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Abstract. The integration of snow hydrology models and re-
mote sensing observations via data assimilation is a promis-
ing method to capture the dynamics of seasonal snowpacks
at a high spatial resolution and to reduce uncertainty with re-
spect to snow water resources. In this study, we employ an
interferometric synthetic aperture radar (InSAR) technique
to quantify snow depth change using modeled snow den-
sity and assimilate the referenced and calibrated retrievals
into the Multilayer Snow Hydrology Model (MSHM). Al-
though the impact of assimilating snow depth change is local
in space and time, the impact on snowpack mass properties
(snow depth or snow water equivalent, SWE) is cumulative,
and the InSAR retrievals are valuable to improve snowpack
simulation and to capture the spatial and temporal variability
in snow depth or SWE. Details on the estimation algorithm
of InSAR snow depth or SWE changes, referencing, and cal-
ibration prove to be important to minimize errors during data
assimilation.

1 Introduction

Remote sensing and distributed modeling of snowpack with
data assimilation are promising methodologies to quantify
snow water resources (including its condition) and to reduce
uncertainty. Current and upcoming snow remote sensing us-
ing synthetic aperture radar (SAR) aims to provide global
coverage at a hyper-resolution, which is needed to quan-
tify snow variability with reduced uncertainty. Recent stud-
ies have mostly used either backscatter approaches (Lievens
et al., 2019, 2022; Singh et al., 2024; Tsang et al., 2021) or

interferometric SAR (InSAR) techniques (Guneriussen et al.,
2001) to quantify snow depth and snow water equivalent
(SWE). The latter has been applied extensively for SWE re-
trievals from dry snowpacks using ground-based (e.g., Leinss
et al.,, 2015; Ruiz et al., 2022) and satellite-based SARs
(e.g., Conde et al., 2019; Dagurov et al., 2020; Deeb et al.,
2011; Guneriussen et al., 2001; Lei et al., 2023; Li et al.,
2016; Li and Sturm, 2002; Liu et al., 2017). The InSAR
technique assumes that the volume backscatter and absorp-
tion of microwave signal in the snowpack are negligible,
with the backscatter at the ground—snowpack interface being
dominant while the slow propagation of radar waves through
snowpack (depending on the dielectric property) results in
phase delay. Previous studies have also shown that the In-
SAR retrievals are more suitable at longer wavelengths (e.g.,
L-band) owing to the transparency of dry snow and forest
over snow, the preservation of coherence for longer periods
of time, and the larger thresholds for phase wrapping. With
the upcoming NASA-ISRO (Indian Space Research Orga-
nization) SAR (NISAR) mission, multiple studies with air-
borne L-band UAVSAR (uninhabited aerial vehicle synthetic
aperture radar) data from the 2020 NASA SnowEx campaign
have already demonstrated the potential of InSAR for snow
remote sensing (e.g., Bonnell et al., 2024; Marshall et al.,
2021; Hoppinen et al., 2023; Idowu and Marshall, 2022;
Marshall et al., 2021; Palomaki and Sproles, 2023; Tarricone
etal., 2022).

InSAR retrieval algorithms need spatial data of snow den-
sity and referencing to estimate the spatial variability in ab-
solute snow depth or snow water equivalent (SWE). Leinss
et al. (2015) have proposed a modified InSAR technique to
circumvent the need for snow density in SWE retrievals by
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Figure 1. The spatial pattern of land cover and topography over the Grand Mesa (GM) domain (white outline). The gray boxes outline the
3 km atmospheric grids. The solid-black/solid-gray circular and square markers show the locations of snow pit and snow pole measurements
available from the SnowEx’20 campaign. The snow pole measurements used for calibration of InSAR retrievals are also highlighted with

their names.

introducing an additional parameter with very small variabil-
ity for a range of incidence angles and snow densities; their
approach also assumes that the vertical profile of snow den-
sity does not change between the two dates for each InSAR
pair. However, the density profiles can change depending on
the time interval between revisits, new snowfall events and
weather conditions that may impact the top layer of the snow-
pack. Furthermore, snow density might still be needed when
referencing the retrievals to obtain absolute snow depth or
SWE for assimilation purposes. Hyper-resolution snow hy-
drology models driven by realistic hydrometeorological forc-
ing can potentially provide a good estimate for the InSAR
algorithm, and in turn, the assimilation of InSAR retrievals
can potentially improve the modeled snowpack states. Ear-
lier studies have already shown the potential for assimilating
the retrieval of snow depth or SWE from airborne or satellite
SAR to improve modeled snowpack and reduce uncertainty
(e.g., Girotto et al., 2024; Pflug et al., 2024; Shrestha and
Barros, 2025a). The upcoming launch of the NISAR mission
that will provide L-band measurements globally provides an
impetus to investigate the assimilation of InSAR retrievals
and the associated uncertainty quantification, with potential
application to operational water prediction. Here, we lever-
age the multiple in situ and airborne snow measurements
available from NASA’s SnowEx’20 (Marshall et al., 2019)
campaign over Grand Mesa to (1) evaluate L-band InSAR
retrievals of snow depth and (2) assimilate the retrievals into
a distributed snow hydrology model to evaluate the impact on
the simulated macro-physical snow properties and their un-
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certainties. We evaluate the L-band InSAR retrievals at their
native resolution over different snow depths and types of land
cover against ground-based measurements and airborne lidar
(light detection and ranging) retrievals. While the InSAR re-
trievals only provide a change in snow depth, data assimila-
tion requires total snow depth. Therefore, we use the airborne
lidar measurements of snow depth to reference the InSAR re-
trievals and obtain the total snow depth. The InSAR retrievals
with the first flight date (but different repeat passes) in com-
mon with airborne lidar measurements of snow depth were
used for assimilation during different time windows, and the
other InSAR retrievals were used to evaluate the ensemble
snow hydrology model prediction of snow properties and to
characterize the impact of assimilating the InSAR retrievals
of snow depth.

2 Methods
2.1 Study area

The study area is located over the western part of Grand Mesa
Plateau, Colorado, USA (GM domain; Fig. 1). The land
cover is dominated by grassland and mixed forests across
the plateau, with elevations ranging from 3000 to 3200 m.
There are several scattered open water bodies (e.g., lakes and
reservoirs), as well as areas with shrubs and wetlands. During
the SnowEx’20 campaign, Grand Mesa hosted an intensive-
observation period (IOP) during the snow-on season, includ-
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Table 1. UAVSAR flight retrieval dates for Grand Mesa during the
SnowEx’20 campaign.

