Articles | Volume 19, issue 9
https://doi.org/10.5194/tc-19-4091-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-4091-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved permafrost modelling in mountain environments by including air convection in a hydrological model
Gerardo Zegers
CORRESPONDING AUTHOR
Department of Earth, Energy and Environment, University of Calgary, Calgary, Canada
Masaki Hayashi
Department of Earth, Energy and Environment, University of Calgary, Calgary, Canada
Rodrigo Pérez-Illanes
Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya, Barcelona, Spain
Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Barcelona, Spain
Related authors
Alex Garcés, Gerardo Zegers, Albert Cabré, Germán Aguilar, Aldo Tamburrino, and Santiago Montserrat
Nat. Hazards Earth Syst. Sci., 22, 377–393, https://doi.org/10.5194/nhess-22-377-2022, https://doi.org/10.5194/nhess-22-377-2022, 2022
Short summary
Short summary
We propose a workflow to model the response of an alluvial fan located in the Atacama Desert during an extreme storm event. For this alluvial fan, five different deposits were identified and associated with different debris flow surges. Using a commercial software program, our workflow concatenates these surges into one model. This study depicts the significance of the mechanical classification of debris flows to reproduce how an alluvial fan controls the tributary–river junction connectivity.
Sara Lilley and Masaki Hayashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3767, https://doi.org/10.5194/egusphere-2025-3767, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Alpine karst springs are important for providing year-around baseflow in mountain streams and sustaining fragile aquatic ecosystems. In this study the hydrogeology of a previously unexplored alpine karst system is characterized using diverse methods including the analysis of snowmelt-driven, diel fluctuations of spring discharge and electrical conductivity. The approach developed here will be transferrable to similar alpine karst systems in snow-dominated environments.
Alex Garcés, Gerardo Zegers, Albert Cabré, Germán Aguilar, Aldo Tamburrino, and Santiago Montserrat
Nat. Hazards Earth Syst. Sci., 22, 377–393, https://doi.org/10.5194/nhess-22-377-2022, https://doi.org/10.5194/nhess-22-377-2022, 2022
Short summary
Short summary
We propose a workflow to model the response of an alluvial fan located in the Atacama Desert during an extreme storm event. For this alluvial fan, five different deposits were identified and associated with different debris flow surges. Using a commercial software program, our workflow concatenates these surges into one model. This study depicts the significance of the mechanical classification of debris flows to reproduce how an alluvial fan controls the tributary–river junction connectivity.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Cited articles
Amschwand, D., Scherler, M., Hoelzle, M., Krummenacher, B., Haberkorn, A., Kienholz, C., and Gubler, H.: Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps), The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, 2024. a
Arenson, L. U. and Jakob, M.: The significance of rock glaciers in the dry Andes – a discussion of Azócar and Brenning (2010) and Brenning and Azócar (2010), Permafrost. Periglac., 21, 282–285, https://doi.org/10.1002/ppp.693, 2010. a
Arenson, L. U., Sego, D. C., and Newman, G.: The use of a convective heat flow model in road designs for Northern regions, 2006 IEEE EIC Climate Change Technology Conference, EICCCC 2006, Ottawa, ON, Canada, 10–12 May 2006, 1–8, https://doi.org/10.1109/EICCCC.2006.277276, 2006. a, b
Bächler, E.: Der verwünschte oder verhexte Wald im Brüeltobel, Appenzeller Kalender, 209, 1930. a
