Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3397-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-3397-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating seasonal and multi-decadal water/ice storage changes in the Murtèl rock glacier using time-lapse gravimetry
Landon J. S. Halloran
CORRESPONDING AUTHOR
Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Neuchâtel, Switzerland
Dominik Amschwand
Networked Embedded Sensing Center, Department of Computer Science, University of Innsbruck, Innsbruck, Austria
Related authors
Cyprien Louis, Landon J. S. Halloran, and Clément Roques
Hydrol. Earth Syst. Sci., 29, 1505–1523, https://doi.org/10.5194/hess-29-1505-2025, https://doi.org/10.5194/hess-29-1505-2025, 2025
Short summary
Short summary
We investigate the freeze–thaw cycles of a rock glacier located in Switzerland and their influence on subsurface hydrology. By analyzing aerial pictures, we estimate the evolution of its creeping velocity on an inter-annual scale. We use geochemical tracers measured at springs to identify the mixing of meltwater and deep groundwater on seasonal to diurnal timescales. This study provides new insights into the cryo-hydrogeological processes that regulate water fluxes in mountain regions.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
Earth Surf. Dynam., 13, 365–401, https://doi.org/10.5194/esurf-13-365-2025, https://doi.org/10.5194/esurf-13-365-2025, 2025
Short summary
Short summary
Rock glaciers are comparatively climate-robust permafrost landforms. We estimated the energy budget of the seasonally thawing active layer (AL) of Murtèl rock glacier (Swiss Alps) based on a novel sub-surface sensor array. In the coarse blocky AL, heat is transferred by thermal radiation and air convection. The ground heat flux is largely spent on melting seasonal ice in the AL. Convective cooling and the seasonal ice turnover make rock glaciers climate-robust and shield the permafrost beneath.
Dominik Amschwand, Seraina Tschan, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, Lukas Aschwanden, and Hansueli Gubler
Hydrol. Earth Syst. Sci., 29, 2219–2253, https://doi.org/10.5194/hess-29-2219-2025, https://doi.org/10.5194/hess-29-2219-2025, 2025
Short summary
Short summary
Meltwater from rock glaciers, frozen landforms of debris and ice, has gained attention in dry mountain regions. We estimated how much ice melts in Murtèl rock glacier (Swiss Alps) based on belowground heat flow measurements and observations of the rising and falling ground-ice table. We found seasonal aggradation and melt of 150–300 mm w.e. (20 %–40 % of the snowpack). The ice (largely sourced from refrozen snowmelt) melts in hot summer periods, infiltrates, and recharges groundwater.
Cyprien Louis, Landon J. S. Halloran, and Clément Roques
Hydrol. Earth Syst. Sci., 29, 1505–1523, https://doi.org/10.5194/hess-29-1505-2025, https://doi.org/10.5194/hess-29-1505-2025, 2025
Short summary
Short summary
We investigate the freeze–thaw cycles of a rock glacier located in Switzerland and their influence on subsurface hydrology. By analyzing aerial pictures, we estimate the evolution of its creeping velocity on an inter-annual scale. We use geochemical tracers measured at springs to identify the mixing of meltwater and deep groundwater on seasonal to diurnal timescales. This study provides new insights into the cryo-hydrogeological processes that regulate water fluxes in mountain regions.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Cited articles
Amschwand, D., Scherler, M., Hoelzle, M., Krummenacher, B., Haberkorn, A., Kienholz, C., and Gubler, H.: Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps), The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, 2024. a, b