Flight track ~ Acquisition date

3 1 Feb 2020 (02:13:36-02:15:58 UTC)
5 12 Feb 2020 (16:47:20-16:49:45 UTC)
8 19 Feb 2020 (17:24:18-17:27:07 UTC)
13 26 Feb 2020 (17:40:54-17:43:34 UTC)
17 12 Mar 2020 (18:17:08-18:20:28 UTC)

ing bi-weekly UAVSAR flights and airborne lidar data col-
lection.

2.2 Data
2.2.1 UAVSAR

UAVSAR is a fully polarimetric L-band synthetic aper-
ture radar designed to obtain high-quality airborne repeat
pass interferometry (Hensley et al., 2008; Rosen et al.,
2006). The radar operates at a frequency of 1.26 GHz
(A =0.2379 m) with a bandwidth of 80 MHz and is mounted
on the NASA Gulfstream III, flying at a nominal altitude
of 13800m. UAVSAR data are available from the ASF-
DAAC for multiple campaigns (https://api.daac.asf.alaska.
edu/services/utils/mission_list, last access: 10 August 2024).
The uavsar_pytools script (Keskinen et al., 2022; https:
//github.com/SnowEx/uavsar_pytools, last access: 10 July
2024) was used to download and convert InSAR georefer-
enced binary grid files to GeoTIFF in WGS84 for Grand
Mesa (SnowEx’20). The interferometric data consist of the
interferogram, coherence and unwrapped phase in quad po-
larizations, including the digital elevation and incidence an-
gles along the flight path. In some cases, all polarizations
were not available. There were seven InSAR pairs available
based on five UAVSAR flights for repeated flight paths at
a heading of 274° (Table 1). The flight maps are available
from https://uavsar.jpl.nasa.gov/cgi-bin/data.pl (last access:
25 February 2025). The interval between the InSAR pairs
varied between 7 and 40d (e.g., track 3-5 (11d), 3-8 (18 d),
3-13 (254d), 3-17 (40d), 5-8 (7d), 813 (7d) and 13-17
(154d)).

2.2.2 Snow pit and snow pole measurements

The snow pit data include measurements of snow temper-
ature, snow depth, snow density, snow stratigraphy, snow
grain size, liquid water content and snow water equivalent
over Grand Mesa. The SNEX20_GM_SP collection (Vuy-
ovich et al.,, 2021) has 154 snow pit measurements be-
tween 27 January and 12 February 2020. Similarly, the
SNEX20_TS_SP collection (Mason et al., 2024) has time se-
ries of snow pit measurements between October 2019 and
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May 2020 obtained by the SnowEx community during the
2020 campaign.

The snow pole data (SNEX20_SD_TLI) consist of snow
depth measurements based on time lapse imagery that
captures a snow pole in each image (Breen et al., 2022).
The temporal coverage for these data is from 29 September
2019 to 10 June 2020. The cameras took images either three
times a day (11 AM, 12PM, 1 PM; all times are mountain
standard time) or twice a day (11 AM and 12PM). The
cameras were placed in nine different environments over
the Grand Mesa based on a tree density map (treeless,
sparse and dense) and snow depth (shallow, intermediate
and deep). The snow depth classification was based on
Airborne Snow Observatory (ASO) lidar retrievals from
8 February 2017. The error estimates for each camera
vary and range from +2 to + 16cm. More details are
also available from https://snow.nasa.gov/sites/default/files/
users/user354/SNEX-Campaigns/2020/NAS ASnowEx20_
ExperimentPlan_v15.pdf (last access: 25 February 2025).

223 ASO

The Airborne Snow Observatory (ASO; Painter et al., 2016)
lidar-derived snow depths at a 3 and 50m resolution for
Grand Mesa are available for 1 and 2 February (together)
and 13 February during the SnowEx’20 campaign. The
snow depths over forested area represent snow depths at the
ground. SWE estimates were also available from ASO at a
50 m resolution based on bias-corrected snow density using
a snow hydrology model with a 50 m resolution. The reported
uncertainty in the data was 5.8 and 1.7 cm at a 3 m resolution
for the two dates and less than 1 cm at a 50 m resolution for
both dates. In the ASO retrievals for SWE, the snow den-
sity was obtained by calibrating the modeled density with
ground-based observations.

2.2.4 Atmospheric data

The High-Resolution Rapid Refresh (HRRR; Dowell et al.,
2022) 3km first-hour forecast data for water year 2020
were downloaded using a Python package (Blaylock, 2024;
https://doi.org/10.5281/zenodo.4567540). The HRRR en-
semble consists of 36 members for data assimilation (DA)
and 9 members for the forecast run but were not available on
the servers except for the single forecast. These HRRR data
were used to estimate atmospheric correction of the InNSAR
phase and were used as offline atmospheric forcing for the
snow hydrology model. The HRRR grids interpolated to reg-
ular geographic grids are also shown over the GM domain
(Fig. 1).

2.3 InSAR snow depth retrieval

The total interferometric phase difference obtained with re-
peat pass SAR data over a snow-covered region includes con-
tributions due to phase impacts from flat Earth, local topogra-
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phy, atmospheric delay, snowpack, and random and system-
atic errors. While the random error mostly comes from the
temporal decorrelation, assuming that phase impacts from
flat Earth, local topography and systematic errors are ac-
counted for in the UAVSAR InSAR processing chain, the
extraction of the phase contribution only requires accurate
estimation of the phase contribution due to atmospheric de-
lay (see Appendix A). With a known InSAR phase difference
(AQs) due to the presence of snowpack, the change in snow
depth (Azs) can be estimated following Guneriussen et al.
(2001) for coherent reflections:

A AT
Azg=— <—> , (D
4 (00395 —Ve— sin26i)

where A is the SAR wavelength, 6; is the incidence angle and
¢ is the bulk snowpack permittivity. For dry snow, ¢” is negli-
gible compared to &', and the relationship between snow den-
sity ps [kgm™>] and permittivity can be expressed according
to Matzler (1996) and Wiesmann and Mitzler (1999) as fol-
lows:

e=1+1.6x1073p,+1.8x1077p3. )

Field measurements of density data are generally sparse
and may not be available for all the periods. Also, for fu-
ture NISAR mission, field measurements alone will not be
able to provide the snow density for all grid locations. So,
we use modeled snow density (the Multilayer Snow Hydrol-
ogy Model (MSHM) reference run) driven by atmospheric
forcing from an operational numerical weather prediction
(NWP), which can be applied everywhere to obtain the bulk
snowpack permittivity.

Interferometric coherence is important to assess the uncer-
tainty in the retrievals of snow depth, as the retrieval errors
increase with decreases in coherence. Ruiz et al. (2022) used
a ground-based 1-10 GHz SAR system with InSAR capabil-
ities to examine the environmental impact on observed co-
herence for snow-covered surfaces. For example, increases in
air temperature leading to snowmelt are associated with large
drops in snow coherence besides wind, with precipitation and
with large changes in temperature gradients. Compared to the
X-, C- and S-bands, L-band measurements exhibit higher co-
herence over longer temporal baselines and smaller errors in
SWE retrieval, indicating better suitability for InNSAR appli-
cations.

