnick, D. S., Kidwell, A. N., and Honegger, D. A.: Three-dimensional observations of tidal plume fronts in estuaries using a synthetic aperture sonar array, The Journal of the Acoustical Society of America, 154, 1124–1137, https://doi.org/10.1121/10.0020671, 2023.
Martin, L. V., Stanton, T. K., Wiebe, P. H., and Lynch, J. F.: Acoustic classification of zooplankton, ICES J. Mar. Sci., 53, 217–224, https://doi.org/10.1006/jmsc.1996.0025, 1996.
McGee, T. M.: The Use of Marine Seismic Profiling for Environmental Assessment1, Geophysical Prospecting, 38, 861–880, https://doi.org/10.1111/j.1365-2478.1990.tb01879.x, 1990.
McLaren, A. S., Bourke, R. H., Walsh, J. E., and Weaver, R. L.: Variability in sea-ice thickness over the North Pole from 1958 to 1992, Geophysical Monograph Series, 85, 363–371, https://doi.org/10.1029/GM085p0363, 1994.
Medwin, H.: In situ acoustic measurements of microbubbles at sea, J. Geophys. Res., 82, 971–976, https://doi.org/10.1029/JC082i006p00971, 1977.
Medwin, H. and Clay, C. S.: Fundamentals of Acoustical Oceanography, Journal of physical oceanography, Academic Press, https://doi.org/10.1016/B978-0-12-487570-8.X5000-4, 1997.
Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahnestock, M., and Rysgaard, S.: On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord, J. Geophys. Res.-Oceans, 118, 1382–1395, https://doi.org/10.1002/jgrc.20134, 2013.
Motyka, R. J., Hunter, L., Echelmeyer, K. A., and Connor, C.: Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A, Ann. Glaciol., 36, 57–65, https://doi.org/10.3189/172756403781816374, 2003.
Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L., and Vagle, S.: Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf, J. Phys. Oceanogr., 33, 2093–2112, https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2, 2003.
Muchowski, J., Umlauf, L., Arneborg, L., Holtermann, P., Weidner, E., Humborg, C., and Stranne, C.: Potential and Limitations of a Commercial Broadband Echo Sounder for Remote Observations of Turbulent Mixing, J. Atmos. Ocean. Tech., 39, 1985–2003, https://doi.org/10.1175/JTECH-D-21-0169.1, 2022.
Mugford, R. I. and Dowdeswell, J. A.: Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords, J. Geophys. Res.-Earth Surf., 116, https://doi.org/10.1029/2010JF001735, 2011.
Nam, G. H., Cox, M. G., Harris, P. M., Robinson, S. P., Hayman, G., Beamiss, G. A., and Esward, T. J.: A model for characterizing the frequency -dependent variation in sensitivity with temperature of underwater acoustic transducers from historical calibration data, Measurement Science and Technology, 18, 1553, https://doi.org/10.1088/0957-0233/18/5/047, 2007.
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I.: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nature Geosci., 2, 110–114, https://doi.org/10.1038/ngeo394, 2009.
Nilsen, F., Cottier, F., Skogseth, R., and Mattsson, S.: Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard, Cont. Shelf Res., 28, 1838–1853, https://doi.org/10.1016/j.csr.2008.04.015, 2008.
Oakey, N. S.: Determination of the Rate of Dissipation of Turbulent Energy from Simultaneous Temperature and Velocity Shear Microstructure Measurements, Journal of physical oceanography, 12, pp 256–270, 1982.
Orr, M. H., Haury, L. R., Wiebe, P. H., and Briscoe, M. G.: Backscatter of high-frequency (200 kHz) acoustic wavefields from ocean turbulence, The Journal of the Acoustical Society of America, 108, 1595–1601, https://doi.org/10.1121/1.1286883, 2000.
Osborn, T. R.: Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements, American Meteorological Society, 10, 83–89, 1980.
Palinkas, L. A. and Suedfeld, P.: Psychological effects of polar expeditions, The Lancet, 371, 153–163, https://doi.org/10.1016/S0140-6736(07)61056-3, 2008.
Penrose, J. D. and Beer, T.: Acoustic reflection from estuarine pycnoclines. Estuarine, Coast. Shelf Sci., 12, 237–249, https://doi.org/10.1016/S0302-3524(81)80122-3, 1981.
Promińska, A., Falck, E., and Walczowski, W.: Interannual variability in hydrography and water mass distribution in Hornsund, an Arctic fjord in Svalbard, Polar Research, 2018.
