Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-2895-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-2895-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assimilation of L-band interferometric synthetic aperture radar (InSAR) snow depth retrievals for improved snowpack quantification
Prabhakar Shrestha
Department of Civil and Environmental Engineering, University of Urbana–Champaign, Urbana, Illinois, USA
Ana P. Barros
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of Urbana–Champaign, Urbana, Illinois, USA
Related authors
No articles found.
Mochi Liao and Ana Barros
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-554, https://doi.org/10.5194/essd-2025-554, 2025
Preprint under review for ESSD
Short summary
Short summary
The StageIV-IRC is the first precipitation dataset developed for extreme precipitation events in the mountains. This dataset strongly suggest the use of Inverse Rainfall Correction (IRC) framework to produce physically-meaningful corrections for precipitation products in the mountains, where precipitation estimation is problematic due to topography blockage. Post-IRC precipitation estimation produces improved hydrological responses, and it shows a good agreement with raingauge observations.
Mochi Liao and Ana Barros
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-513, https://doi.org/10.5194/essd-2024-513, 2025
Manuscript not accepted for further review
Short summary
Short summary
This StageIV-IRC is the first rainfall dataset aiming to close the water budget for flood events, consistent with fundamental physics at basin scale, and achieving superior hydrological performance at fine scale (<1hr, <1km) in headwater basins. It shows greatly-enhanced, topography-aligned rainfall spatial variability, yielding a median KGE of 0.86, with flood timing errors <1hr. This dataset can be used in operational hydrology to improve precipitation forecasts, advancing flood forecasting.
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024, https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Short summary
Seasonal snowfall accumulation plays a critical role in climate. The water stored in it is measured by the snow water equivalent (SWE), the amount of water released after completely melting. We demonstrate a Bayesian physical–statistical framework to estimate SWE from airborne X- and Ku-band synthetic aperture radar backscatter measurements constrained by physical snow hydrology and radar models. We explored spatial resolutions and vertical structures that agree well with ground observations.
Luiz Bacelar, Arezoo ReifeeiNasab, Nathaniel Chaney, and Ana Barros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2088, https://doi.org/10.5194/egusphere-2023-2088, 2023
Preprint archived
Short summary
Short summary
The study explores a computationally efficient probabilistic precipitation forecast approach to generate multiple flood scenarios. It reveals the limitations in predicting flash floods accurately and the need for advanced ensemble methodologies to combine different sources of precipitation forecasts. It highlights the scale-dependency of flood predictions at higher spatial resolutions, shedding light on the relationship between river hydraulics and flood propagation in the river network.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Cited articles
Abolafia-Rosenzweig, R., He, C., Chen, F., and Barlage, M.: Evaluating and enhancing snow compaction process in the Noah-MP land surface model, J. Adv. Model. Earth Sy., 16, e2023MS003869, https://doi.org/10.1029/2023MS003869, 2024.
Anderson, J.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, 2009.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am Meteorol. Soc., 90, 1283–1296, 2009.
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003.
APBarrosResearchGroup-open: APBarrosResearchGroup-open/mpdaf: MPDAF (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.16580886, 2025.
Blaylock, B. K.: Herbie: Retrieve Numerical Weather Prediction Model Data, Zenodo [code], https://doi.org/10.5281/zenodo.13329302, 2024.
Bonnell, R., McGrath, D., Tarricone, J., Marshall, H.-P., Bump, E., Duncan, C., Kampf, S., Lou, Y., Olsen-Mikitowicz, A., Sears, M., Williams, K., Zeller, L., and Zheng, Y.: Evaluating L-band InSAR Snow Water Equivalent Retrievals with Repeat Ground-Penetrating Radar and Terrestrial Lidar Surveys in Northern Colorado, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-236, 2024.
Breen, C. M., Hiemstra, C., Vuyovich, C. M., and Mason, M.: SnowEx20 Grand Mesa Snow Depth from Snow Pole Time-Lapse Imagery, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/14EU7OLF051V, 2022.
Cao, Y. and Barros, A. P.: Weather-dependent nonlinear microwave behavior of seasonal high-elevation snowpacks, Remote Sens.-Basel, 12, 3422, https://doi.org/10.3390/rs12203422, 2020.