The estimation of Az following Eq. (1) assumes that
the density of the snowpack is uniform with depth and that
the underlying profile does not change with time. The lat-
ter assumption is problematic, as the snow density of the
underlying profile could change due to physical processes
(e.g., compaction) depending on the temporal baseline of the
repeat pass and fresh snow. Besides, natural snowpacks are
characterized by multilayer vertical stratigraphy with vary-
ing snow densities, and the phase delay is an integral of the
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phase delay over the multiple layers (Leinss et al., 2015). Us-
ing ASWE = Z;-V:]Azs,jps,j/pw, where py is the density
of water and i = 1, N are the multiple layers, Leinss et al.
(2015) proposed a linear relationship between InSAR phase
change and SWE change as follows:

A s\ !
ASWE = —Ag | — ) (1.59+62 ) , 3)
2ra !

where o« is an optimal correction factor ranging from 0.92
to 1.07 for a wide range of incidence angles (up to 65°) and
snow densities (up to 900 kgm™3). With this formulation and
using an optimal ¢, they estimated a maximum error of 10 %.
To reduce the uncertainty in snow density, the above method
could be directly used to estimate changes in SWE. How-
ever, errors due to variations in the density profile tied to the
temporal baseline between the repeat passes still need to be
addressed.

Since we evaluate the model results using snow depth
measurements from the lidar and ground-based measure-
ments, we employ Eq. (1) for the estimation of snow depth
change in this study. Earlier studies (e.g., Bonnell et al.,
2024; Marshall et al., 2021; Palomaki and Sproles, 2023)
have also used the same approach. Also, InSAR retrievals
only provide changes in snow depth or SWE, so even for
SWE changes, one would require prior SWE measurements
or snow depth and snow density to obtain absolute SWE for
assimilation. In general, snow depth measurements are more
readily available (e.g., lidar or ground measurements), and
models with data assimilation can provide a close estimate
of snow density, so this study also provides a framework for
using InSAR snow depth change for data assimilation. Us-
ing the atmospherically corrected unwrapped-phase images
from the UAVSAR data, the snow depth was retrieved over
the GM domain in the native grid resolution (approx. 5m)
using average bulk snow density between two repeat pass
dates from MSHM reference runs. Note that the estimated
change in snow depth is also well below the limit for a pos-
sible phase wrapping effect in the L-band, which is around
69 cm for A =23.6cm, 6; =23° and ps =300kg m~3 (Deeb
et al., 2011). Here, it is also important to note that the esti-
mated change in snow depth is a relative change, and without
a snow-free scene or a known point change in snow depth, it
is not possible to relate the relative change in snow depth to
the absolute snow depth change. Previous studies (e.g., Bon-
nell et al., 2024; Conde et al., 2019; Hoppinen et al., 2023;
Palomaki and Sproles, 2023; Tarricone et al., 2022) have
used different methods (e.g., finding pixels with no changes
or using pixels with known changes) to calibrate the InNSAR
retrievals to obtain the absolute change in snow depth or
SWE. In this study, we use the snow pole measurements over
grasslands for the calibration. For cases, where the measure-
ments cannot be collocated due to missing retrievals, we use
the snow pole measurement over the sparsely forested ar-
eas. In addition, we use an average over a 3 x 3 square box
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in the UAVSAR scene to reduce any uncertainty due to the
GPS location of snow pole measurements. The InSAR snow
depth change for a 3 x 3 square box (native resolution) was
compared to snow pole measurements from a treeless envi-
ronment (W1A, W1B and W3A, linearly interpolated to the
time of the repeat pass flight) for calibration, and the aver-
age value was used for the calibration. For 1-12 February re-
trievals in HV and VH polarization (which had a large quan-
tity of missing data), snow pole measurements from W5A,
W6B and W6C were used for calibration. Further, we use
VV polarization with higher coherence for spatial evaluation
with lidar data, but since it was not available for all retrievals
and since HH polarization also exhibits higher coherence and
similar results to VV polarization, HH is used for the InSAR
retrievals and data assimilation.

2.4 MPDAF and experiment setup

The Multi-Physics Data Assimilation Platform (MPDAF
v1.0; Shrestha and Barros, 2025a) employs a coupled frame-
work of the Multilayer Snow Hydrology Model (MSHM
v3.0; Cao and Barros, 2020; Kang and Barros, 2011b, a;
Shrestha and Barros, 2025a) and the NCAR Data Assimila-
tion Research Testbed (DART; Anderson et al., 2009; NCAR
DART Team, 2023). MSHM is a distributed 1D-column
model that solves the mass and energy budgets of the snow-
pack. Key physical processes of snow hydrology — snow/rain
partitioning, snow accumulation, compaction, melting and
melt—runoff including snow microstructure evolution — are
well represented in the model to simulate the macroscopic
and microscopic snow properties. The snow microstructure
evolution is simulated using a detailed microphysical scheme
based on the CROCUS snowpack model (Vionnet et al.,
2012). The bottom-boundary conditions are kept constant
during the cold season, assuming frozen soils for snow-on
conditions and fixed deep-soil temperature. Fresh-snow den-
sity in this study is based on the parameterization of Hed-
strom and Pomeroy (1998), and wet-bulb temperature is used
as the threshold to partition precipitation into rain or snow
(Wang et al., 2019). Currently, the rain versus snow parti-
tioning only allows for existence of rain or snow and does not
allow for mixed forms of rain/snow. More details about the
parameterizations can be inferred from the studies mentioned
above. Following Cao and Barros (2020), the snow albedo is
provided externally using the NLDAS Mosaic Land Surface
Model L4 v2.0 albedo data (Xia et al., 2012a, b).

