Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-2855-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-2855-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New radar altimetry datasets of Greenland and Antarctic surface elevation, 1991–2012
Maya Raghunath Suryawanshi
CORRESPONDING AUTHOR
UK Centre for Polar Observation & Modelling, Centre of Excellence in Environmental Data Science, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru, India
Malcolm McMillan
UK Centre for Polar Observation & Modelling, Centre of Excellence in Environmental Data Science, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
Jennifer Maddalena
UK Centre for Polar Observation & Modelling, Centre of Excellence in Environmental Data Science, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
Fanny Piras
Collecte Localisation Satellites, 31520, Ramonville, France
Jérémie Aublanc
Collecte Localisation Satellites, 31520, Ramonville, France
Jean-Alexis Daguzé
Collecte Localisation Satellites, 31520, Ramonville, France
Clara Grau
Collecte Localisation Satellites, 31520, Ramonville, France
UK Centre for Polar Observation & Modelling, Centre of Excellence in Environmental Data Science, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
Related authors
Maya Raghunath Suryawanshi, K. Satish Kumar, Amin Shakya, Shard Chander, Bhaskar Nikam, Nagesh Kumar Dasika, and Bramha Dutt Vishwakarma
EGUsphere, https://doi.org/10.5194/egusphere-2025-2888, https://doi.org/10.5194/egusphere-2025-2888, 2025
Short summary
Short summary
Several GRACE downscaling products already available for regional analysis owing to its coarse resolution (~3°). But they lack validation (both original GRACE and downscaled product). Here for the first time, we have validated both, Original GRACE and downscaled product. Along with developed a new product which is outperforming the existing products over most of the parts of India. Thereby, we are offering a valuable tool for regional water resource analysis.
Maya Raghunath Suryawanshi, K. Satish Kumar, Amin Shakya, Shard Chander, Bhaskar Nikam, Nagesh Kumar Dasika, and Bramha Dutt Vishwakarma
EGUsphere, https://doi.org/10.5194/egusphere-2025-2888, https://doi.org/10.5194/egusphere-2025-2888, 2025
Short summary
Short summary
Several GRACE downscaling products already available for regional analysis owing to its coarse resolution (~3°). But they lack validation (both original GRACE and downscaled product). Here for the first time, we have validated both, Original GRACE and downscaled product. Along with developed a new product which is outperforming the existing products over most of the parts of India. Thereby, we are offering a valuable tool for regional water resource analysis.
Jérémie Aublanc, François Boy, Franck Borde, and Pierre Féménias
The Cryosphere, 19, 1937–1954, https://doi.org/10.5194/tc-19-1937-2025, https://doi.org/10.5194/tc-19-1937-2025, 2025
Short summary
Short summary
In this study we developed a novel processing chain to derive the ice sheet topography from Sentinel-3 altimetry measurements (named "AMPLI"). The major innovation lies in the use of numerical simulations to geolocate the radar impact point on the ground. The performance improvement is substantial compared to ground segment processing. Furthermore, with AMPLI we show that Sentinel-3 estimates the surface elevation change of the Antarctic ice sheet with a high level of agreement with ICESat-2.
Emily Glen, Amber Leeson, Alison F. Banwell, Jennifer Maddalena, Diarmuid Corr, Olivia Atkins, Brice Noël, and Malcolm McMillan
The Cryosphere, 19, 1047–1066, https://doi.org/10.5194/tc-19-1047-2025, https://doi.org/10.5194/tc-19-1047-2025, 2025
Short summary
Short summary
We compare surface meltwater features from optical satellite imagery in the Russell–Leverett glacier catchment during high (2019) and low (2018) melt years. In the high melt year, features appear at higher elevations, meltwater systems are more connected, small lakes are more frequent, and slush is more widespread. These findings provide insights into how a warming climate, where high melt years become common, could alter meltwater distribution and dynamics on the Greenland Ice Sheet.