Amschwand, D., Tschan, S., Scherler, M., Hoelzle, M., Krummenacher, B., Haberkorn, A., Kienholz, C., Aschwanden, L., and Gubler, H.: Seasonal ice storage changes and meltwater generation at Murtèl rock glacier (Engadine, eastern Swiss Alps): estimates from measurements and energy budgets in the coarse blocky active layer, Hydrol. Earth Syst. Sci., 29, 2219–2253, https://doi.org/10.5194/hess-29-2219-2025, 2025a. a, b, c, d, e, f, g, h, i, j
Amschwand, D., Wicky, J., Scherler, M., Hoelzle, M., Krummenacher, B., Haberkorn, A., Kienholz, C., and Gubler, H.: Sub-surface processes and heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps): seasonal ice and convective cooling render rock glaciers climate-robust, Earth Surf. Dynam., 13, 365–401, https://doi.org/10.5194/esurf-13-365-2025, 2025b. a, b
Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation measurements and internal structure of some rock glaciers in Switzerland, Permafrost Periglac., 13, 117–135, https://doi.org/10.1002/ppp.414, 2002. a, b
Arenson, L. U., Hauck, C., Hilbich, C., Seward, L., Yamamoto, Y., and Springman, S. M.: Sub-surface heterogeneities in the Murtèl-Corvatsch rock glacier, Switzerland, in: Proceedings of the joint 63rd Canadian Geotechnical Conference and the 6th Canadian Permafrost Conference (GEO2010), 12–15 September 2010, Calgary (Alberta), Canada, 1494–1500, Canadian Geotechnical Society, CNC-IPA/NRCan, Calgary, AB, Canada, 2010. a, b
Arenson, L. U., Harrington, J. S., Koenig, C. E. M., and Wainstein, P. A.: Mountain Permafrost Hydrology – A Practical Review Following Studies from the Andes, Geosciences, 12, 48, https://doi.org/10.3390/geosciences12020048, 2022. a, b, c
Arnoux, M., Halloran, L. J. S., Berdat, E., and Hunkeler, D.: Characterizing seasonal groundwater storage in alpine catchments using time-lapse gravimetry, water stable isotopes and water balance methods, Hydrol. Process., 34, 4319–4333, https://doi.org/10.1002/hyp.13884, 2020. a, b, c
Azócar, G. F. and Brenning, A.: Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33° S), Permafrost Periglac., 21, 42–53, https://doi.org/10.1002/ppp.669, 2010. a, b, c
Bandou, D., Schlunegger, F., Kissling, E., Marti, U., Schwenk, M., Schläfli, P., Douillet, G., and Mair, D.: Three-dimensional gravity modelling of a Quaternary overdeepening fill in the Bern area of Switzerland discloses two stages of glacial carving, Sci. Rep., 12, 1441, https://doi.org/10.1038/s41598-022-04830-x, 2022. a, b
Bandou, D. T.: Overdeepenings in the Bern region, Switzerland: Understanding their formation processes using 3D gravity forward modelling, PhD thesis, Universität Bern, Bern, https://boristheses.unibe.ch/4573/ (last access: 1 October 2024), 2023. a
Barandun, M., Fiddes, J., Scherler, M., Mathys, T., Saks, T., Petrakov, D., and Hoelzle, M.: The state and future of the cryosphere in Central Asia, Water Security, 11, 100072, https://doi.org/10.1016/j.wasec.2020.100072, 2020. a
Barsch, D. and Hell, G.: Photogrammetrische Bewegungsmessungen am Blockgletscher Murtèl I, Oberengadin, Schweizer Alpen, Zeitschrift für Gletscherkunde und Glazialgeologie, 11, 111–142, 1975. a
Bast, A., Kenner, R., and Phillips, M.: Short-term cooling, drying, and deceleration of an ice-rich rock glacier, The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024, 2024. a
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water Resour. Res., 51, 3837–3866, https://doi.org/10.1002/2015WR017016, 2015. a
Bodin, X., Rojas, F., and Brenning, A.: Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5° S.), Geomorphology, 118, 453–464, https://doi.org/10.1016/j.geomorph.2010.02.016, 2010. a
Breili, K. and Pettersen, B. R.: Effects of surface snow cover on gravimetric observations, J. Geodyn., 48, 16–22, https://doi.org/10.1016/j.jog.2009.04.001, 2009. a
Brenning, A.: Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35° S), Permafrost Periglac., 16, 231–240, https://doi.org/10.1002/ppp.528, 2005. a