Proni, J. R. and Apel, J. R.: On the use of high-frequency acoustics for the study of internal waves and microstructure, J. Geophys. Res., 80, 1147–1151, https://doi.org/10.1029/JC080i009p01147, 1975.
Rignot, E., Koppes, M., and Velicogna, I.: Rapid submarine melting of the calving faces of West Greenland glaciers, Nature Geosci., 3, 187–191, https://doi.org/10.1038/ngeo765, 2010.
Robertson, C. M., Benn, D. I., Brook, M. S., Fuller, L. C., and Holt, K. A.: Subaqueous calving margin morphology at Mueller, Hooker and Tasman glaciers in Aoraki/Mount Cook National Park, New Zealand, J. Glaciol., 58, 1037–1046, https://doi.org/10.3189/2012JoG12J048, 2012.
Rogers, P. H. and Van Buren, A. L.: New approach to a constant beamwidth transducer, Journal of the Acoustical Society of America, 64, 38–43, 1978.
Ross, T. and Lavery, A.: Laboratory observations of double-diffusive convection using high-frequency broadband acoustics, Exp. Fluids, 46, 355–364, https://doi.org/10.1007/s00348-008-0570-9, 2009.
Ross, T. and Lueck, R.: Estimating turbulent dissipation rates from acoustic backscatter, Deep-Sea Res. Pt. I, 52, 2353–2365, https://doi.org/10.1016/j.dsr.2005.07.002, 2005.
Rothrock, D. A. and Wensnahan, M.: The Accuracy of Sea Ice Drafts Measured from U.S. Navy Submarines, J. Atmos. Ocean. Tech., 24, 1936–1949, https://doi.org/10.1175/JTECH2097.1, 2007.
Sawada, K., Furusawa, M., and Williamson, N. J.: Conditions for the precise measurement of fish target strength in situ, The Journal of the Marine Acoustics Society of Japan, 20, 73–79, https://doi.org/10.3135/jmasj.20.73, 1993.
Schaffer, J., Kanzow, T., von Appen, W.-J., von Albedyll, L., Arndt, J. E., and Roberts, D. H.: Bathymetry constrains ocean heat supply to Greenland's largest glacier tongue, Nat. Geosci., 13, 227–231, https://doi.org/10.1038/s41561-019-0529-x
Seim, H. E., Gregg, M. C., and Miyamoto, R. T.: Acoustic Backscatter from Turbulent Microstructure, J. Atmos. Ocean. Tech., 12, 367–380, https://doi.org/10.1175/1520-0426(1995)012<0367:ABFTM>2.0.CO;2, 1995.
Serreze, M. C. and Francis, J. A.: The Arctic Amplification Debate, Clim. Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y, 2006.
Serreze, M. C. and Stroeve, J.: Arctic sea ice trends, variability and implications for seasonal ice forecasting, Philos. T. Roy. Soc. A, 373, 20140159, https://doi.org/10.1098/rsta.2014.0159, 2015.
Siegert, M., Alley, R. B., Rignot, E., Englander, J., and Corell, R.: Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures, One Earth, 3, 691–703, https://doi.org/10.1016/j.oneear.2020.11.002, 2020.
Simmonds, J. and MacLennan, D. N.: Fisheries Acoustics: Theory and Practice, John Wiley & Sons, Blackwell Publishing Ltd, https://doi.org/10.1002/9780470995303, 2008.
Simmons, S. M., Azpiroz-Zabala, M., Cartigny, M. J. B., Clare, M. A., Cooper, C., Parsons, D. R., Pope, E. L., Sumner, E. J., and Talling, P. J.: Novel Acoustic Method Provides First Detailed Measurements of Sediment Concentration Structure Within Submarine Turbidity Currents, J. Geophys. Res.-Oceans, 125, e2019JC015904, https://doi.org/10.1029/2019JC015904, 2020.
Slater, D. A., Straneo, F., Das, S. B., Richards, C. G., Wagner, T. J. W., and Nienow, P. W.: Localized Plumes Drive Front-Wide Ocean Melting of A Greenlandic Tidewater Glacier, Geophys. Res. Lett., 45, 12350–12358, https://doi.org/10.1029/2018GL080763, 2018.
Slater, D. A., Felikson, D., Straneo, F., Goelzer, H., Little, C. M., Morlighem, M., Fettweis, X., and Nowicki, S.: Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution, The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, 2020.