In DART, we use the ensemble adjustment Kalman filter
(EAKF; Anderson, 2003) with enhanced spatially varying
state space inflation (Anderson, 2009; El Gharamti, 2018).
Assimilation is carried out using observed integrated quanti-
ties like total SWE or total snow depth, and the increments
are then distributed vertically to the model states (snow
depth, snow density and SWE) using a repartition algorithm
(Shrestha and Barros, 2025a).
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For ensemble Kalman filters, ensemble sizes of fewer
than 20-30 can lead to statistical errors, and larger ensemble
sizes take longer to run with very little benefit. So, an en-
semble size of 30—-100 is recommended for use with ensem-
ble Kalman filters in DART. In this study, we have only two
DART state vectors and use 48 ensemble members, which is
also constrained by the computational and data storage re-
quirements for hyper-resolution runs. In MSHM, vertically
discretized snow depth and SWE are prognostic variables.
However, we only use the integrated quantities of these prog-
nostic variables (i.e., total SWE and total snow depth) as state
vectors in DART, which are updated by the ensemble filters
(e.g., EAKEF, as is used here). The ensemble filter assumes
a Gaussian relation between the variables in the joint state
space prior distribution. First, update increments are com-
puted for each ensemble sample of the observation variable,
which is then used to solve for the increments for each state
variable. This requires prior cross-covariance of each state
variable with observation variables, along with the variance
of the observation variable (see Anderson, 2003, for details).
Then, we use a newly developed repartition algorithm to dis-
tribute the increments in the vertical profile with mass con-
servation (snow density is updated). For bulk or single-layer
snow hydrology models, such repartitioning is not needed.
DA directly impacts the top layers of the snowpack where
snow is added or removed based on assimilation increments.
The lower layers are only impacted by the modeled snow
evolution after the assimilation, primarily due to the addi-
tion of new layers on top or the removal of existing snow
layers. The localization setups were used such that the ob-
servations only impact the model grid points where they are
located. The goal is to reduce the impact to the surround-
ing grids with different land cover characteristics and, there-
fore, different retrieval uncertainties, such as in the case of
forested and non-forested grid points. Thus, the cutoff radius
that determines the region of spatial impact of the assimilated
variable was set to approximately 100 m (close to the model
resolution).

The snow hydrology model is set up over the GM domain
using an approximately 90 m resolution with 66 x 165 grid
points. The maximum number of snow layers in the model
was set to 30. The merged atmospheric forcing data are also
interpolated to a regular geographic grid and disaggregated
to a 90 m resolution. Here, no downscaling algorithms are
applied to the forcing data, and the disaggregation technique
applies homogeneous forcing over the subgrid pixels — this
also allows us to highlight the impact of hyper-resolution
data assimilation. Further, scaling analysis of SAR backscat-
ter and lidar snow depth estimates in mountainous regions in-
cluding Grand Mesa (Manickam and Barros, 2020; Mendoza
et al., 2020b, a) shows that a minimum variance is reached
at scales of 100-250 m, with clear scaling breaks tied to very
high variance at very small scales and to topography and land
cover at larger scales. The spatial resolution of this study is
around the scale of minimum variance.
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The MSHM reference run (CTRL) was integrated from
1 October 2019 to 1 April 2020 using the default HRRR
forcing data. For data assimilation (DA) runs, 48 ensem-
ble members were generated by perturbing the model forc-
ing data. The precipitation is perturbed using multiplicative
noise drawn from a uniform distribution U[—0.4, 0.4]. The
incoming shortwave and longwave radiation are also per-
turbed using multiplicative noise from a uniform distribu-
tions U[—0.05, 0.05] and U[—0.1, 0.1], respectively.

Figure 2 synthesizes the availability of ASO lidar re-
trievals and L-band InSAR retrievals for assimilation and
evaluation of model runs. Here, we use part of the data for as-
similation, and the remainder is used for evaluation. As stated
earlier, the L-band InSAR retrievals only provide informa-
tion about relative changes in snow depth or SWE, which
need to be referenced and calibrated to obtain the absolute
values needed for assimilation. In the context of distributed
modeling at a given resolution, this would require a spatial
map of snow depth or SWE for referencing. In this study,
we use the ASO lidar snow depth data at a 50m resolu-
tion (1 February) as a reference. We aggregate the InSAR
retrievals to a coarser resolution (50 m) to match with the
resolution of the reference ASO lidar snow depth retrieval.
Then we combine the reference snow depth with aggregated
InSAR retrievals of snow depth change, I1 (1-12 February),
12 (1-19 February) and I3 (1-26 February), to obtain the ab-
solute snow depth pattern over the GM domain on 12, 19 and
26 February, respectively. Two data assimilation experiments
are conducted by assimilating total snow depth: (1) ASO li-
dar retrieval on 1 February (DA) and (2) ASO lidar retrieval
on 1 February and referenced InSAR retrievals on 12, 19 and
26 February (DAU). We reference the InSAR retrievals by
aggregating the data to a 50 m resolution grid of the ASO
lidar retrievals from 1 February, which matches the date of
the first InSAR pair in both cases. InSAR retrievals of snow
depth change on IS5 (12-19 February), 16 (19-26 February)
and 17 (26 February—12 March) are reserved for indepen-
dent evaluation. In both DA experiments, we assign an ob-
servational error of 10 % for the snow depth retrievals at a
50 m resolution, which is consistent with the errors from the
InSAR retrievals using the UAVSAR data in this study.

3 Results
3.1 Meteorological settings

The meteorological conditions based on the HRRR forcing
data, including air temperature, precipitation and wind speed,
were analyzed for the GM domain (2 x 5 HRRR grids at a
3km resolution). These environmental forcings along with
temporal baselines are also the source of variability in inter-
ferometric coherence and errors in the retrievals. Figure 3
shows the time series of air temperature, wind speed and
precipitation intensity for the month of February, including
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the first 2 weeks in March for the northwest corner of the
GM domain. The month of February was generally cold and
windy, with temperatures dropping below —20 °C and wind
speeds reaching up to 15ms~!. The time series show cool-
ing and warming periods at a weekly timescale, with some
days where the air temperature reached above zero. However,
the amplitude of cooling decreases gradually from the end of
February to mid-March, with more frequent warm periods.
There were a few snowfall events between 1-12 February,
19-26 February and 26 February—12 March, which varied in
intensity along the GM domain.

3.2 Snow density

A spatial pattern of bulk snow density is required to compute
the snowpack permittivity needed for the InSAR retrieval
technique. Uncertainty in snow density estimates can lead to
errors in snow depth retrieval. Figure 4 shows the snow den-
sity distribution for the InSAR pair (1-12 February) using the
50 m resolution ASO lidar data, snow pit data and model es-
timates using a reference run (CTRL) for the GM domain.
Only the snow pit data within the GM domain collected
within &£ 1 d of the InSAR flights were used for the analysis.
All three data sets show compaction of snow between the two
dates, but the model simulates slightly higher snow density
for both flight dates and underestimates the spatial variance
observed in the snow pit data and ASO lidar data, as was ex-
pected given the coarse resolution of the HRRR precipitation
forcing (i.e., 3km). Note that the snow density in the ASO
lidar data is also from a model estimate, but it was bias cor-
rected (i.e., locally calibrated) using the snow pit data from
the SnowEX’20 campaign. In the 11 d temporal baseline, the
average snow density changes by 5.6 %, 11 % and 4 % among
the lidar, snow pit and model data, respectively. Here, we
have to note that the snow density change in pit data could
also be attributed to spatial variability besides compaction,
which could be contributing to higher differences.

