Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-2895-2025
https://doi.org/10.5194/tc-19-2895-2025
Research article
 | 
06 Aug 2025
Research article |  | 06 Aug 2025

Assimilation of L-band interferometric synthetic aperture radar (InSAR) snow depth retrievals for improved snowpack quantification

Prabhakar Shrestha and Ana P. Barros

Related authors

StageIV-IRC – A High-resolution Dataset of Extreme Orographic Quantitative Precipitation Estimates (QPE) Constrained to Water Budget Closure for Historical Floods in the Appalachian Mountains
Mochi Liao and Ana Barros
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-513,https://doi.org/10.5194/essd-2024-513, 2025
Manuscript not accepted for further review
Short summary
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024,https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Barriers to operational flood forecasting in complex terrain: from precipitation forecasts to probabilistic flood forecast mapping at short lead times
Luiz Bacelar, Arezoo ReifeeiNasab, Nathaniel Chaney, and Ana Barros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2088,https://doi.org/10.5194/egusphere-2023-2088, 2023
Preprint archived
Short summary
Review article: Global monitoring of snow water equivalent using high-frequency radar remote sensing
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022,https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary

Related subject area

Discipline: Snow | Subject: Data Assimilation
Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404,https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023,https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Large-scale snow data assimilation using a spatialized particle filter: recovering the spatial structure of the particles
Jean Odry, Marie-Amélie Boucher, Simon Lachance-Cloutier, Richard Turcotte, and Pierre-Yves St-Louis
The Cryosphere, 16, 3489–3506, https://doi.org/10.5194/tc-16-3489-2022,https://doi.org/10.5194/tc-16-3489-2022, 2022
Short summary
A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an Alpine environment
Gaia Piazzi, Guillaume Thirel, Lorenzo Campo, and Simone Gabellani
The Cryosphere, 12, 2287–2306, https://doi.org/10.5194/tc-12-2287-2018,https://doi.org/10.5194/tc-12-2287-2018, 2018
Short summary

Cited articles

Abolafia-Rosenzweig, R., He, C., Chen, F., and Barlage, M.: Evaluating and enhancing snow compaction process in the Noah-MP land surface model, J. Adv. Model. Earth Sy., 16, e2023MS003869, https://doi.org/10.1029/2023MS003869, 2024. 
Anderson, J.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, 2009. 
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am Meteorol. Soc., 90, 1283–1296, 2009. 
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003. 
APBarrosResearchGroup-open: APBarrosResearchGroup-open/mpdaf: MPDAF (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.16580886, 2025. 
Download
Short summary
The study presents the first assimilation of snow depth obtained from repeat pass airborne L-band synthetic aperture radar with a snow hydrology model. The assimilation of snow depth was found to be equivalent to the downscaling of precipitation forcing with a bias correction, which improved the snowpack simulation compared to ground-based observations.
Share