Florence Birol, François Bignalet-Cazalet, Mathilde Cancet, Jean-Alexis Daguze, Wassim Fkaier, Ergane Fouchet, Fabien Léger, Claire Maraldi, Fernando Niño, Marie-Isabelle Pujol, and Ngan Tran
Ocean Sci., 21, 133–150, https://doi.org/10.5194/os-21-133-2025, https://doi.org/10.5194/os-21-133-2025, 2025
Short summary
Short summary
We take advantage of the availability of several algorithms for most of the terms/corrections used to calculate altimetry sea level data to quantify and analyze the sources of uncertainty associated with the approach to the coast. The results highlight their hierarchy. Tidal corrections and mean sea surface height contribute to coastal sea level data uncertainties. Improving the retracking algorithm is today the main factor to bring accurate altimetry sea level data closer to the shore.
Joe Phillips and Malcolm McMillan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3054, https://doi.org/10.5194/egusphere-2024-3054, 2024
Short summary
Short summary
This study explores how well the Sentinel-3 satellites measure Antarctic ice sheet elevation, using new, detailed maps of slopes and roughness created using the Reference Elevation Model of Antarctica. We found that while the satellites tend to perform well over smoother terrain, they can struggle over more complex surfaces. These findings can improve how we track ice sheet changes and guide future satellite missions, helping us better understand the impact of climate change on polar regions.
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024, https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Short summary
Lakes on glaciers hold large volumes of water which can drain through the ice, influencing estimates of sea level rise. To estimate water volume, we must calculate lake depth. We assessed the accuracy of three satellite-based depth detection methods on a study area in western Greenland and considered the implications for quantifying the volume of water within lakes. We found that the most popular method of detecting depth on the ice sheet scale has higher uncertainty than previously assumed.
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024, https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Short summary
Under the right topographic and hydrological conditions, lakes may form beneath the large ice sheets. Some of these subglacial lakes are active, meaning that they periodically drain and refill. When a subglacial lake drains rapidly, it may cause the ice surface above to collapse, and here we investigate how to improve the monitoring of active subglacial lakes in Greenland by monitoring how their associated collapse basins change over time.
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
The Cryosphere, 17, 3013–3039, https://doi.org/10.5194/tc-17-3013-2023, https://doi.org/10.5194/tc-17-3013-2023, 2023
Short summary
Short summary
Sea ice has a large interannual variability, and studying its evolution requires long time series of observations. In this paper, we propose the first method to extend Arctic sea ice thickness time series to the ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each year during the winter period between 1995 and 2021.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Diarmuid Corr, Amber Leeson, Malcolm McMillan, Ce Zhang, and Thomas Barnes
Earth Syst. Sci. Data, 14, 209–228, https://doi.org/10.5194/essd-14-209-2022, https://doi.org/10.5194/essd-14-209-2022, 2022
Short summary
Short summary
We identify 119 km2 of meltwater area over West Antarctica in January 2017. In combination with Stokes et al., 2019, this forms the first continent-wide assessment helping to quantify the mass balance of Antarctica and its contribution to global sea level rise. We apply thresholds for meltwater classification to satellite images, mapping the extent and manually post-processing to remove false positives. Our study provides a high-fidelity dataset to train and validate machine learning methods.
Thomas James Barnes, Amber Alexandra Leeson, Malcolm McMillan, Vincent Verjans, Jeremy Carter, and Christoph Kittel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-214, https://doi.org/10.5194/tc-2021-214, 2021
Revised manuscript not accepted
Short summary
Short summary
We find that the area covered by lakes on George VI ice shelf in 2020 is similar to that seen in other years such as 1989. However, the climate conditions are much more in favour of lakes forming. We find that it is likely that snowfall, and the build up of a surface snow layer limits the development of lakes on the surface of George VI ice shelf in 2020. We also find that in future, snowfall is predicted to decrease, and therefore this limiting effect may be reduced in future.
Malcolm McMillan, Alan Muir, and Craig Donlon
The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, https://doi.org/10.5194/tc-15-3129-2021, 2021
Short summary
Short summary
We evaluate the consistency of ice sheet elevation measurements made by two satellites: Sentinel-3A and Sentinel-3B. We analysed data from the unique
tandemphase of the mission, where the two satellites flew 30 s apart to provide near-instantaneous measurements of Earth's surface. Analysing these data over Antarctica, we find no significant difference between the satellites, which is important for demonstrating that they can be used interchangeably for long-term ice sheet monitoring.