To examine the error in snow depth retrieval associated
with the error in density, we used Eq. (1) to retrieve snow
depth change for a fixed phase change due to snow. Fig-
ure 4d shows the variability in InSAR retrievals of snow
depth change as a function of the incidence angle for a phase
change of —0.17 7 using the average snow density from ASO
lidar, snow pits and the MSHM CTRL run. The error gener-
ally decreases with an increasing incidence angle. The syn-
thetic simulation shows that a 10 % error in snow density
can lead to an approximately 10 % error in snow depth es-
timates at lower incidence angles, with everything else being
the same.

3.3 L-band retrieval of snow depth
The temporal baselines for the L-band retrieval range from 7

to 40d, and the interferometric coherence generally de-
creased with increasing temporal baselines, as expected.

https://doi.org/10.5194/tc-19-2895-2025



P. Shrestha and A. P. Barros: Assimilation of InSAR retrieval or improved snowpack quantification

2901

|
1

I
2 12 13

02:14 16:48
UAVSAR " ‘

15

17:25
16

v

19 26

17:42
L 17

flights (UTC) — }
, 12

13
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Figure 3. Meteorological data from the atmospheric model for the
northwest GM subdomain showing the air temperature (blue/red),
wind speed (orange) and precipitation rate (bar plot). The time axis
highlights the dates when the L-band UAVSAR flight data were
available for the SnowEx’20 campaign.

For treeless and forested areas, the mean coherence for the
7d temporal baseline (12—19 February) was 0.7 +0.15 and
0.65 £ 0.18, respectively. Similarly, for the 19-26 February
pair, it was 0.6 £0.18 and 0.5 0.2, respectively. The co-
herence decreased to 0.39+0.16 and 0.36 0.17 for the
40 d temporal baseline. These values are for the HH polariza-
tion, as it was available for all dates (see Table 2). The lower
coherence for the 19-26 February pair compared to the 12—
19 February pair could be attributed to environmental factors,
e.g., higher wind speeds, precipitation events and intermittent
warming (see Fig. 3). The forested area exhibits lower coher-
ence than the treeless area does, suggesting the possibility
of higher uncertainty in the retrievals. The above statistics
are based on the NLCD land cover data at a 30 m resolu-
tion, whereas the native resolution of the InSAR retrievals
from UAVSAR is on the order of a 5 m resolution, and the
retrievals over forest contain information from snow depth in
tree clearings as well.
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Table 2. Coherence for treeless and forested environments for dif-
ferent retrievals.

Period (days) Coherence (HH)

Treeless Forested
12-19 Feb 7 071+£0.15 0.65+0.18
19-26 Feb 7 0.6+0.18 0.5+0.2
1-12 Feb 11 048+0.18 0.4740.19
26 Feb—12 Mar 15 0494+0.17 0.39+£0.18
1-19 Feb 18 0474+0.18 0.43+£0.19
1-26 Feb 25 0464+0.18 0.43+0.18
1 Feb—12 Mar 40 0.39+0.16 0.3640.17

3.3.1 Evaluation with ASO lidar data

The InSAR pair of 1-12 February with a temporal baseline
of 11d provides the closest concurrent pair to the ASO lidar
retrieval based on 1/2 and 13 February for the comparison of
the snow depth difference at the scale of a 3—5 m resolution.
Figure 5a and b show the spatial pattern of interferometric
coherence and snow depth change at VV polarization. Fig-
ure Sc shows the change in snow depth based on ASO lidar
data for the same region. The western part of this GM sub-
domain is mostly dominated by snow cover over grasslands,
while the eastern part contains snow cover in forested areas
with relatively lower coherence. Both the lidar and L-band
retrievals capture the wavy, roll-like pattern due to scouring
and drifting of snow over the grasslands, which was shown
earlier by Marshall et al. (2021) for a smaller area. Over the
eastern part of the subdomain, which is dominated by forest,
there are significant discrepancies: in regions with no snow
depth change in the ASO lidar data, a decrease in snow depth
is observed in the L-band retrieval.

The average coherence values for this subdomain were
0.51, 0.46, 0.39 and 0.39 for VV, HH, HV and VH polar-
ization, respectively. In addition, the missing retrievals in
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Figure 4. (a-c) Snow density distribution on 1 and 12 February from the ASO lidar data, snow pit measurements (intensive-observation
period, solid-gray markers in Fig. 1) and the MSHM control run. (d) Impact of snow density on the L-band InSAR retrieval of snow depth
change between the two dates as a function of the incidence angle for a fixed change in phase due to snowpack (&5 = 0.17x). The dates for
ASO lidar are actually 1/2 and 13 February. We use 1 and 12 February due to the availability of InNSAR phase data for these dates.

the radar scene were 8 %, 11 %, 36 % and 54 % of the area,
respectively, for the different polarizations (see Table 3).
The distribution of snow depth change for co-polarization
better matches the ASO lidar data compared to the cross-
polarization (Fig. 5d). The average changes in snow depth for
the scene were —2.42, —1.13 and —0.1 cm, respectively, for
the ASO lidar and InSAR VV and HH polarizations. The HV
and VH polarizations show rightward- and leftward-shifted
peaks, respectively. The impact of atmospheric correction
was minimal for this retrieval. With and without atmospheric
correction, the average snow depth changes for the InSAR
retrieval (VV) were —1.28 and —1.13 cm, respectively, for
the scene. The ASO lidar and InSAR retrieval have similar
resolutions but differ in geolocations, so a quantitative spa-
tial comparison that would require spatial interpolation was
not used; instead we only explore the patterns and frequency
distributions within the same extent. For the frequency dis-
tribution (Fig. 5d) between ASO and InSAR (VV), we find
R =0.97 and a root-mean-square error (RMSE) of 2.03 cm,
and the previous study (Marshall et al., 2021) found R =0.76
and RMSE =4.7 cm using the near-surface field measured
density observations in the retrieval.

While the results were similar for other subdomains (not
presented here), the L-band retrievals were found to show a
general decrease in snow depth in the westernmost part of
the GM domain dominated by forest cover, while the lidar

The Cryosphere, 19, 2895-2911, 2025

Table 3. InSAR retrievals of snow depth changes at different polar-
izations for 1-12 February.

Polarization =~ Coherence % missing  Avg. change (cm)
\A% 0.51 8 —1.13
HH 0.46 11 —0.1
HV 0.39 36 2.61
VH 0.39 54 —2.67

data show a contrasting increase in snow depth. Thus, the re-
trievals show higher uncertainty over the forested areas, and
further evaluation is needed.