Barletta, A.: Local energy balance, specific heats and the Oberbeck-Boussinesq approximation, Int. J. Heat Mass Tran., 52, 5266–5270, https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.006, 2009. a
Bortoli, E., Sartori, A., Bertoldi, G., Cozzini, S., Cordano, E., Zegers, G., Endrizzi, S., and Palma, M.: gzegers/geotop-CE: Improved Permafrost modelling in Mountain Environments Using Convective-Enhanced GEOtop Model (CE-GEOtop-v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.17042770, 2025. a
Bertoldi, G., Rigon, R., and Over, T. M.: Impact of watershed geomorphic characteristics on the energy and water budgets, J. Hydrol., 7, 389–403, https://doi.org/10.1175/JHM500.1, 2006. a
Bories, S. A. and Combarnous, M. A.: Natural convection in a sloping porous layer, J. Fluid Mech., 57, 63–79, https://doi.org/10.1017/S0022112073001023, 1973. a
Brighenti, S., Hotaling, S., Finn, D. S., Fountain, A. G., Hayashi, M., Herbst, D., Saros, J. E., Tronstad, L. M., and Millar, C. I.: Rock glaciers and related cold rocky landforms: overlooked climate refugia for mountain biodiversity, Glob. Change Biol., 27, 1504–1517, https://doi.org/10.1111/gcb.15510, 2021. a
Bristow, K. L.: Thermal conductivity, in: Methods of Soil Analysis, Part 4: Physical Methods, edited by: Dane, J. H., and Topp, G. C., Soil Science Society of America (SSSA), Madison, WI, https://doi.org/10.2136/sssabookser5.4.c50, 1209–1226, 2018. a, b, c
Chen, R., Wang, G., Yang, Y., Liu, J., Han, C., Song, Y., Liu, Z., and Kang, E.: Effects of cryospheric change on alpine hydrology: combining a model with observations in the upper reaches of the Hei River, China, J. Geophys. Res.-Atmos., 123, 3414–3442, https://doi.org/10.1002/2017JD027876, 2018. a
Cheng, L. C. and Wong, S. C.: A new model of solid-phase effective thermal conductivity in local thermal non-equilibrium simulation for packed beds of rough spheres in convective flow, Int. J. Therm. Sci., 176, 107537, https://doi.org/10.1016/j.ijthermalsci.2022.107537, 2022. a
Cosenza, P., Guérin, R., and Tabbagh, A.: Relationship between thermal conductivity and water content of soils using numerical modelling, Eur. J. Soil Sci., 54, 581–588, 2003. a
Côté, J. and Konrad, J. M.: Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials, Int. J. Heat Mass Tran., 52, 796–804, https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.037, 2009. a, b
Côté, J., Fillion, M. H., and Konrad, J. M.: Intrinsic permeability of materials ranging from sand to rock-fill using natural air convection tests, Can. Geotech. J., 48, 679–690, https://doi.org/10.1139/t10-097, 2011. a, b
Dall'Amico, M., Endrizzi, S., Gruber, S., and Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil, The Cryosphere, 5, 469–484, https://doi.org/10.5194/tc-5-469-2011, 2011. a, b
Dall'Amico, M., Endrizzi, S., and Tasin, S.: MYSNOWMAPS: Operative high-resolution real-time snow mapping, in: Proceedings International Snow Science Workshop(ISSW 2018), Innsbruck, Austria, 7–12 October 2018, 7–12, https://arc.lib.montana.edu/snow-science/objects/ISSW2018_O04.7.pdf (last access: 9 September 2025), 2018. a, b
Delaloye, R. and Lambiel, C.: Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps), Norsk. Geogr. Tidsskr., 59, 194–203, https://doi.org/10.1080/00291950510020673, 2005. a, b, c, d
Endrizzi, S., Gruber, S., Dall'Amico, M., and Rigon, R.: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci. Model Dev., 7, 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014, 2014. a, b, c, d, e
Farouki, O. T.: The thermal properties of soils in cold regions, Cold Reg. Sci. Technol., 5, 67–75, https://doi.org/10.1016/0165-232X(81)90041-0, 1981. a
Fiddes, J., Endrizzi, S., and Gruber, S.: Large-area land surface simulations in heterogeneous terrain driven by global data sets: application to mountain permafrost, The Cryosphere, 9, 411–426, https://doi.org/10.5194/tc-9-411-2015, 2015. a, b