Brenning, A. and Azócar, G. F.: Statistical analysis of topographic and climatic controls and multispectral signatures of rock glaciers in the dry Andes, Chile (27°–33° S), Permafrost Periglac., 21, 54–66, https://doi.org/10.1002/ppp.670, 2010. a
Brighenti, S., Tolotti, M., Bruno, M. C., Engel, M., Wharton, G., Cerasino, L., Mair, V., and Bertoldi, W.: After the peak water: the increasing influence of rock glaciers on alpine river systems, Hydrol. Process., 33, 2804–2823, https://doi.org/10.1002/hyp.13533, 2019. a
Burger, K., Degenhardt, J., and Giardino, J.: Engineering geomorphology of rock glaciers, Geomorphology, 31, 93–132, https://doi.org/10.1016/S0169-555X(99)00074-4, 1999. a
Caputo, M. and Pieri, L.: The normal gravity formula and the polar flattening according to geodetic reference system 1967, Ann. Geophys., 21, 123–149, 1968. a
Chaffaut, Q., Lesparre, N., Masson, F., Hinderer, J., Viville, D., Bernard, J.-D., Ferhat, G., and Cotel, S.: Hybrid Gravimetry to Map Water Storage Dynamics in a Mountain Catchment, Frontiers in Water, 3, 715298, https://doi.org/10.3389/frwa.2021.715298, 2022. a, b
Christensen, C. W., Hayashi, M., and Bentley, L. R.: Hydrogeological characterization of an alpine aquifer system in the Canadian Rocky Mountains, Hydrogeol. J., 28, 1871–1890, https://doi.org/10.1007/s10040-020-02153-7, 2020. a
Church, G., Bauder, A., Grab, M., Rabenstein, L., Singh, S., and Maurer, H.: Detecting and characterising an englacial conduit network within a temperate Swiss glacier using active seismic, ground penetrating radar and borehole analysis, Ann. Glaciol., 60, 193–205, https://doi.org/10.1017/aog.2019.19, 2019. a
Cody, E., Draebing, D., McColl, S., Cook, S., and Brideau, M.-A.: Geomorphology and geological controls of an active paraglacial rockslide in the New Zealand Southern Alps, Landslides, 17, 755–776, https://doi.org/10.1007/s10346-019-01316-2, 2020. a
Corte, A.: The Hydrological Significance of Rock Glaciers, J. Glaciol., 17, 157–158, https://doi.org/10.3189/S0022143000030859, 1976. a
Corte, A. E.: Central Andes rock glaciers: Applied aspects, in: Rock glaciers, edited by: Giardino, J. R., Shroder Jr., J. E., and Vitek, J. D., 289–303, Allen & Unwin, Boston, EID: 2-s2.0-0023585460 1987. a
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier kinematics research in the Swiss Alps, Geogr. Helv., 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010. a
Dow, C., McCormack, F., Young, D., Greenbaum, J., Roberts, J., and Blankenship, D.: Totten Glacier subglacial hydrology determined from geophysics and modeling, Earth Planet. Sc. Lett., 531, 115961, https://doi.org/10.1016/j.epsl.2019.115961, 2020. a
Draebing, D.: Application of refraction seismics in alpine permafrost studies: A review, Earth-Sci. Rev., 155, 136–152, https://doi.org/10.1016/j.earscirev.2016.02.006, 2016. a
Egli, P. E., Irving, J., and Lane, S. N.: Characterization of subglacial marginal channels using 3-D analysis of high-density ground-penetrating radar data, J. Glaciol., 67, 759–772, https://doi.org/10.1017/jog.2021.26, 2021. a
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The International Classification for Seasonal Snow on the Ground, Tech. Rep. 83, UNESCO Working Series SC-2009/WS/15, UNESCO-IHP, Paris, 2009. a
Francis, O.: Performance assessment of the relative gravimeter Scintrex CG-6, J. Geodesy, 95, 116, https://doi.org/10.1007/s00190-021-01572-y, 2021. a, b, c
Gerlach, C., Ackermann, C., Falk, R., Lothhammer, A., and Reinhold, A.: Gravimetric Investigations at Vernagtferner, Springer International Publishing, 53–60, https://doi.org/10.1007/1345_2017_2, 2017. a
Godio, A: An overview on cryogeophysics in the Alpine environment, B. Geofis. Teor. Appl., 61, 3–22, https://doi.org/10.4430/bgta0304, 2019. a
