Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-2895-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.Assimilation of L-band interferometric synthetic aperture radar (InSAR) snow depth retrievals for improved snowpack quantification
Related authors
Related subject area
Discipline: Snow | Subject: Data Assimilation
Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
Large-scale snow data assimilation using a spatialized particle filter: recovering the spatial structure of the particles
A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an Alpine environment
The Cryosphere, 17, 3329–3342,
2023The Cryosphere, 16, 3489–3506,
2022The Cryosphere, 12, 2287–2306,
2018Cited articles
Abolafia-Rosenzweig, R., He, C., Chen, F., and Barlage, M.: Evaluating and enhancing snow compaction process in the Noah-MP land surface model, J. Adv. Model. Earth Sy., 16, e2023MS003869, https://doi.org/10.1029/2023MS003869, 2024.
Anderson, J.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, 2009.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am Meteorol. Soc., 90, 1283–1296, 2009.
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003.
APBarrosResearchGroup-open: APBarrosResearchGroup-open/mpdaf: MPDAF (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.16580886, 2025.