Fillion, M. H., Côté, J., and Konrad, J. M.: Thermal radiation and conduction properties of materials ranging from sand to rock-fill, Can. Geotech. J., 48, 532–542, https://doi.org/10.1139/t10-093, 2011. a
Giardino, J. R., Vitek, J. D., and Demorett, J. L.: A model of water movement in rock glaciers and associated water characteristics, Periglacial geomorphology. Proc. 22nd annual symposium in geomorphology, Binghamton, NY, 25–27 September 1991, 159–184, https://doi.org/10.1007/978-1-4612-2804-2_9, 1992. a
Gorbunov, A. P., Marchenko, S. S., and Seversky, E. V.: The thermal environment of blocky materials in the mountains of Central Asia, Permafrost. Periglac., 15, 95–98, https://doi.org/10.1002/ppp.478, 2004. a, b
Grenier, C., Anbergen, H., Bense, V., Chanzy, Q., Coon, E., Collier, N., Costard, F., Ferry, M., Frampton, A., Frederick, J., Gonçalvès, J., Holmén, J., Jost, A., Kokh, S., Kurylyk, B., McKenzie, J., Molson, J., Mouche, E., Orgogozo, L., Pannetier, R., Rivière, A., Roux, N., Rühaak, W., Scheidegger, J., Selroos, J. O., Therrien, R., Vidstrand, P., and Voss, C.: Groundwater flow and heat transport for systems undergoing freeze-thaw: intercomparison of numerical simulators for 2D test cases, Adv. Water Resour., 114, 196–218, https://doi.org/10.1016/j.advwatres.2018.02.001, 2018. a
Gruber, S. and Hoelzle, M.: The cooling effect of coarse blocks revisited: a modeling study of a purely conductive mechanism, Proceedings of the 9th International Conference on Permafrost 2008, Fairbanks, Alaska, 29 June–July 2008, 557–561, https://www.zora.uzh.ch/entities/publication/bdcf60f6-6c4c-4a36-829c-9f118a4b2e23 (last access: 9 September 2025), 2008. a, b, c, d
Guodong, C., Yuanming, L., Zhizhong, S., and Fan, J.: The `thermal semi-conductor' effect of crushed rocks, Permafrost. Periglac., 18, 151–160, https://doi.org/10.1002/ppp.575, 2007. a, b, c
Harrington, J. S., Hayashi, M., and Kurylyk, B. L.: Influence of a rock glacier spring on the stream energy budget and cold-water refuge in an alpine stream, Hydrol. Process., 31, 4719–4733, https://doi.org/10.1002/hyp.11391, 2017. a
Harrington, J. S., Mozil, A., Hayashi, M., and Bentley, L. R.: Groundwater flow and storage processes in an inactive rock glacier, Hydrol. Process., 32, 3070–3088, https://doi.org/10.1002/hyp.13248, 2018. a, b, c
Hauck, C. and Kneisel, C. (Eds.): Applied Geophysics in Periglacial Environments, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511535628, 2008. a
Hayashi, M.: Alpine hydrogeology: the critical role of groundwater in sourcing the headwaters of the world, Groundwater, 58, 498–510, https://doi.org/10.1111/gwat.12965, 2020. a, b, c, d
He, J. and Hayashi, M.: Lake O'Hara alpine hydrological observatory: hydrological and meteorological dataset, 2004–2017, Earth Syst. Sci. Data, 11, 111–117, https://doi.org/10.5194/essd-11-111-2019, 2019. a, b
Hoelzle, M.: Permafrost occurrence from BTS measurements and climatic parameters in the Eastern Swiss Alps, Permafrost. Periglac., 3, 143–147, 1992. a
Hood, J. L.: Quantifying snowmelt inputs in an alpine watershed for the purpose of investigating the role of groundwater storage, Report designator: University of Calgary PRISM/27499, https://doi.org/10.11575/PRISM/27499, 2013. a
Hood, J. L. and Hayashi, M.: Characterization of snowmelt flux and groundwater storage in an alpine headwater basin, J. Hydrol., 521, 482–497, https://doi.org/10.1016/j.jhydrol.2014.12.041, 2015. a, b, c, d
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers and mountain hydrology: a review, Earth-Sci. Rev., 193, 66–90, https://doi.org/10.1016/j.earscirev.2019.04.001, 2019. a