Cited articles
Aublanc, J., Boy, F., Borde, F., and Féménias, P.: A facet-based numerical model to retrieve ice sheet topography from Sentinel-3 altimetry, The Cryosphere, 19, 1937–1954, https://doi.org/10.5194/tc-19-1937-2025, 2025.
Bamber, J. L.: Ice sheet altimeter processing scheme, Int. J. Remote Sens., 15, 925–938, https://doi.org/10.1080/01431169408954125, 1994.
Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Brockley, D. J., Baker, S., Femenias, P., Martinez, B., Massmann, F., Otten, M., Paul F., Picard B., Prandi P., Roca M., Rudenko S., Scharroo R. and Visser, P.: REAPER: Reprocessing 12 years of ERS-1 and ERS-2 altimeters and microwave radiometer data, IEEE T. Geosci. Remote, 55, 5506–5514, https://doi.org/10.1109/tgrs.2017.2709343, 2017.
Casella, D.: Product Quality README file for ENVISAT RA-2/MWR Level 2 V3.0 dataset (ESA-EOPG-MOM-TN-15), https://earth.esa.int/eogateway/documents/20142/37627/Envisat-RA-2-MWR-Level-2-Product-Readme-3.pdf, last access: 30 June 2018.
Dawson, G. J. and Bamber, J. L.: Antarctic Grounding Line mapping from CryoSat-2 Radar Altimetry, Geophys. Res. Lett., 44, 11886–11893, https://doi.org/10.1002/2017gl075589, 2017.
de Q. Robin, G.: Mapping the Antarctic ice sheet by satellite altimetry, Can. J. Earth Sci., 3, 893–901, https://doi.org/10.1139/e66-072, 1966.
European Space Agency (ESA): FDR4ALT Land-Ice Thematic Data Product, Version 1.0, ESA [data set], https://earth.esa.int/eogateway/catalog/tdp-for-land-ice (last access: 22 July 2025), 2023.
FDR4ALT team: FDR4ALT Detailed Processing Model Document, https://earth.esa.int/documents/d/earth-online/fdr4alt-detailed-processing-model, 5 June 2023.
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014.
Hogg, A. E., Shepherd, A., Gilbert, L., Muir, A., and Drinkwater, M. R.: Mapping ice sheet grounding lines with CryoSat-2, Adv. Space Res., 62, 1191–1202, https://doi.org/10.1016/j.asr.2017.03.008, 2018.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Huang, Q., McMillan, M., Muir, A., Phillips, J., and Slater, T.: Multipeak retracking of radar altimetry waveforms over ice sheets, Remote Sens. Environ., 303, 114020, https://doi.org/10.1016/j.rse.2024.114020, 2024.
The IMBIE Team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018
The IMBIE Team: Mass balance of the Greenland Ice Sheet from 1992 to 2018, Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2019.
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A., and Slater, T.: Net retreat of Antarctic glacier grounding lines, Nat. Geosci., 11, 258–262, https://doi.org/10.1038/s41561-018-0082-z, 2018.
Krabill, W. B., Thomas, R. H., Martin, C. F., Swift, R. N., and Frederick, E. B.: Accuracy of airborne laser altimetry over the Greenland ice sheet, Int. J. Remote Sens., 16, 1211–1222, https://doi.org/10.1080/01431169508954472, 1995.
Li, W., Slobbe, C., and Lhermitte, S.: A leading-edge-based method for correction of slope-induced errors in ice-sheet heights derived from radar altimetry, The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022, 2022.
Martin, C. F., Krabill, W. B., Manizade, S. S., Russell, R. L., Sonntag, J. G., Swift, R. N., and Yungel, J. K.: Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment, Goddard Space Flight Center, https://ntrs.nasa.gov/api/citations/20120008479/downloads/20120008479.pdf (last access: 23 July 2025), 2012.
McMillan, M., Corr, H., Shepherd, A., Ridout, A., Laxon, S., and Cullen, R.: Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes, Geophys. Res. Lett., 40, 4321–4327, https://doi.org/10.1002/grl.50689, 2013.
McMillan, M., Shepherd, A., Sundal, A., Briggs, K., Muir, A., Ridout, A., Hogg, A., and Wingham, D.: Increased ice losses from Antarctica detected by CryoSat-2, Geophys. Res. Lett., 41, 3899–3905, https://doi.org/10.1002/2014gl060111, 2014.
McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W. K., Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg, W. J., Ligtenberg, S., Horwath, M., Groh, A., Muir, A., and Gilbert, L.: A high-resolution record of Greenland mass balance. Geophys. Res. Lett., 43, 7002–7010, https://doi.org/10.1002/2016gl069666, 2016.
McMillan, M., Muir, A., Shepherd, A., Escolà, R., Roca, M., Aublanc, J., Thibaut, P., Restano, M., Ambrozio, A., and Benveniste, J.: Sentinel-3 Delay-Doppler altimetry over Antarctica, The Cryosphere, 13, 709–722, https://doi.org/10.5194/tc-13-709-2019, 2019.
McMillan, M., Muir, A., and Donlon, C.: Brief communication: Ice sheet elevation measurements from the Sentinel-3A and Sentinel-3B tandem phase, The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, 2021.
Milligan, D., Gratadour, J., Emanuelli, P. P., Diekmann, F., Mesples, D., Lerch, J., Bozzi, V., and Lengert, W.: ERS-2 Ground Segment and Operations evolution, in: Space Ops 2008 Conference, Heidelberg, Germany, 12–16 May 2008, https://doi.org/10.2514/6.2008-3472, 2008.
Moholdt, G., Nuth, C., Hagen, J. O., and Kohler, J.: Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry, Remote Sen. Environ., 114, 2756–2767, https://doi.org/10.1016/j.rse.2010.06.008, 2010.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Otosaka, I., Shepherd, A., and McMillan, M.: Ice sheet elevation change in West Antarctica from Ka-Band satellite Radar Altimetry, Geophys. Res. Lett., 46, 13135–13143, https://doi.org/10.1029/2019gl084271, 2019.
Otten, X. and Visser, P.: ERS orbit validation report, https://earth.esa.int/eogateway/documents/20142/37627/ERS-Orbit-Validation-Report.pdf (last access: 23 July 2025), 2019.
Peacock, N. R.: Arctic sea ice and ocean topography from satellite altimetry, PhD Thesis, University College London, https://discovery.ucl.ac.uk/id/eprint/10100088 (last access: 23 July 2025), 1998.
Picot, N., Marechal C., Couhert A., Desai S., Scharroo R., and Egido A.: Jason-3 Products Handbook, SALP-MU-M-OP-16118-CN, https://www.ospo.noaa.gov/Products/documents/hdbk_j3.pdf, last access: September 2018.
Piras, F., Daguzé J. A., Fréry M. L., Roinard H., Ollivier A., Quet V., Calmettes B., McMillan M., Picard B., Fell F., Bennartz R., Fleury S., Nino F., Salila H., Tarpanelli A.: FDR4ALT Product User Guide, CLS-ENV-MU-23-0237, https://earth.esa.int/eogateway/documents/d/earth-online/fdr4alt-products-user-guide, last access: October 2023.
Poisson, J., Quartly, G. D., Kurekin, A. A., Thibaut, P., Hoang, D., and Nencioli, F.: Development of an ENVISAT Altimetry processor providing sea level continuity between open ocean and Arctic leads, IEEE T. Geosci. Remote, 56, 5299–5319, https://doi.org/10.1109/tgrs.2018.2813061, 2018.
Porter, C., Morin, P., Howat, I., Noh, M. J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M. Jr., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Version 3, Harvard Dataverse [data set] https://doi.org/10.7910/dvn/ohhukh, 2018.
Pörtner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. (Eds.): IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157964, 2019.
Roca, M., Laxon, S., and Zelli, C.: The EnViSAT RA-2 instrument design and tracking performance, IEEE T. Geosci. Remote, 47, 3489–3506, https://doi.org/10.1109/tgrs.2009.2020793, 2009.
Roemer, S., Legresy, B., Horwath, M., and Dietrich, R.: Refined analysis of radar altimetry data applied to the region of the subglacial Lake Vostok/Antarctica, Remote Sens. Environ., 106, 269–284, https://doi.org/10.1016/j.rse.2006.02.026, 2007.
Schröder, L., Horwath, M., Dietrich, R., Helm, V., van den Broeke, M. R., and Ligtenberg, S. R. M.: Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry, The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, 2019.