3.3.2 Evaluation with snow pole and snow pit time
series data

The snow pole data provide a time series of snow depth mea-
surements for locations that are treeless or have sparse/dense
trees and can be used for comparison with all available In-
SAR pairs over the GM domain. We use the snow pole data
linearly interpolated in time to reference the InSAR retrievals
in HH polarization and to obtain absolute snow depth for
comparison. Figure 6 shows the evaluation of referenced In-
SAR retrievals with snow pole data for treeless land cover
(Fig. 6a—c), sparse trees (Fig. 6d—f) and dense trees (Fig. 6g—
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Figure 5. (a) The spatial pattern of coherence from the L-band V'V polarization InSAR retrieval for the northwest GM subdomain. (b) The
estimated spatial pattern of snow depth changes from the same retrieval. (¢) Spatial pattern of snow depth change from ASO lidar data
(1/2-13 February). (d) Distribution of change in snow depth from ASO lidar and InSAR retrievals for VV, HH, HV and VH polarizations.
The InSAR retrievals were obtained from the UAVSAR flight pairs on 1 and 12 February.

m). In most cases, the L-band InSAR retrievals capture the
trend in snow depth change very well for different land cover
types. The RMSEs were similar for different types of land
cover, with approximate values of 4—6 cm (which is consis-
tent with earlier findings by Marshall et al. (2021) for same
InSAR retrieval but using different data for evaluation). We
also explored the errors in terms of InSAR pairs. The RMSEs
of InSAR estimates were 5.0, 4.9,4.4,6.2,7.3 and 4.2 cm for
the 1-12 February (11 d), 1-19 February (18 d), 1-26 Febru-
ary (25d), 12-19 February (7d), 19-26 February (7d) and
26 February—12 March (18 d) retrievals, respectively, at the
12 stations. The errors in InSAR retrievals are within 4 %—
8 % of the absolute snow depth.

The time series from snow pits in the northwestern part
of the GM domain also provide valuable snow depth mea-
surements to evaluate the InSAR estimates. The time series
contains data across treeless and forested areas (Fig. 7). Here
again we use the snow pit measurements to reference the
InSAR retrievals and to obtain the absolute snow depth. It
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must be noted that snow pit measurements were carried out
at different locations within a few meters. Here, we must
note that the temporal variability in the snow depth is also
partly contributed by the spatial variability due to changes in
the location of the pits. The snow depth was slightly higher
in the treeless area compared to in the forested area, which
were within 0.25 km of each other. The InSAR retrievals can
capture some of the trends very well, while showing con-
trasting results for others, such as for the case of the snow
poles. The coherence was within 0.12-0.67 and 0.33-0.79
for the treeless and forested areas, respectively. The errors
were 2 %-9 % and 3 %-31 %, respectively, for treeless and
forested areas. Based on the two comparisons of InSAR re-
trievals against snow pole and snow pit data, the errors are
within 10 % for most of the retrievals, with few exceptions.

3.4 Data assimilation and evaluation

In this section, we explore the impact of assimilated L-band
InSAR retrievals on modeled SWE and particularly on mod-
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Figure 6. Comparison of the L-band InSAR retrieval (HH polarization) of snow depth with snow pole measurements for locations with
different types of land cover within the GM domain (a—c: treeless; d—f: sparse trees; g—-m: dense trees). For the InSAR retrieval, snow depth
measurements from snow pole sites were used a reference for the repeat pass UAVSAR flight pairs.

eled snow depth. As already discussed in Sect. 2.4, we use
two assimilation experiments including an open loop (with-
out assimilation) and a reference run to explore the time evo-
lution of modeled snowpack over Grand Mesa for the accu-
mulation season in the water year 2020. Figure 8 shows the
time series of spatially averaged modeled snow depth from
the different runs. The spatial averaging was done for the
grids without trees and open water over the GM domain. The
filled areas represent the total ensemble spread. The assimi-
lation of the ASO lidar snow depth on 1 February shifts the
ensembles upwards and reduces the spread for both the DA
and DAU runs. It shows that the reference run (CTRL) was
largely underestimating snow depth. While some of the en-
semble members with positive perturbations of precipitation
were able to capture the actual snow depth, the ensembles
with negative perturbation of precipitation underestimated
the total snow depth (see the spread in the open-loop (OL)
run). The assimilation of referenced InSAR retrievals for 12,
19 and 26 February (DAU runs) exhibits a small increase
in snow depth for the ensemble averages compared to the
DA runs.

The modeled snowpack was also compared with in situ
measurements to assess the impact of data assimilation. The
modeled snow depth and SWE at a 90 m resolution were
compared to snow pit data (intensive observation period, IOP,
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and time series snow pit data, TSD) in locations without
trees. The land-cover-filtered IOP data contained snow depth
and SWE from 28 January 2020 to 12 February 2020. Simi-
larly, the land-cover-filtered TSD contained snow depth from
19 December 2019 to 17 April 2020. There were 68 IOP and
12 TSD snow pit data points available for comparison across
the GM domain based on the model simulation spatial extent.
The RMSE decreased from 35.2 to 18.3 cm for snow depth,
and for SWE, it decreased from 8.9 to 5.9 cm. The differ-
ences in RMSE between the DA and DAU runs for these pits
were negligible. The modeled snow depth was also compared
against snow pole measurements for locations without trees
(three locations: W1A, W1B and W3A) for the entire model
simulation period. The RMSEs were 17.6, 21.2 and 27.2 cm
for the CTRL run and decreased to 8.1, 21 and 20.8 cm for
the DA runs. For the DAU runs, the RMSEs were 8.5, 22.2
and 19.2 cm (see Table 4).

The spatial pattern of the modeled snow depth can be
evaluated using the reserved InSAR retrievals from the 12—
19 February, 19-26 February and 26 February—12 March
pairs that were not used for assimilation. Figure 9 shows the
spatial pattern of snow depth change for these repeat pass
retrieval dates, along with their distributions for the entire
GM domain. The estimates are shown for the retrievals and
for all the model runs. The InSAR data were aggregated to a
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Figure 8. Time series of modeled snow depth for the CTRL, OL,
DA and DAU runs. The dates when observations were assimilated
are also shown by tick marks: DA (1 February) and DAU (1, 12
and 26 February) are also shown by the tick marks. The ensemble
spreads for the OL, DA and DAU runs are shown by filled areas
between the lines.

90 m resolution for comparison, and the grids with open wa-
ter bodies and tree cover (sparse or dense) were all masked
out. Additionally, for the ensemble runs, the spatial maps
were obtained by averaging the ensembles, and the distribu-
tions are for the averaged ensembles.

The InSAR retrievals for 12-19 February and 19-
26 February exhibit both increases and decreases in
snow depth for the GM domain, while the retrievals for
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Table 4. Root-mean-square error for modeled snow depth (cm) over
treeless environments with reference to pit (IOP and TSD) and snow
pole measurements.