Juliussen, H. and Humlum, O.: Thermal regime of openwork block fields on the mountains Elgåhogna and Sølen, central-eastern Norway, Permafrost. Periglac., 19, 1–18, https://doi.org/10.1002/ppp.607, 2008. a
Karra, S., Painter, S. L., and Lichtner, P. C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0), The Cryosphere, 8, 1935–1950, https://doi.org/10.5194/tc-8-1935-2014, 2014. a
Kong, X., Doré, G., Calmels, F., and Lemieux, C.: Field and numerical studies on the thermal performance of air convection embankments to protect side slopes in permafrost environments, Cold Reg. Sci. Technol., 189, 1–10, https://doi.org/10.1016/j.coldregions.2021.103325, 2021. a
Krainer, K. and Mostler, W.: Hydrology of active rock glaciers: examples from the Austrian Alps, Arct. Antarct. Alp. Res., 34, 142–149, https://doi.org/10.2307/1552465, 2002. a
Kurylyk, B. L. and Hayashi, M.: Inferring hydraulic properties of alpine aquifers from the propagation of diurnal snowmelt signals, Water Resour. Res., 53, 4271–4285, https://doi.org/10.1002/2016WR019651, 2017. a
Landman, A. J. and Schotting, R. J.: Heat and brine transport in porous media: the Oberbeck-Boussinesq approximation revisited, Transport Porous Med., 70, 355–373, https://doi.org/10.1007/s11242-007-9104-9, 2007. a
Langston, G., Bentley, L. R., Hayashi, M., McClymont, A., and Pidlisecky, A.: Internal structure and hydrological functions of an alpine proglacial moraine, Hydrol. Process., 25, 2967–2982, https://doi.org/10.1002/hyp.8144, 2011. a
Lapwood, E. R.: Convection of a fluid in a porous medium, Math. Proc. Cambridge, 44, 508–521, https://doi.org/10.1017/S030500410002452X, 1948. a, b
Lebeau, M. and Konrad, J. M.: Non-Darcy flow and thermal radiation in convective embankment modeling, Comput. Geotech., 73, 91–99, https://doi.org/10.1016/j.compgeo.2015.11.016, 2016. a
Long, C. N., Ackerman, T. P., Gaustad, K. L., and Cole, J.: Estimation of fractional sky cover from broadband shortwave radiometer measurements, J. Geophys. Res.-Atmos., 111, D1120, https://doi.org/10.1029/2005JD006475, 2006. a
Mahabadi, N., Dai, S., Seol, Y., Sup Yun, T., and Jang, J.: The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation, Geochem. Geophy. Geosy., 17, 3099–3110, https://doi.org/10.1002/2016GC006372, 2016. a
Marchenko, S. S.: A model of permafrost formation and occurences in the intracontinental mountains, Norsk. Geogr. Tidsskr., 55, 230–234, https://doi.org/10.1080/00291950152746577, 2001. a
McKenzie, J. M., Voss, C. I., and Siegel, D. I.: Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs, Adv. Water Resour., 30, 966–983, https://doi.org/10.1016/j.advwatres.2006.08.008, 2007. a
Morard, S., Delaloye, R., and Dorthe, J.: Seasonal thermal regime of a mid-latitude ventilated debris accumulation, Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June–July 2008, 1233–1238, https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/Papers/Morard_et_al_(2008)_ICOP_Seasonal_Thermal_Regime_of_a_Mid-Latitude_Ventilated_Debris_Accumulation.pdf (last access: 9 September 2025), 2008. a, b, c, d, e, f, g
Morard, S., Delaloye, R., and Lambiel, C.: Pluriannual thermal behavior of low elevation cold talus slopes in western Switzerland, Geographica Helvetica, 65, 124–134, 2010. a
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: performance measures and evaluation criteria, T. ASABE, 58, 1763–1785, 2015. a
Narasimhan, A.: Rayleigh-Bénard convection: physics of a widespread phenomenon, Resonance, 4, 82–90, 1999. a
Nield, D. A. and Bejan, A.: Convection in Porous Media, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-49562-0, 2017. a, b, c, d
Otero, J., Dontcheva, L. A., Johnston, H., Worthing, R. A., Kurganov, A., Petrova, G., and Doering, C. R.: High-Rayleigh-number convection in a fluid-saturated porous layer, J. Fluid Mech., 500, 263–281, 2004. a