Slater, D. A., Carroll, D., Oliver, H., Hopwood, M. J., Straneo, F., Wood, M., Willis, J. K., and Morlighem, M.: Characteristic Depths, Fluxes, and Timescales for Greenland's Tidewater Glacier Fjords From Subglacial Discharge-Driven Upwelling During Summer, Geophys. Res. Lett., 49, e2021GL097081, https://doi.org/10.1029/2021GL097081, 2022.
Smyth, W. D. and Moum, J. N.: Three-dimensional (3d) Turbulence, in: Encyclopedia of Ocean Sciences, edited by: Steele, J. H., Academic Press, Oxford, 2947–2955, https://doi.org/10.1006/rwos.2001.0134, 2001.
Stanton, T. K., Chu, D., Jech, J. M., and Irish, J. D.: New broadband methods for resonance classification and high-resolution imagery of fish with swimbladders using a modified commercial broadband echosounder, ICES Journal of Marine Science, 67, 365–378, https://doi.org/10.1093/icesjms/fsp262, 2010.
Stevens, L. A., Straneo, F., Das, S. B., Plueddemann, A. J., Kukulya, A. L., and Morlighem, M.: Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations, The Cryosphere, 10, 417–432, https://doi.org/10.5194/tc-10-417-2016, 2016.
Straneo, F. and Cenedese, C.: The Dynamics of Greenland's Glacial Fjords and Their Role in Climate, Annu. Rev. Marine Sci., 7, 89–112, https://doi.org/10.1146/annurev-marine-010213-135133, 2015.
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of Greenland's outlet glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854, 2013.
Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C., Våge, K., and Stearns, L. A.: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier, Nature Geosci., 4, 322–327, https://doi.org/10.1038/ngeo1109, 2011.
Stranne, C., Mayer, L., Weber, T. C., Ruddick, B. R., Jakobsson, M., Jerram, K., Weidner, E., Nilsson, J., and Gårdfeldt, K.: Acoustic Mapping of Thermohaline Staircases in the Arctic Ocean, Sci. Rep., 7, 15192, https://doi.org/10.1038/s41598-017-15486-3, 2017.
Strzelewicz, A., Przyborska, A., and Walczowski, W.: Increased presence of Atlantic Water on the shelf south-west of Spitsbergen with implications for the Arctic fjord Hornsund, Prog. Oceanogr., 200, 102714, https://doi.org/10.1016/j.pocean.2021.102714, 2022.
Sugiyama, S., Minowa, M., and Schaefer, M.: Underwater Ice Terrace Observed at the Front of Glaciar Grey, a Freshwater Calving Glacier in Patagonia, Geophys. Res. Lett., 46, 2602–2609, https://doi.org/10.1029/2018GL081441, 2019.
Sutherland, D. A. and Straneo, F.: Estimating ocean heat transports and submarine melt rates in Sermilik Fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles, Ann. Glaciol., 53, 50–58, https://doi.org/10.3189/2012AoG60A050, 2012.
Sutherland, D. A., Jackson, R. H., Kienholz, C., Amundson, J. M., Dryer, W. P., Duncan, D., Eidam, E. F., Motyka, R. J., and Nash, J. D.: Direct observations of submarine melt and subsurface geometry at a tidewater glacier, Science, 365, 369–374, https://doi.org/10.1126/science.aax3528, 2019.
Swift, C. T.: Passive microwave remote sensing of the ocean – A review, Bound.-Lay. Meteorol., 18, 25–54, https://doi.org/10.1007/BF00117909, 1980.
Thorne, P. D. and Hanes, D. M.: A review of acoustic measurement of small-scale sediment processes, Cont. Shelf Res., 22, 603–632, https://doi.org/10.1016/S0278-4343(01)00101-7, 2002.
Thorne, P. D. and Hardcastle, P. J.: Acoustic measurements of suspended sediments in turbulent currents and comparison with in-situ samples, The Journal of the Acoustical Society of America, 101, 2603–2614, https://doi.org/10.1121/1.418501, 1997.
Thorne, P. D. and Hurther, D.: An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies, Cont. Shelf Res., 73, 97–118, https://doi.org/10.1016/j.csr.2013.10.017, 2014.
Thorpe, S. A.: Transitional phenomena and the development of turbulence in stratified fluids: A review, J. Geophys. Res.-Oceans, 92, 5231–5248, https://doi.org/10.1029/JC092iC05p05231, 1987.