Conde, V., Nico, G., Mateus, P., Catalão, J., Kontu, A., and Gritsevich, M.: On the estimation of temporal changes of snow water equivalent by spaceborne SAR interferometry: a new application for the Sentinel-1 mission, J. Hydrol. Hydrom., 67, 93–100, 2019.
Dagurov, P. N., Chimitdorzhiev, T. N., Dmitriev, A. V, and Dobrynin, S. I.: Estimation of snow water equivalent from L-band radar interferometry: simulation and experiment, Int. J. Remote Sens., 41, 9328–9359, 2020.
Deeb, E. J., Forster, R. R., and Kane, D. L.: Monitoring snowpack evolution using interferometric synthetic aperture radar on the North Slope of Alaska, USA, Int. J. Remote Sens., 32, 3985–4003, 2011.
Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., Blake, B. T., Brown, J. M., Olson, J. B., and Hu, M.: The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description, Weather Forecast., 37, 1371–1395, 2022.
El Gharamti, M.: Enhanced adaptive inflation algorithm for ensemble filters, Mon. Weather Rev., 146, 623–640, 2018.
Girotto, M., Formetta, G., Azimi, S., Bachand, C., Cowherd, M., De Lannoy, G., Lievens, H., Modanesi, S., Raleigh, M. S., Rigon, R., and Massari, C.: Identifying snow-fall elevation patterns by assimilating satellite-based snow depth retrievals, Sci. Total Environ., 906, 167312, https://doi.org/10.1016/j.scitotenv.2023.167312, 2024.
Guneriussen, T., Hogda, K. A., Johnsen, H., and Lauknes, I.: InSAR for estimation of changes in snow water equivalent of dry snow, IEEE T. Geosci. Remote, 39, 2101–2108, 2001.
Hanssen, R. F.: Radar interferometry: data interpretation and error analysis, Springer Science & Business Media, https://doi.org/10.1007/0-306-47633-9, 2001.
Hedstrom, N. R. and Pomeroy, J. W.: Measurements and modelling of snow interception in the boreal forest, Hydrol. Process., 12, 1611–1625, 1998.
Hensley, S., Wheeler, K., Sadowy, G., Jones, C., Shaffer, S., Zebker, H., Miller, T., Heavey, B., Chuang, E., and Chao, R.: The UAVSAR instrument: Description and first results, in: 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008, 1–6, https://doi.org/10.1109/RADAR.2008.4720722, 2008.
Hoppinen, Z., Oveisgharan, S., Marshall, H.-P., Mower, R., Elder, K., and Vuyovich, C.: Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry, The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, 2024.
Idowu, A. N. and Marshall, H.-P.: Snow depth retrieval from L-band data based on repeat pass InSAR techniques, in: IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022, 4248–4251, https://doi.org/10.1109/IGARSS46834.2022.9884723, 2022.
Kang, D. H. and Barros, A. P.: Observing system simulation of snow microwave emissions over data sparse regions – Part I: Single layer physics, IEEE T. Geosci. Remote, 50, 1785–1805, 2011a.
Kang, D. H. and Barros, A. P.: Observing system simulation of snow microwave emissions over data sparse regions – Part II: Multilayer physics, IEEE T. Geosci. Remote, 50, 1806–1820, 2011b.
Keskinen, Z., Tarricone, J., Surfix, and HP Marshall: SnowEx/uavsar_pytools: Slant Range Image Conversion (v0.7.0). Zenodo [code], https://doi.org/10.5281/zenodo.6789624, 2022.
Lei, Y., Shi, J., Liang, C., Werner, C., and Siqueira, P.: Snow Water Equivalent Retrieval Using Spaceborne Repeat-Pass L-Band SAR Interferometry Over Sparse Vegetation Covered Regions, in: IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023, 852–855, https://doi.org/10.1109/IGARSS52108.2023.10282234, 2023.
Leinss, S., Wiesmann, A., Lemmetyinen, J., and Hajnsek, I.: Snow water equivalent of dry snow measured by differential interferometry, IEEE J. Sel. Top Appl., 8, 3773–3790, 2015.
