Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-2895-2025
https://doi.org/10.5194/tc-19-2895-2025
Research article
 | 
06 Aug 2025
Research article |  | 06 Aug 2025

Assimilation of L-band interferometric synthetic aperture radar (InSAR) snow depth retrievals for improved snowpack quantification

Prabhakar Shrestha and Ana P. Barros

Data sets

InSAR model data P. Shrestha and A. P. Barros https://uofi.box.com/v/InSARmodeldata

NASASnowEx Data NSIDC https://nsidc.org/data/snowex/data?field_data_set_keyword_value=1

High-Resolution Rapid Refresh (HRRR) Model Data NOAA https://registry.opendata.aws/noaa-hrrr-pds

NLDAS Mosaic Land Surface Model L4 Hourly 0.125 x 0.125 degree V2.0 NLDAS project https://doi.org/10.5067/TS58ZCJZIWT5

Model code and software

The Data Assimilation Research Testbed (Version 10.7.3) NCAR DART Team https://doi.org/10.5065/D6WQ0202

APBarrosResearchGroup-open/mpdaf: MPDAF (v1.0.0) APBarrosResearchGroup-open https://doi.org/10.5281/zenodo.16580886

Download
Short summary
The study presents the first assimilation of snow depth obtained from repeat pass airborne L-band synthetic aperture radar with a snow hydrology model. The assimilation of snow depth was found to be equivalent to the downscaling of precipitation forcing with a bias correction, which improved the snowpack simulation compared to ground-based observations.
Share