Panday, S. and Huyakorn, P. S.: A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow, Adv. Water Resour., 27, 361–382, 2004. a
Phillips, M., Mutter, E. Z., Kern-Luetschg, M., and Lehning, M.: Rapid degradation of ground ice in a ventilated talus slope: Flüela Pass, Swiss Alps, Permafrost. Periglac., 20, 1–14, https://doi.org/10.1002/ppp.638, 2009. a
Popescu, R., Vespremeanu-Stroe, A., Onaca, A., Vasile, M., Cruceru, N., and Pop, O.: Low-altitude permafrost research in an overcooled talus slope–rock glacier system in the Romanian Carpathians (Detunata Goal Apuseni Mountains), Geomorphology, 295, 840–854, https://doi.org/10.1016/j.geomorph.2017.07.029, 2017. a, b, c
Price, R. A., Cook, D. G., Aitken, J. D., and Mountjoy, E. W.: Geology, Lake Louise (west half), west of fifth meridian, British Columbia-Alberta, Tech. rep, https://doi.org/10.4095/108873, 1980. a, b
Pruessner, L., Phillips, M., Farinotti, D., Hoelzle, M., and Lehning, M.: Near-surface ventilation as a key for modeling the thermal regime of coarse blocky rock glaciers, Permafrost. Periglac., 29, 152–163, https://doi.org/10.1002/ppp.1978, 2018. a
Rai, M. M. and Chakravarthy, S. R.: An implicit form for the Osher upwind scheme, AIAA J., 24, 735–743, https://doi.org/10.2514/3.9340, 1986. a
Rigon, R., Bertoldi, G., and Over, T. M.: GEOtop: a distributed hydrological model with coupled water and energy budgets, J. Hydrol., 7, 371–388, https://doi.org/10.1175/JHM497.1, 2006. a, b, c
Rolland, C.: Spatial and seasonal variations of air temperature lapse rates in Alpine regions, J. Climate, 16, 1032–1046, 2003. a
Ross, C., Siemens, G., and Beddoe, R.: Initialization of thermal models in cold and warm permafrost, Arctic Science, 8, 362–394, 2021. a
Rush, M., Rajaram, H., Anderson, R., and Anderson, S.: Modeling aspect-controlled evolution of ground thermal regimes on montane hillslopes, J. Geophys. Res.-Earth, 126, e2021JF006126, https://doi.org/10.1029/2021JF006126, 2021. a
Sawada, Y., Ishikawa, M., and Ono, Y.: Thermal regime of sporadic permafrost in a block slope on Mt. Nishi-Nupukaushinupuri, Hokkaido Island, Northern Japan, Geomorphology, 52, 121–130, 2003. a
Scherler, M., Hauck, C., Hoelzle, M., and Salzmann, N.: Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios, J. Geophys. Res.-Earth, 118, 780–794, https://doi.org/10.1002/jgrf.20069, 2013. a, b
Shen, Y., Yang, Y., Yang, G., Hou, X., Ye, W., You, Z., and Xi, J.: Damage characteristics and thermo-physical properties changes of limestone and sandstone during thermal treatment from −30 °C to 1000 °C, Heat Mass Transfer, 54, 3389–3407, https://doi.org/10.1007/s00231-018-2376-5, 2018. a
Somers, L. D., Gordon, R. P., McKenzie, J. M., Lautz, L. K., Wigmore, O., Glose, A. M., Glas, R., Aubry-Wake, C., Mark, B., Baraer, M., and Condom, T.: Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru, Hydrol. Process., 30, 2915–2929, https://doi.org/10.1002/hyp.10912, 2016. a
Su, Y. and Davidson, J. H.: Modeling Approaches to Natural Convection in Porous Media, vol. 606 of SpringerBriefs in Applied Sciences and Technology, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-14237-1, 2015. a, b
Tanaka, H. L., Nohara, D., and Yokoi, M.: Numerical simulation of wind hole circulation and summertime ice formation at Ice Valley in Korea and Nakayama in Fukushima, Japan, Journal of the Meteorological Society of Japan. Ser. II., 78, 611–630, 2000. a
Thomas, J., Frost, R. R., and Harvey, R. D.: Thermal conductivity of carbonate rocks, Eng. Geol., 7, 3–12, https://doi.org/10.1016/0013-7952(73)90003-3, 1973. a
Tian, Z., Lu, Y., Horton, R., and Ren, T.: A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil, Eur. J. Soil Sci., 67, 564–572, https://doi.org/10.1111/ejss.12366, 2016. a