Li, H., Xiao, P., Feng, X., He, G., and Wang, Z.: Monitoring snow depth and its change using repeat-pass interferometric SAR in Manas River Basin, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016, 4936–4939, https://doi.org/10.1109/IGARSS.2016.7730288, 2016.
Li, S. and Sturm, M.: Patterns of wind-drifted snow on the Alaskan arctic slope, detected with ERS-1 interferometric SAR, J. Glaciol., 48, 495–504, 2002.
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L., Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., and Immerzeel, W. W.: Snow depth variability in the Northern Hemisphere mountains observed from space, Nat. Commun., 10, 4629, https://doi.org/10.1038/s41467-019-12566-y, 2019.
Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.: Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps, The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, 2022.
Liu, Y., Li, L., Yang, J., Chen, X., and Hao, J.: Estimating snow depth using multi-source data fusion based on the D-InSAR method and 3DVAR fusion algorithm, Remote Sens.-Basel, 9, 1195, https://doi.org/10.3390/rs9111195, 2017.
Manickam, S. and Barros, A.: Parsing synthetic aperture radar measurements of snow in complex terrain: Scaling behaviour and sensitivity to snow wetness and landcover, Remote Sens.-Basel, 12, 483, https://doi.org/10.3390/rs12030483, 2020.
Marshall, H., Vuyovich, C., Hiemstra, C., Brucker, L., Elder, K., Deems, J., and Newlin, J.: NASA SnowEx 2020 Experiment Plan, Technical Report, https://snow.nasa.gov/sites/default/files/NASA_SnowEx_Experiment_Plan_v15_draft.pdf (last access: 20 February 2025), 2019.
Marshall, H. P., Deeb, E., Forster, R., Vuyovich, C., Elder, K., Hiemstra, C., and Lund, J.: L-Band InSAR Depth Retrieval During the NASA SnowEx 2020 Campaign: Grand Mesa, Colorado, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021, 625–627, https://doi.org/10.1109/IGARSS47720.2021.9553852, 2021.
Mason, M., Marshall, H., McCormick, M., Craaybeek, D., Elder, K., and Vuyovich, C. M.: SnowEx20 Time Series Snow Pit Measurements, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/POT9E0FFUUD1, 2024.
Matzler, C.: Microwave permittivity of dry snow, IEEE T. Geosci. Remote, 34, 573–581, 1996.
Mendoza, P. A., Musselman, K. N., Revuelto, J., Deems, J. S., López-Moreno, J. I., and McPhee, J.: Interannual and seasonal variability of snow depth scaling behavior in a subalpine catchment, Water Resour. Res., 56, e2020WR027343, https://doi.org/10.1029/2020WR027343, 2020a.
Mendoza, P. A., Shaw, T. E., McPhee, J., Musselman, K. N., Revuelto, J., and MacDonell, S.: Spatial distribution and scaling properties of lidar-derived snow depth in the extratropical Andes, Water Resour. Res., 56, e2020WR028480, https://doi.org/10.1029/2020WR028480, 2020b.
NCAR DART Team: The Data Assimilation Research Testbed (Version 10.7.3), NSF NCAR/CISL/DAReS [software], https://doi.org/10.5065/D6WQ0202, 2023.
NLDAS project: NLDAS Mosaic Land Surface Model L4 Hourly 0.125 x 0.125 degree V2.0, edited by: Mocko, D. M., NASA/GSFC/HSL, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TS58ZCJZIWT5, 2021.
NOAA: High-Resolution Rapid Refresh (HRRR) Model Data, NOAA [data set], https://registry.opendata.aws/noaa-hrrr-pds, last access: 1 August 2025.
NSIDC: NASASnowEx Data, NSIDC [data set], https://nsidc.org/data/snowex/data?field_data_set_keyword_value=1, last access: 1 August 2025.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., and Marks, D.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo, Remote Sens. Environ., 184, 139–152, 2016.
Palomaki, R. T. and Sproles, E. A.: Assessment of L-band InSAR snow estimation techniques over a shallow, heterogeneous prairie snowpack, Remote Sens. Environ., 296, 113744, https://doi.org/10.1016/j.rse.2023.113744, 2023.
Pflug, J. M., Wrzesien, M. L., Kumar, S. V., Cho, E., Arsenault, K. R., Houser, P. R., and Vuyovich, C. M.: Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation, Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024, 2024.