Godio, A., Strobbia, C., and De Bacco, G.: Geophysical characterisation of a rockslide in an alpine region, Eng. Geol., 83, 273–286, https://doi.org/10.1016/j.enggeo.2005.06.034, 2006. a
Gottlieb, A. R. and Mankin, J. S.: Evidence of human influence on Northern Hemisphere snow loss, Nature, 625, 293–300, https://doi.org/10.1038/s41586-023-06794-y, 2024. a
Haeberli, W. (Ed.): Pilot analysis of permafrost cores from the active rock glacier Murtèl I, Piz Corvatsch, Eastern Swiss Alps. A workshop report., no. 9 in Arbeitsheft, VAW/ETH Zürich, https://www.opac.gr.ch/discovery/fulldisplay?context=L&vid=41BGR_INST:41BGR_V1&search_scope=MyInstitution&tab=LibraryCatalog&docid=alma990000017690206696 (last access: 15 August 2025), 1990. a
Haeberli, W. and Vonder Mühll, D.: On the characteristics and possible origins of ice in rock glacier permafrost, Z. Geomorph. Supp., 104, 43–57, 1996. a
Haeberli, W., Hoelzle, M., Kääb, A., Keller, F., Vonder Mühll, D., and Wagner, S.: Ten years after drilling through the permafrost of the active rock glacier Murtèl, eastern Swiss Alps: Answered questions and new perspectives, in: Proceedings of the 7th International Conference on Permafrost, Yellowknife, Northwest Territories, Canada, 23–27 June 1998, edited by: Lewkowicz, A. G. and Allard, M., Centre d'Études Nordiques, Université Laval (Québec), Canada, 403–410, ISBN: 2920197576, 1998. a
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006. a
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges, Geomorphology, 293, 405–417, https://doi.org/10.1016/j.geomorph.2016.02.009, 2017. a
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021. a, b, c
Halloran, L. J.: Improving groundwater storage change estimates using time-lapse gravimetry with Gravi4GW, Environ. Modell. Softw., 150, 105340, https://doi.org/10.1016/j.envsoft.2022.105340, 2022 (code available at: https://github.com/lhalloran/Gravi4GW, last access: 25 August 2025). a, b, c, d, e, f
Halloran, L.: Data and code snippets related to Halloran and Amschwand (2025), The Cryosphere, Zenodo [data set/code], https://doi.org/10.5281/zenodo.16880964, 2025. a, b
Halloran, L. J., Millwater, J., Hunkeler, D., and Arnoux, M.: Climate change impacts on groundwater discharge-dependent streamflow in an alpine headwater catchment, Sci. Total Environ., 902, 166009, https://doi.org/10.1016/j.scitotenv.2023.166009, 2023. a
Hartl, L., Zieher, T., Bremer, M., Stocker-Waldhuber, M., Zahs, V., Höfle, B., Klug, C., and Cicoira, A.: Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier, Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, 2023. a
Hauck, C.: New concepts in geophysical surveying and data interpretation for permafrost terrain, Permafrost Periglac., 24, 131–137, https://doi.org/10.1002/ppp.1774, 2013. a
Hausmann, H., Krainer, K., Brückl, E., and Mostler, W.: Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations, Permafrost Periglac., 18, 351–367, https://doi.org/10.1002/ppp.601, 2007. a
Hayashi, M.: Alpine hydrogeology: The critical role of groundwater in sourcing the headwaters of the world, Groundwater, 58, 498–510, https://doi.org/10.1111/gwat.12965, 2020. a, b, c
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, chap. 4, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegrìa, A., Nicolai, M., Okem, A., Petzold, J., Rama B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–202, https://doi.org/10.1017/9781009157964.004, 2022. a
Hoelzle, M., Mühll, D. V., and Haeberli, W.: Thirty years of permafrost research in the Corvatsch–Furtschellas area, Eastern Swiss Alps: A review, Norsk Geogr. Tidsskr., 56, 137–145, https://doi.org/10.1080/002919502760056468, 2002. a