Pit WIA WIB W3A

CTRL 352 17.6 212 272
OL 36.0 11.57 1480  30.8
DA 18.3 8.1 21 20.8
DAU 18.0 8.5 222 19.2

26 February—12 March show increases in snow depth only
(Fig. 9a—c). As expected, the ensemble average for the open-
loop (OL) run shows spatial variability on the scale of the
atmospheric forcing. The OL run shows a similar tendency
to the InSAR retrievals, except for the 12—19 February pair,
where it shows a decrease in snow depth (Fig. 9d—f). While
the DA runs improve the total snow depth and SWE, no im-
provement in the snow depth change is achieved for the 12—
19 February pair (Fig. 9g). In addition, there are more grids
with a decrease in snow depth for the remaining two pairs
(Fig. 9h and i) compared to in the OL run. Note that the DA
does increase the modeled spatial variability in snow depth
change.

Compared to other model runs, DAU produces the best re-
sults, with a positive increase in snow depth change (Fig. 9j
and k) that is also seen in the widening of the distribution
in the positive direction (Fig. 9m and n). This is due to the
assimilation of InSAR data on 19 and 26 February. Since
there was no assimilation of InSAR data on 12 March, there
is no improvement in the modeled snow depth change for
26 February—12 March, even in DAU runs (Fig. 91 and 91).
The increase or relatively larger increase in snow depth
change for DAU runs (Fig. 9j-1) is mostly for the grids
where the InSAR data were available for assimilation (19 and
26 February). However, the impact of this assimilation ap-
pears local in time, and it does not produce any significant
improvement for the 26 February—12 March pair compared
to the DA runs. Despite the data constraints, these results in-
dicate that the assimilation of InSAR estimates has the po-
tential to improve the spatial pattern of modeled snow depth
change. Because the snow depth evolution is cumulative,
these changes will impact the overall seasonal evolution of
the snowpack.

4 Discussion

The hyper-resolution InSAR retrievals resolve the wavy, roll-
like patterns due to scouring and drifting of snow over the
grasslands captured by the ASO lidar data in the northwest-
ern part of GM domain, which was also shown earlier by
Marshall et al. (2021). However, over forested regions, there
are disagreements between the lidar and the InSAR esti-
mates, with possible uncertainty in both data sets. The aver-
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Figure 9. Spatial patterns and histograms of changes in snow depth over the GM domain for 12-19 February, 19-26 February and
26 February—12 March: (a—c) InSAR retrievals; (d—f) the ensemble-averaged open-loop run (OL); (g—i) the ensemble-averaged data as-
similation run with ASO lidar data (DA); (j-1) ensemble-averaged data assimilation runs with ASO lidar and referenced InSAR data (DAU);
and (m-p) the frequency distribution of snow depth change for the InNSAR, OL, DA and DAU runs for the respective pairs.

age coherence was similar for VV and HH polarization, with
slightly higher values for VV polarization and lower for HV
and VH polarizations. This resulted in a higher percentage
of missing retrievals in cross-polarizations. The scene-wide
average coherence in HH polarization for the 7d temporal
baseline (treeless area) in the GM domain is around 0.6-0.7,
which is consistent with the values reported by Ruiz et al.
(2022). Similarly, the coherence was around 0.5-0.65 for the
forested area, indicating that the L-band can maintain good
coherence over canopy, and when there is sufficient pene-
tration depending on tree density and canopy architecture,
it can be useful in measuring ground snow depth changes.
The forested areas generally exhibited lower coherence, as
expected, and the coherence differences between treeless and
forested areas were around 14 %-23 % to 8 % for the 7 and
40 d temporal baselines, respectively. Overall, the InSAR re-
trievals generally compare well with in situ measurements
from snow poles and snow pits over sparse and dense forests.
The RMSE of the lidar measurements over the snow pole site
used in the study was also around 7-8 cm for the two dates,
exhibiting good accuracy. Thus, more data are required for
spatial comparison in forested environments to better under-
stand the differences between lidar and InSAR retrievals.
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The interferometric coherence across the GM domain
generally decreased with the increasing temporal baseline
(e.g., by 44 % from the 7 to the 40d temporal baseline).
This indicates that the retrieval uncertainty and retrieval er-
ror will increase with more time between the repeat passes,
as was expected. Since the underlying density of snowpack
will also change between the repeat passes, the retrieval error
will also increase when using a constant density in Eq. (1).
In this study, the depth-weighted density averages or the av-
erage bulk density between two repeat pass dates from the
reference MSHM model runs was used for the InSAR re-
trievals. The reference runs generally underestimated the to-
tal snow depth and SWE compared to the ASO lidar data
and snow pit measurements, but the bulk snow density was
slightly higher than the snow pit observations during the
IOP over Grand Mesa. This indicates that the HRRR forc-
ing used for the study underestimates the snowfall events,
aside from the model uncertainty associated with wind redis-
tribution of snow, which is not accounted for. The modeled
higher bulk density could again indicate uncertainty in the
fresh-snow density (Cao and Barros, 2020; Shrestha and Bar-
ros, 2025a) and compaction parameterization (e.g., Abolafia-
Rosenzweig et al., 2024). The modeled layered snowpack
generally shows a two-layer density profile, with an upper
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layer exhibiting a gradient and a near-constant density pro-
file in the lower layer. Upon examining the density profiles,
the difference in snow density profile in the lower layer var-
ied between 1.5 %—1.8 % (19-26 February) and 6 %—7 % (1-
26 February) for the 7 and 25d temporal baselines. This
could still be a lower estimate than the actual change in
snow density, as shown earlier for the 11 d temporal baseline,
which was 4 % and 11 % for model and snow pit observa-
tions, respectively. Therefore, the variability in snow density
profiles is small for the 7 d baseline, and it is large for the 25 d
baseline during the accumulation period. Aside from this, the
modeled density has its own bias compared to actual snow-
pack density due to forcing and model structural uncertainty.
However, the calibration of the retrievals to obtain the abso-
lute snow depth change from the relative snow depth change
could also compensate for these errors. Further in-depth stud-
ies are needed to better understand the sources of error.

Data assimilation of the ASO lidar snow depth reduces the
error and uncertainty in the modeled snow depth. This also
reduced the bulk snow density for the ensemble members
with lower snow depth (compared to the CTRL run) by 4 %—
5 %, as new snow with a lower density is added on the top
by the repartition algorithm (Shrestha and Barros, 2025a).
These ensemble members (DA; Fig. 9h and i) also exhib-
ited lower or negative snow depth change for 19-26 Febru-
ary and 26 February—12 March compared to OL ensembles,
which is reflected in the ensemble averages over the GM
domain. However, the assimilation of referenced InSAR re-
trievals (DAU) produces an increase in snow depth changes
in the ensemble average compared to in the DA runs. The im-
pact is most apparent in the grids of the GM domain where
the data were available for assimilation. This produced the
best distribution of snow depth change compared to obser-
vations, showing the potential of InSAR retrievals for im-
proving the modeled snowpack. It also demonstrates HRRR
underestimation of snowfall between the dates of the InSAR
pairs (e.g., between 26 February and 12 March), and it ex-
plains the small snow depth differences in the OL runs com-
pared to those in the InSAR retrievals. The OL shows the
increase in snow depth due to snowfall just before 12 March
(see Fig. 3), albeit underestimated, as indicated by the dif-
ference in magnitude between the InSAR retrievals and the
OL snow depth changes. Likewise, the impact of assimilating
InSAR retrievals, which improves the simulated snow depth
changes (as seen for the first two pairs), highlights the need
for a high temporal resolution of SAR measurements.

