Articles | Volume 19, issue 9
https://doi.org/10.5194/tc-19-4091-2025
https://doi.org/10.5194/tc-19-4091-2025
Research article
 | 
29 Sep 2025
Research article |  | 29 Sep 2025

Improved permafrost modelling in mountain environments by including air convection in a hydrological model

Gerardo Zegers, Masaki Hayashi, and Rodrigo Pérez-Illanes

Data sets

Meteorological, streamflow, and temperature data for Babylon Creek. G. Zegers https://doi.org/10.6084/m9.figshare.30211660.v1

Model code and software

GeoTOP-CE E. Bortoli et al. https://doi.org/10.5281/zenodo.17042770

Download
Short summary
This research showed that airflow within sediment accumulations promotes cooling and sustains mountain permafrost. By enhancing a numerical model, we showed that natural air movement, driven by temperature differences between sediments and external air, allows permafrost to survive. Our work aids in predicting where and how permafrost exists, which is essential for understanding its role in mountain water systems and its response to climate change.
Share