Hoelzle, M., Barandun, M., Bolch, T., Fiddes, J., Gafurov, A., Muccione, V., Saks, T., and Shahgedanova, M.: The status and role of the alpine cryosphere in Central Asia, in: The Aral Sea Basin: Water for Sustainable Development in Central Asia, edited by: Xenarios, S., Schmidt-Vogt, D., Qadir, M., Janusz-Pawletta, B., and Abdullaev, I., Earthscan Series on Major River Basins of the World, chap. 8, Routledge, London and New York, 100–121, ISBN: 978-0521889667, 2020. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a
Humlum, O.: Active layer thermal regime at three rock glaciers in Greenland, Permafrost Periglac., 8, 383–408, https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4<383::AID-PPP265>3.0.CO;2-V, 1997. a
Janke, J. R., Ng, S., and Bellisario, A.: An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile, Geomorphology, 296, 142–152, https://doi.org/10.1016/j.geomorph.2017.09.002, 2017. a
Jaramillo, F., Aminjafari, S., Castellazzi, P., Fleischmann, A., Fluet-Chouinard, E., Hashemi, H., Hubinger, C., Martens, H. R., Papa, F., Schöne, T., Tarpanelli, A., Virkki, V., Wang-Erlandsson, L., Abarca-del Rio, R., Borsa, A., Destouni, G., Di Baldassarre, G., Moore, M.-L., Posada-Marín, J. A., Wdowinski, S., Werth, S., Allen, G. H., Argus, D., Elmi, O., Fenoglio, L., Frappart, F., Huggins, X., Kalantari, Z., Munier, S., Palomino-Ángel, S., Robinson, A., Rubiano, K., Siles, G., Simard, M., Song, C., Spence, C., Tourian, M. J., Wada, Y., Wang, C., Wang, J., Yao, F., Berghuijs, W. R., Cretaux, J.-F., Famiglietti, J., Fassoni-Andrade, A., Fayne, J. V., Girard, F., Kummu, M., Larson, K. M., Marañon, M., Moreira, D. M., Nielsen, K., Pavelsky, T., Pena, F., Reager, J. T., Rulli, M. C., and Salazar, J. F.: The Potential of Hydrogeodesy to Address Water-Related and Sustainability Challenges, Water Resour. Res., 60, e2023WR037020, https://doi.org/10.1029/2023WR037020, 2024. a, b
Jeelani, G., Hassan, W., Padhya, V., Deshpande, R., Dimri, A., and Lone, S. A.: Significant role of permafrost in regional hydrology of the Upper Indus Basin, India, Sci. Total Environ., 919, 170863, https://doi.org/10.1016/j.scitotenv.2024.170863, 2024. a
Jones, D., Harrison, S., Anderson, K., and Betts, R. A.: Mountain rock glaciers contain globally significant water stores, Nature Scientific Reports, 8, 2834, https://doi.org/10.1038/s41598-018-21244-w, 2018a. a, b
Jones, D., Harrison, S., Anderson, K., Selley, H., Wood, J., and Betts, R.: The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya, Global Planet. Change, 160, 123–142, https://doi.org/10.1016/j.gloplacha.2017.11.005, 2018b. a
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90, https://doi.org/10.1016/j.earscirev.2019.04.001, 2019. a, b
Karthe, D., Chalov, S., and Borchardt, D.: Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects, Environ. Earth Sci., 73, 487–499, https://doi.org/10.1007/s12665-014-3789-1, 2015. a
Klügel, T. and Wziontek, H.: Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models, J. Geodyn., 48, 204–210, https://doi.org/10.1016/j.jog.2009.09.010, 2009. a
Kudryavtsev, S. M.: Improved harmonic development of the Earth tide-generating potential, J. Geodesy, 77, 829–838, https://doi.org/10.1007/s00190-003-0361-2, 2004. a
LaFehr, T. R.: Standardization in gravity reduction, Geophysics, 56, 1170–1178, https://doi.org/10.1190/1.1443137, 1991. a
Loranger, B., Doré, G., Fortier, D., and Lemieux, C.: Massive Ice and Ice-Rich Soil Detection by Gravimetric Surveying at Dry Creek, Southwestern Yukon Territory, Canada, in: Cold Regions Engineering 2015, American Society of Civil Engineers, Salt Lake City, Utah, 46–56, https://doi.org/10.1061/9780784479315.005, 2015. a
Louis, C., Halloran, L. J. S., and Roques, C.: Seasonal and diurnal freeze–thaw dynamics of a rock glacier and their impacts on mixing and solute transport, Hydrol. Earth Syst. Sci., 29, 1505–1523, https://doi.org/10.5194/hess-29-1505-2025, 2025. a