5 Conclusion

This study shows that InSAR retrievals are useful to improve
the snowpack simulation and capture its spatial and temporal
variability. The assimilation of hyper-resolution retrievals of
snow depth is equivalent to a downscaling of the precipitation
forcing with a bias correction, besides the additional contri-
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bution from physical processes not resolved by the model at
the given scale. The RMSE of the InSAR retrievals of abso-
lute snow depth change at a native resolution compared to
snow pole measurements over different types of land cover
were within 4—-6 cm, which corresponds to less than 10 % of
the absolute snow depth. However, reference snow depth or
SWE is essential to obtain absolute snow depth or SWE for
assimilation purposes, which poses a challenge in an opera-
tional context. In this situation, one would start from snow-
free conditions and build up the absolute snow depth from In-
SAR retrievals using the prior estimates as a reference. Accu-
rate calibration of the estimated relative snow depth change
or SWE will be important to minimize retrieval errors. Fur-
ther work is also essential for InNSAR retrievals in forested
areas and complex terrain. Future studies are needed to ad-
vance a general framework for calibrating InSAR retrievals
and obtaining absolute snow depth or SWE for assimilation
into the models.

Appendix A

The atmospheric delay experienced by a microwave signal
can be estimated by integrating the atmospheric refractivity
along the line of sight from the surface to the airborne sen-
sor height. Neglecting the impact of the ionosphere on the
UAVSAR flying at a height of zg, the scaled-up atmospheric
refractivity of moist air (N = (n — 1) 106), where n is the re-
fractive index, is given by

P e e
N(x,2) =k1?+(k2—k1)? +k3ﬁ + kaWer,

where P is pressure [hPa], T is air temperature [K],
e is vapor pressure [hPa], W, is liquid water content
[kgm™3], n is ionization and £ is frequency. The remaining
terms are constants: k; = 0.776 KPa~ !, kr =0.716 KPa~!,
k3 =3750K?Pa~! and k;=1430m3kg~". Based on the
work of Smith and Weintraub (1953), the above relation is
restricted to certain limits of the variables for an accuracy
of 0.5% in N(x,z). The limits in this case restrict its use
to temperatures of —50 to +40 °C, total pressures of 200 to
1100 mb, water vapor partial pressures of 0 to 30 mb and a
frequency range of 0 to 30 GHz.

N (x, z) can be further decomposed into the mean and tur-
bulent parts of a radar scene as

N(x,z) = N(2) + N'(x2),

where N(z) is the average vertical stratification for the
given resolution of the atmospheric model (here 3 km), and
N’(xz) is the deviation from the average profile along the
location x in the radar scene (within the atmospheric grid).
Neglecting the turbulent terms, zenith delay L for the mean
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part can be computed as

s

L—/ L kS kS )d
= 17tk =kt ks ) de

Zref

Using dP = —pgdz and p = P/R4T, where p is air den-
sity [kgm 3], Rq=287.053Tkg~ ! K~! is the dry-gas con-
stant and g is acceleration due to gravity, we obtain

-6 R4
L=-10 (kl ?(P(Zs) - P(Zref)))
o e e
+10 6/ ((kz —k]); +k3ﬁ) dz.

Zref

The first term of the right side is the hydrostatic correction
term, and the second term is the wet-correction term. The
atmospheric phase delay along the line of sight (LOS) can
then be estimated using the microwave wavelength (i) and
incidence angle (0in¢) as

4 L

ot =
M0 cos(Bine)

The above simple approximation for computing atmo-
spheric phase delay along the LOS could introduce addi-
tional uncertainty (Wang et al., 2021). More importantly,
since SAR interferograms are not sensitive to image-wide
phase biases, there will be no horizontal delay differences
over flat terrain. However, for a radar scene with terrain, the
differences in the vertical refractivity during both acquisi-
tions will affect the phase difference between two arbitrary-
resolution cells with different topographic heights (Hanssen,
2001). Therefore, the contribution of tropospheric stratifica-
tion to the interferogram will only be present if the radar
scene has resolution cells with different elevations. Thus, we
compute the differential atmospheric phase delay between
locations with maximum elevation (z;.f = p) and all other lo-
cations (zref = ¢) in the radar scene for two SAR acquisition
times, ¢; and f,, as

4
- Ltl —Ltl)—(Ltz—Ltz):I.
ACOSBinc [< P q P 4

Then the phase change contribution due to snowpack is
estimated as

AQatm =

Ags = A@InSAR - Agatm-

Code availability. The MPDAF software with experiment setups is
available from https://github.com/APBarrosResearchGroup-open/
mpdaf (last access: 1 August 2025; DOI: https://doi.org/10.5281/
zenodo.16580886, APBarrosResearchGroup-open, 2025). MSHM
v3.0, as used here, is documented in Cao and Barros (2020), Kang
and Barros (2011b, a), and Shrestha and Barros (2025a). MEMLS is
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documented in Proksch et al. (2015) and can be obtained by email
communication with the respective authors. The NCAR DART
can be downloaded from https://github.com/NCAR/DART.git (last
access: 1 August 2025; DOI: http://doi.org/10.5065/D6WQ0202,
NCAR DART Team, 2023).

Data availability. The NASA SnowEx’20 observation data can
be downloaded from the NASA National Snow and Ice Data
Center Distributed Active Archive Center and ASF DAAC (https:
//nsidc.org/data/snowex/data?field_data_set_keyword_value=1,
NSIDC, 2025). HRRR atmospheric forcing data can be downloaded
from Amazon Web Services (AWS) courtesy of National Oceanic
and Atmospheric Administration (NOAA) and the Registry of
Open Data on AWS (https://registry.opendata.aws/noaa-hrrr-pds,
NOAA, 2025). The NLDAS albedo data can be downloaded from
the NASA GES DISC (https://doi.org/10.5067/TS58ZCIZIWTS,
NLDAS project, 2021). Model data and software used for visual-
ization are available from https://uofi.box.com/v/InSARmodeldata
(Shrestha and Barros, 2025b).
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