Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3065-2025
https://doi.org/10.5194/tc-19-3065-2025
Research article
 | 
15 Aug 2025
Research article |  | 15 Aug 2025

Estimation of duration and its changes in Lagrangian observations relying on ice floes in the Arctic Ocean utilizing a sea ice motion product

Fanyi Zhang, Ruibo Lei, Meng Qu, Na Li, Ying Chen, and Xiaoping Pang

Related authors

The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Sea ice in the Arctic Transpolar Drift in 2020/21: thermodynamic evolution of different ice types
Ruibo Lei, Mario Hoppmann, Bin Cheng, Marcel Nicolaus, Fanyi Zhang, Benjamin Rabe, Long Lin, Julia Regnery, and Donald K. Perovich
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-25,https://doi.org/10.5194/tc-2023-25, 2023
Manuscript not accepted for further review
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal-lead opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025,https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
National Weather Service Alaska Sea Ice Program: gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
The Cryosphere, 19, 1391–1411, https://doi.org/10.5194/tc-19-1391-2025,https://doi.org/10.5194/tc-19-1391-2025, 2025
Short summary
Improving Seasonal Arctic Sea Ice Predictions with the Combination of Machine Learning and Earth System Model
Zikang He, Yiguo Wang, Julien Brajard, Xidong Wang, and Zheqi Shen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4092,https://doi.org/10.5194/egusphere-2024-4092, 2025
Short summary
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Regional and seasonal evolution of melt ponds on Arctic sea ice
Hannah Niehaus, Gunnar Spreen, Larysa Istomina, and Marcel Nicolaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-3127,https://doi.org/10.5194/egusphere-2024-3127, 2024
Short summary

Cited articles

Babb, D. G., Galley, R. J., Kirillov, S., Landy, J. C., Howell, S. E. L., Stroeve, J. C., Meier, W., Ehn, J. K., and Barber, D. G.: The Stepwise Reduction of Multiyear Sea Ice Area in the Arctic Ocean Since 1980, J. Geophys. Res.-Ocean, 128, e2023JC020157, https://doi.org/10.1029/2023JC020157, 2023. 
Batrak, Y. and Müller, M.: On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice, Nat. Commun., 10, 4170, https://doi.org/10.1038/s41467-019-11975-3, 2019. 
Bigdeli, A., Nguyen, A. T., Pillar, H. R., Ocaña, V., and Heimbach, P.: Atmospheric Warming Drives Growth in Arctic Sea Ice: A Key Role for Snow, Geophys. Res. Lett., 47, e2020GL090236, https://doi.org/10.1029/2020GL090236, 2020. 
Brümmer, B., Müller, G., Haller, M., Kriegsmann, A., Offermann, M. and Wetzel, C.: DAMOCLES 2007–2008 – Hamburg Arctic Ocean Buoy Drift Experiment: meteorological measurements of 16 autonomous drifting ice buoys, World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.1594/WDCC/UNI_HH_MI_DAMOCLES2007, 2011. 
Cabaniss, G. H., Hunkins, K. L., and Untersteiner, N.: US-IGY Drifting Station Alpha, Arctic Ocean 1957–1958, US Air Force, Bedford, MA: Air Force Cambridge Research Laboratories, Special Reports No. 38 (AFCRL-65-848), 336 pp., 1965. 
Download
Short summary
We reconstructed sea ice drift trajectories and identified optimal deployment areas for Lagrangian observations in the central Arctic Ocean. The trajectories revealed a preference for ice advection towards the Transpolar Drift region over the Beaufort Gyre, with endpoints influenced by large-scale atmospheric circulation patterns. This study provides critical support for the planning and implementation of Lagrangian observations relying on ice floes in the central Arctic Ocean under changing environmental conditions.
Share