Manchado, A. M.-T., Allen, S., Cicoira, A., Wiesmann, S., Haller, R., and Stoffel, M.: 100 years of monitoring in the Swiss National Park reveals overall decreasing rock glacier velocities, Communications Earth and Environment, 5, 138, https://doi.org/10.1038/s43247-024-01302-0, 2024. a
Marcer, M., Cicoira, A., Cusicanqui, D., Bodin, X., Echelard, T., Obregon, R., and Schoeneich, P.: Rock glaciers throughout the French Alps accelerated and destabilised since 1990 as air temperatures increased, Communications Earth and Environment, 2, 81, https://doi.org/10.1038/s43247-021-00150-6, 2021. a
Marchenko, S., Romanovsky, V., and Gorbunov, A.: Hydrologic and thermal regimes of coarse blocky materials in Tien Shan Mountains, Central Asia, in: Extended abstracts of the 10th International Conference on Permafrost, 25–29 June 2012, Salekhard (Yamal-Nenets Autonomous District), Russia, edited by: Hinkel, K. M. and Melnikov, V. P., 4, 361–362, Fort Dialog-Iset, Ekaterinburg, Russia, ISBN: 9785911280529, 2012. a
Marchenko, S., Jin, H., Hoelzle, M., Lentschke, J., Kasatkin, N., and Saks, T.: Thermal and hydrologic regimes of blocky materials in Tianshan Mountains, Central Asia, in: Proceedings vol. II (Extendend Abstracts) of the 12th International Conference on Permafrost, 16–20 June 2024, Whitehorse (Yukon), Canada, edited by: Beddoe, R. and Karunaratne, K., International Permafrost Association, 455–456, 2024. a
Mathys, T., Azimshoev, M., Bektursunov, Z., Hauck, C., Hilbich, C., Duishonakunov, M., Kayumov, A., Kassatkin, N., Kapitsa, V., Martin, L. C. P., Mollaret, C., Navruzshoev, H., Pohl, E., Saks, T., Silmonov, I., Musaev, T., Usubaliev, R., and Hoelzle, M.: Quantifying permafrost ground ice contents in the Tien Shan and Pamir (Central Asia): A Petrophysical Joint Inversion approach using the Geometric Mean model, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2795, 2024. a, b
Maurer, H. and Hauck, C.: Geophysical imaging of alpine rock glaciers, J. Glaciol., 53, 110–120, https://doi.org/10.3189/172756507781833893, 2007. a
McClymont, A. F., Hayashi, M., Bentley, L. R., Muir, D., and Ernst, E.: Groundwater flow and storage within an alpine meadow-talus complex, Hydrol. Earth Syst. Sci., 14, 859–872, https://doi.org/10.5194/hess-14-859-2010, 2010. a
McClymont, A. F., Hayashi, M., Bentley, L. R., and Liard, J.: Locating and characterising groundwater storage areas within an alpine watershed using time-lapse gravity, GPR and seismic refraction methods, Hydrol. Process., 26, 1792–1804, https://doi.org/10.1002/hyp.9316, 2012. a, b, c
Mewes, B., Hilbich, C., Delaloye, R., and Hauck, C.: Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes, The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, 2017. a
Millar, C. I., Westfall, R. D., Evenden, A., Holmquist, J. G., Schmidt-Gengenbach, J., Franklin, R. S., Nachlinger, J., and Delany, D. L.: Potential climatic refugia in semi-arid, temperate mountains: Plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA, Quatern. Int., 387, 106–121, https://doi.org/10.1016/j.quaint.2013.11.003, 2015. a
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., and Hauck, C.: Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, 2019. a
Mollaret, C., Wagner, F. M., Hilbich, C., Scapozza, C., and Hauck, C.: Petrophysical Joint Inversion Applied to Alpine Permafrost Field Sites to Image Subsurface Ice, Water, Air, and Rock Contents, Front. Earth Sci., 8, 85, https://doi.org/10.3389/feart.2020.00085, 2020. a
Moritz, H.: Geodetic reference system 1980, B. Geod., 54, 395–405, https://doi.org/10.1007/BF02521480, 1980. a
Müller, J., Gärtner-Roer, I., Kenner, R., Thee, P., and Morche, D.: Sediment storage and transfer on a periglacial mountain slope (Corvatsch, Switzerland), Geomorphology, 218, 35–44, https://doi.org/10.1016/j.geomorph.2013.12.002, 2014. a
Nagy, D.: The prism method for terrain corrections using digital computers, Pure Appl. Geophys., 63, 31–39, https://doi.org/10.1007/BF00875156, 1966. a, b