van Everdingen, R. O.: Multi-Language Glossary of Permafrost and Related Ground-Ice Terms, University of Calgary Printing Services, Calgary, Alberta, Canada, https://ucalgary.primo.exlibrisgroup.com/permalink/01UCALG_INST/1j63de0/alma991003184839704336 (last access: 9 September 2025), 1998. a
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., and Wada, Y.: Increasing dependence of lowland populations on mountain water resources, Nature Sustainability, 3, 917–928, https://doi.org/10.1038/s41893-020-0559-9, 2020. a
Wagner, T., Pauritsch, M., Mayaud, C., Kellerer-Pirklbauer, A., Thalheim, F., and Winkler, G.: Controlling factors of microclimate in blocky surface layers of two nearby relict rock glaciers (Niedere Tauern Range, Austria), Geogr. Ann. A, 101, 310–333, https://doi.org/10.1080/04353676.2019.1670950, 2019. a
Wakonigg, H.: Unterkühlte Schutthalden. Beiträge zur Permafrostforschung in Österreich, in: Arbeiten aus dem Institut für Geographie, Karl-Franzens-Universität Graz, edited by: Leitner, W., vol. 33, 209–223, https://www.zobodat.at/pdf/Arb-Inst-Geographie-Uni-Graz_33_1996_0209-0223.pdf (last access: 9 September 2025), 1996. a
Wani, J. M., Thayyen, R. J., Ojha, C. S. P., and Gruber, S.: The surface energy balance in a cold and arid permafrost environment, Ladakh, Himalayas, India, The Cryosphere, 15, 2273–2293, https://doi.org/10.5194/tc-15-2273-2021, 2021. a
Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying, Advances in Heat Transfer, 13, 119–203, https://doi.org/10.1016/S0065-2717(08)70223-5, 1977. a
Wicky, J. and Hauck, C.: Numerical modelling of convective heat transport by air flow in permafrost talus slopes, The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, 2017. a, b, c
Wicky, J. and Hauck, C.: Air convection in the active layer of rock glaciers, Front. Earth Sci., 8, 1–17, https://doi.org/10.3389/feart.2020.00335, 2020. a, b
Wicky, J., Hilbich, C., Delaloye, R., and Hauck, C.: Modeling the link between air convection and the occurrence of short-term permafrost in a low-altitude cold talus slope, Permafrost. Periglac., 35, 202–217, 2024. a
Wiegand, T. and Kneisel, C.: Monitoring of thermal conditions and snow dynamics at periglacial block accumulations in a low mountain range in central Germany, Earth Surf. Proc. Land., 49, 5321–5338, 2024. a
Winkler, G., Wagner, T., Pauritsch, M., Birk, S., Kellerer-Pirklbauer, A., Benischke, R., Leis, A., Morawetz, R., Schreilechner, M. G., and Hergarten, S.: Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria), Hydrogeol. J., 24, 937–953, https://doi.org/10.1007/s10040-015-1348-9, 2016. a
Woo, M., Yang, Z., Xia, Z., and Yang, D.: Streamflow processes in an alpine permafrost catchment, Tianshan, China, Permafrost. Periglac., 5, 71–85, https://doi.org/10.1002/ppp.3430050202, 1994. a
Yang, J., Wang, J., Bu, S., Zeng, M., Wang, Q., and Nakayama, A.: Experimental analysis of forced convective heat transfer in novel structured packed beds of particles, Chem. Eng. Sci., 71, 126–137, https://doi.org/10.1016/j.ces.2011.12.005, 2012. a
Zegers, G.: Meteorological, streamflow, and temperature data for Babylon Creek., figshare [data set], https://doi.org/10.6084/m9.figshare.30211660.v1, 2025. a
Short summary
This research showed that airflow within sediment accumulations promotes cooling and sustains mountain permafrost. By enhancing a numerical model, we showed that natural air movement, driven by temperature differences between sediments and external air, allows permafrost to survive. Our work aids in predicting where and how permafrost exists, which is essential for understanding its role in mountain water systems and its response to climate change.
This research showed that airflow within sediment accumulations promotes cooling and sustains...