Proksch, M., Mätzler, C., Wiesmann, A., Lemmetyinen, J., Schwank, M., Löwe, H., and Schneebeli, M.: MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering, Geosci. Model Dev., 8, 2611–2626, https://doi.org/10.5194/gmd-8-2611-2015, 2015.
Rosen, P. A., Hensley, S., Wheeler, K., Sadowy, G., Miller, T., Shaffer, S., Muellerschoen, R., Jones, C., Zebker, H., and Madsen, S.: UAVSAR: A new NASA airborne SAR system for science and technology research, in: 2006 IEEE Conference on Radar, Verona, NY, USA, 30 May 2006, 8 pp., https://doi.org/10.1109/RADAR.2006.1631770, 2006.
Ruiz, J. J., Lemmetyinen, J., Kontu, A., Tarvainen, R., Vehmas, R., Pulliainen, J., and Praks, J.: Investigation of environmental effects on coherence loss in SAR interferometry for snow water equivalent retrieval, IEEE T. Geosci. Remote, 60, 1–15, 2022.
Shrestha, P. and Barros, A. P.: Multi-physics data assimilation framework for remotely sensed Snowpacks to improve water prediction, Water Resour. Res., 61, e2024WR037885, https://doi.org/10.1029/2024WR037885, 2025a.
Shrestha, P. and Barros, A. P.: InSAR model data, University of Illinois [code and data set], https://uofi.box.com/v/InSARmodeldata, last access: 30 July 2025b.
Singh, S., Durand, M., Kim, E., and Barros, A. P.: Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17, The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024, 2024.
Smith, E. K. and Weintraub, S.: The constants in the equation for atmospheric refractive index at radio frequencies, Proceedings of the IRE, 41, 1035–1037, 1953.
Tarricone, J., Webb, R. W., Marshall, H.-P., Nolin, A. W., and Meyer, F. J.: Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR), The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, 2023.
Tsang, L., Durand, M., Derksen, C., Barros, A. P., Kang, D.-H., Lievens, H., Marshall, H.-P., Zhu, J., Johnson, J., King, J., Lemmetyinen, J., Sandells, M., Rutter, N., Siqueira, P., Nolin, A., Osmanoglu, B., Vuyovich, C., Kim, E., Taylor, D., Merkouriadi, I., Brucker, L., Navari, M., Dumont, M., Kelly, R., Kim, R. S., Liao, T.-H., Borah, F., and Xu, X.: Review article: Global monitoring of snow water equivalent using high-frequency radar remote sensing, The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, 2022.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Vuyovich, C., Marshall, H. P., Elder, K., Hiemstra, C., Brucker, L., and McCormick, M.: SnowEx20 Grand Mesa Intensive Observation Period Snow Pit Measurements, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/DUD2VZEVBJ7S, 2021.
Wang, X., Zeng, Q., and Jiao, J.: Utilization of WRF 3D Meteorological Data to Calculate Slant Total Delay for InSAR Atmospheric Correction, Remote Sens. Earth Syst. Sci., 4, 30–43, 2021.
Wang, Y.-H., Broxton, P., Fang, Y., Behrangi, A., Barlage, M., Zeng, X., and Niu, G.-Y.: A Wet-Bulb Temperature-Based Rain-Snow Partitioning Scheme Improves Snowpack Prediction Over the Drier Western United States, Geophys. Res. Lett., 46, 13825–13835, https://doi.org/10.1029/2019GL085722, 2019.
Wiesmann, A. and Mätzler, C.: Microwave emission model of layered snowpacks, Remote Sens. Environ., 70, 307–316, 1999.
Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C., Wei, H., Meng, J., and Livneh, B.: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow, J. Geophys. Res.-Atmos., 117, D03110, https://doi.org/10.1029/2011JD016051, 2012a.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., and Meng, J.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016048, 2012b.
Short summary
The study presents the first assimilation of snow depth obtained from repeat pass airborne L-band synthetic aperture radar with a snow hydrology model. The assimilation of snow depth was found to be equivalent to the downscaling of precipitation forcing with a bias correction, which improved the snowpack simulation compared to ground-based observations.
The study presents the first assimilation of snow depth obtained from repeat pass airborne...