Noetzli, J. and Pellet, C. (Eds.): PERMOS 2023. Swiss Permafrost Bulletin 2022 (Annual report No. 4 on permafrost observation in the Swiss Alps), Cryospheric Commission of the Swiss Academy of Sciences, https://doi.org/10.13093/permos-bull-2023, 2023. a, b, c
Nowell, D. A. G.: Gravity terrain corrections – an overview, J. Appl. Geophys., 42, 117–134, https://doi.org/10.1016/S0926-9851(99)00028-2, 1999. a
Pavoni, M., Boaga, J., Carrera, A., Zuecco, G., Carturan, L., and Zumiani, M.: Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements, The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, 2023. a
Rangecroft, S., Harrison, S., and Anderson, K.: Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance, Arct. Antarct. Alp. Res., 47, 89–98, https://doi.org/10.1657/AAAR0014-029, 2015. a
Rau, G. C., Eulenfeld, T., Howe, D., Rietbroek, R., Gosselin, J.-S., Staniewicz, S., and TaylorDixonHD: hydrogeoscience/pygtide: PyGTide v0.7.1, Version v0.7.1, Zenodo [code], https://doi.org/10.5281/zenodo.6673581, 2022. a, b, c
Reato, A., Silvina Carol, E., Cottescu, A., and Alfredo Martínez, O.: Hydrological significance of rock glaciers and other periglacial landforms as sustenance of wet meadows in the Patagonian Andes, J. S. Am. Earth Sci., 111, 103471, https://doi.org/10.1016/j.jsames.2021.103471, 2021. a
Rodell, M. and Reager, J. T.: Water cycle science enabled by the GRACE and GRACE-FO satellite missions, Nature Water, 1, 47–59, https://doi.org/10.1038/s44221-022-00005-0, 2023. a
Rogger, M., Chirico, G. B., Hausmann, H., Krainer, K., Brückl, E., Stadler, P., and Blöschl, G.: Impact of mountain permafrost on flow path and runoff response in a high alpine catchment, Water Resour. Res., 53, 1288–1308, https://doi.org/10.1002/2016WR019341, 2017. a
Scapozza, C., Lambiel, C., Baron, L., Marescot, L., and Reynard, E.: Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps, Geomorphology, 132, 208–221, https://doi.org/10.1016/j.geomorph.2011.05.010, 2011. a
Schaffer, N. and MacDonell, S.: Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes, The Cryosphere, 16, 1779–1791, https://doi.org/10.5194/tc-16-1779-2022, 2022. a
Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., and Valois, R.: Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes, Reg. Environ. Change, 19, 1263–1279, https://doi.org/10.1007/s10113-018-01459-3, 2019. a
Scherler, M., Schneider, S., Hoelzle, M., and Hauck, C.: A two-sided approach to estimate heat transfer processes within the active layer of the Murtèl–Corvatsch rock glacier, Earth Surf. Dynam., 2, 141–154, https://doi.org/10.5194/esurf-2-141-2014, 2014. a
Schneider, S., Hoelzle, M., and Hauck, C.: Influence of surface and subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps, The Cryosphere, 6, 517–531, https://doi.org/10.5194/tc-6-517-2012, 2012. a
Schneider, S., Daengeli, S., Hauck, C., and Hoelzle, M.: A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at Murtèl–Corvatsch, Upper Engadin, Swiss Alps, Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, 2013. a
Somers, L. D. and McKenzie, J. M.: A review of groundwater in high mountain environments, WIREs Water, 7, e1475, https://doi.org/10.1002/wat2.1475, 2020. a, b
Springman, S. M., Arenson, L. U., Yamamoto, Y., Maurer, H., Kos, A., Buchli, T., and Derungs, G.: Multidisciplinary investigations on three rock glaciers in the swiss alps: legacies and future perspectives, Geograf. Ann. A, 94, 215–243, https://doi.org/10.1111/j.1468-0459.2012.00464.x, 2012. a, b
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit, C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions, Earth-Sci. Rev., 190, 589–604, https://doi.org/10.1016/j.earscirev.2019.01.005, 2019. a
Swisstopo: Gravimetric Atlas of Switzerland 1:100000, https://opendata.swiss/en/dataset/gravimetrischer-atlas-der-schweiz-1-100000 (last access: 1 November 2024), 1994. a