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater, T., Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in Antarctic ice sheet elevation and mass, Geophy. Res. Lett., 46, 8174–8183, https://doi.org/10.1029/2019gl082182, 2019.
Simeon, M., Frery M. L., Daguze J. A., and Piras F.: FDR4ALT validation report document, CLS-ENV-NT-23-0426, https://earth.esa.int/documents/d/earth-online/fdr4alt-validation-report-fdr (last access: 4 July 2023), 2023.
Simonsen, S. B., Barletta, V. R., Colgan, W. T., and Sørensen, L. S.: Greenland Ice Sheet Mass Balance (1992–2020) from calibrated Radar Altimetry, Geophys. Res. Lett., 48, e2020GL091216, https://doi.org/10.1029/2020gl091216, 2021.
Slater, T., Shepherd, A., McMillan, M., Muir, A., Gilbert, L., Hogg, A. E., Konrad, H., and Parrinello, T.: A new digital elevation model of Antarctica derived from CryoSat-2 altimetry, The Cryosphere, 12, 1551–1562, https://doi.org/10.5194/tc-12-1551-2018, 2018.
Slater, T., Shepherd, A., McMillan, M., Leeson, A., Gilbert, L., Muir, A., Kuipers Munneke, P., Noël, B., Fettweis, X., van den Broeke, M., and Briggs, K.: Increased variability in Greenland Ice Sheet runoff from satellite observations, Nat. Commun., 12, 6069, https://doi.org/10.1038/s41467-021-26229-4, 2021.
Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., Forsberg, R., and Hvidberg, C. S.: Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density, The Cryosphere, 5, 173–186, https://doi.org/10.5194/tc-5-173-2011, 2011.
Sørensen, L. S., Simonsen, S. B., Forsberg, R., Khvorostovsky, K., Meister, R., and Engdahl, M. E.: 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry, Earth Planet. Sc. Lett., 495, 234–241, https://doi.org/10.1016/j.epsl.2018.05.015, 2018.
Soussi, B., Urien S., Picard B., Muir A., Roca M., and Garcia P.: Envisat Altimetry Level 2 Product Handbook, CLS-ESLF-18-0003, https://earth.esa.int/eogateway/documents/20142/37627/Envisat-RA-2-Level-2-Product-Handbook.pdf, last access: March 2018.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, Springer New York, NY, https://doi.org/10.1007/978-0-387-21706-2, 2002.
Wingham, D. J., Rapley, C. G., and Griffiths, H.: New techniques in satellite altimeter tracking systems, in: Proceedings of the IGARSS Symposium, Zurich, Switzerland, 8–11 September 1986, https://www.researchgate.net/profile/Chris-Rapley/publication/269518510_New_Techniques_in_Satellite_Altimeter_Tracking_Systems/links/55b5e51a08aec0e5f436c3f7/New-Techniques-in-Satellite-Altimeter-Tracking-Systems.pdf (last access: 22 July 2025), 1986.
Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J., and Shum, C. K.: Antarctic Elevation Change from 1992 to 1996, Science, 282, 456–458, https://doi.org/10.1126/science.282.5388.456, 1998.
Wingham, D. J., Siegert, M. J., Shepherd, A., and Muir, A. S.: Rapid discharge connects Antarctic subglacial lakes, Nature, 440, 1033–1036, https://doi.org/10.1038/nature04660, 2006a.
Wingham, D. J., Shepherd, A., Muir, A., and Marshall, G. J.: Mass balance of the Antarctic ice sheet, Philos. T. R. Soc. A, 364, 1627–1635, https://doi.org/10.1098/rsta.2006.1792, 2006b.
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C.: Mass gains of the Antarctic ice sheet exceed losses, J. Glaciol., 61, 1019–1036, https://doi.org/10.3189/2015jog15j071, 2015.
Short summary
Increasing melting rates of the polar ice sheets are contributing more and more to sea level rise. Due to the remoteness and expanse of ice sheets, these changes are mainly observed using satellites. However, the accuracy of these measurements depends on the processing of these datasets. Here we use advanced algorithms to provide improved historical ice sheet elevation measurements, derived from satellite altimeters flying between 1991 and 2012, which will benefit cryospheric applications.
Increasing melting rates of the polar ice sheets are contributing more and more to sea level...