Turin, G.: An introduction to matched filters, IRE Transactions on Information Theory, 6, 311–329, https://doi.org/10.1109/TIT.1960.1057571, 1960.
Vagle, S., Chandler, P., and Farmer, D. M.: On the dense bubble clouds and near bottom turbulence in the surf zone, J. Geophys. Res.-Oceans, 110, https://doi.org/10.1029/2004JC002603, 2005.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
van Haren, H. and Gostiaux, L.: A deep-ocean Kelvin-Helmholtz billow train, Geophys. Res. Lett., 37, https://doi.org/10.1029/2009GL041890, 2010.
Wagner, T. J. W., Straneo, F., Richards, C. G., Slater, D. A., Stevens, L. A., Das, S. B., and Singh, H.: Large spatial variations in the flux balance along the front of a Greenland tidewater glacier, The Cryosphere, 13, 911–925, https://doi.org/10.5194/tc-13-911-2019, 2019.
Walczowski, W.: Frontal structures in the West Spitsbergen Current margins, Ocean Sci., 9, 957–975, https://doi.org/10.5194/os-9-957-2013, 2013.
Walczowski, W. and Piechura, J.: New evidence of warming propagating toward the Arctic Ocean, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL025872, 2006.
Wawrzyniak, T. and Osuch, M.: A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard), Earth Syst. Sci. Data, 12, 805–815, https://doi.org/10.5194/essd-12-805-2020, 2020.
Weber, T. C. and Ward, L. G.: Observations of backscatter from sand and gravel seafloors between 170 and 250 kHz, The Journal of the Acoustical Society of America, 138, 2169–2180, https://doi.org/10.1121/1.4930185, 2015.
Weidner, E.: Angular dependence of backscattering between 170 and 250 kHz from the terminus of a tidewater glacier, The Journal of the Acoustical Society of America, 158, 504–514, https://doi.org/10.1121/10.0037196, 2025.
Weidner, E. F. and Deane, G.: Hornsund Fjord 2023: Broadband Active Acoustic and Oceanographic Data, UC San Diego Library Digital Collections [data set], https://doi.org/10.6075/J0N87B1B, 2024.
Weidner, E. and Weber, T. C.: Broadband acoustic characterization of backscattering from a rough stratification interface, The Journal of the Acoustical Society of America, 155, 114–127, https://doi.org/10.1121/10.0024148, 2024.
Weidner, E., Weber, T. C., Mayer, L., Jakobsson, M., Chernykh, D., and Semiletov, I.: A wideband acoustic method for direct assessment of bubble-mediated methane flux, Cont. Shelf Res., 173, 104–115, https://doi.org/10.1016/j.csr.2018.12.005, 2019.
Weidner, E., Stranne, C., Sundberg, J. H., Weber, T. C., Mayer, L., and Jakobsson, M.: Tracking the spatiotemporal variability of the oxic–anoxic interface in the Baltic Sea with broadband acoustics, ICES Journal of Marine Science, 77, 2814–2824, https://doi.org/10.1093/icesjms/fsaa153, 2020.
Xu, G., Jackson, D. R., and Bemis, K. G.: The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited, The Journal of the Acoustical Society of America, 141, 1446–1458, https://doi.org/10.1121/1.4974828, 2017.
Xu, Y., Rignot, E., Menemenlis, D., and Koppes, M.: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge, Ann. Glaciol., 53, 229–234, https://doi.org/10.3189/2012AoG60A139, 2012.
Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., and Flexas, M. M.: Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations, Geophys. Res. Lett., 40, 4648–4653, https://doi.org/10.1002/grl.50825, 2013.
Young, R. A., Merrill, J. T., Clarke, T. L., and Proni, J. R.: Acoustic profiling of suspended sediments in the marine bottom boundary layer, Geophys. Res. Lett., 9, 175–178, https://doi.org/10.1029/GL009i003p00175, 1982.
Short summary
Tidewater glaciers play a central role in polar dynamics, but their study is limited by harsh and isolated conditions. Here, we introduce broadband echosounders as an tool for the study of high-latitude fjords through the rapid collection of calibrated high-resolution, near-synoptic observations. Using a dataset collected in Hornsund Fjord, we illustrate the potential of broadband echosounders as a relatively accessible, low-effort tool, well suited for field deployment in high-latitude fjords.
Tidewater glaciers play a central role in polar dynamics, but their study is limited by harsh...