Talwani, M.: Computer Usage in the Computation of Gravity Anomalies, in: Methods in Computational Physics: Advances in Research and Applications, vol. 13, Elsevier, 343–389, https://doi.org/10.1016/B978-0-12-460813-9.50014-X, 1973. a
van Tiel, M., Aubry-Wake, C., Somers, L., Andermann, C., Avanzi, F., Baraer, M., Chiogna, G., Daigre, C., Das, S., Drenkhan, F., Farinotti, D., Fyffe, C. L., de Graaf, I., Hanus, S., Immerzeel, W., Koch, F., McKenzie, J. M., Müller, T., Popp, A. L., Saidaliyeva, Z., Schaefli, B., Schilling, O. S., Teagai, K., Thornton, J. M., and Yapiyev, V.: Cryosphere – groundwater connectivity is a missing link in the mountain water cycle, Nature Water, 2, 624–637, https://doi.org/10.1038/s44221-024-00277-8, 2024. a, b, c
Voigt, C., Schulz, K., Koch, F., Wetzel, K.-F., Timmen, L., Rehm, T., Pflug, H., Stolarczuk, N., Förste, C., and Flechtner, F.: Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze, Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, 2021. a, b, c
Vonder Mühll, D. and Haeberli, W.: Thermal characteristics of the permafrost within an active rock glacier (Murtèl/Corvatsch, Grisons, Swiss Alps), J. Glaciol., 36, 151–158, https://doi.org/10.3189/S0022143000009382, 1990. a, b, c
Vonder Mühll, D. S.: Evidence of intrapermafrost groundwater flow beneath an active rock glacier in the Swiss Alps, Permafrost Periglac., 3, 169–173, https://doi.org/10.1002/ppp.3430030216, 1992. a, b
Vonder Mühll, D. S.: Geophysikalische Untersuchungen im Permafrost des Oberengadins, PhD thesis, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich, https://era.library.ualberta.ca/items/ba365b39-a006-497f-b263-669748322635 (last access: 1 November 2024), 1993. a, b, c, d, e, f
Vonder Mühll, D. S. and Holub, P.: Borehole logging in alpine permafrost, upper Engadin, Swiss Alps, Permafrost Periglac., 3, 125–132, https://doi.org/10.1002/ppp.3430030209, 1992. a
Vonder Mühll, D. S., Hauck, C., and Lehmann, F.: Verification of geophysical models in Alpine permafrost using borehole information, Ann. Glaciol., 31, 300–306, https://doi.org/10.3189/172756400781820057, 2000. a, b, c, d
Wagner, T., Pauritsch, M., and Winkler, G.: Impact of relict rock glaciers on spring and stream flow of alpine watersheds: Examples of the Niedere Tauern Range, Eastern Alps (Austria), Austrian J. Earth Sci., 109, 84–98, https://doi.org/10.17738/ajes.2016.0006, 2016. a
Wakonigg, H.: Unterkühlte Schutthalden [Undercooled talus], Arbeiten aus dem Institut für Geographie der Karl-Franzens Universität Graz, 33, 209–223, 1996. a
Wenzel, H. G.: The nanogal software: Earth tide data processing package ETERNA 3.30, Bull. Inf. Marées Terrestres, 124, 9425–9439, 1996. a
Woo, M.-K.: Sustaining Groundwater Resources: A Critical Element in the Global Water Crisis, chap. Linking Runoff to Groundwater in Permafrost Terrain, Springer Netherlands, Dordrecht, 119–129, https://doi.org/10.1007/978-90-481-3426-7_8, 2011. a
Zahorec, P., Papčo, J., Greco, F., Vajda, P., Pašteka, R., Cantarero, M., and Carbone, D.: Observation and local prediction of the vertical gravity gradient: Review paper, IEEE Instru. Meas. Mag., 27, 11–16, https://doi.org/10.1109/MIM.2024.10654722, 2024. a
Short summary
Rock glaciers (RGs) are permafrost landforms occurring in many alpine regions. Gravimetry measures g (acceleration due to gravity). Decreases in water and/or ice content in the ground near a measurement point make g decrease, too. In this first study of its kind, we measured changes in g to calculate subsurface ice melt in a RG. Our approach helps measure and understand invisible underground ice and water processes in rapidly changing permafrost environments.
Rock glaciers (RGs) are permafrost landforms occurring in many alpine regions. Gravimetry...