Articles | Volume 19, issue 7
https://doi.org/10.5194/tc-19-2615-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-2615-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of ice structures and ocean warming in Milne Fiord
Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
Bernard E. Laval
Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
Derek Mueller
Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada
Yulia Antropova
Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada
Andrew K. Hamilton
Department of Earth and Atmospheric Sciences, The University of Alberta, Edmonton, AB, Canada
Related authors
No articles found.
Tyler Pelle, Paul G. Myers, Andrew Hamilton, Matthew Mazloff, Krista Soderlund, Lucas Beem, Donald D. Blankenship, Cyril Grima, Feras Habbal, Mark Skidmore, and Jamin S. Greenbaum
EGUsphere, https://doi.org/10.5194/egusphere-2024-3751, https://doi.org/10.5194/egusphere-2024-3751, 2024
Short summary
Short summary
Here, we develop and run a high resolution ocean model of Jones Sound from 2003–2016 and characterize circulation into, out of, and within the sound as well as associated sea ice and productivity cycles. Atmospheric and ocean warming drive sea ice decline, which enhance biological productivity due to the increased light availability. These results highlight the utility of high resolution models in simulating complex waterways and the need for sustained oceanographic measurements in the sound.
Christine F. Dow, Derek Mueller, Peter Wray, Drew Friedrichs, Alexander L. Forrest, Jasmin B. McInerney, Jamin Greenbaum, Donald D. Blankenship, Choon Ki Lee, and Won Sang Lee
The Cryosphere, 18, 1105–1123, https://doi.org/10.5194/tc-18-1105-2024, https://doi.org/10.5194/tc-18-1105-2024, 2024
Short summary
Short summary
Ice shelves are a key control on Antarctic contribution to sea level rise. We examine the Nansen Ice Shelf in East Antarctica using a combination of field-based and satellite data. We find the basal topography of the ice shelf is highly variable, only partially visible in satellite datasets. We also find that the thinnest region of the ice shelf is altered over time by ice flow rates and ocean melting. These processes can cause fractures to form that eventually result in large calving events.
Reza Zeinali-Torbati, Ian D. Turnbull, Rocky S. Taylor, and Derek Mueller
The Cryosphere, 15, 5601–5621, https://doi.org/10.5194/tc-15-5601-2021, https://doi.org/10.5194/tc-15-5601-2021, 2021
Short summary
Short summary
Using the reanalysis datasets and the Canadian Ice Island Drift, Deterioration and Detection database, a probabilistic model was developed to quantify ice island fracture probability under various atmospheric and oceanic conditions. The model identified water temperature as the most dominant variable behind ice island fracture events, while ocean currents played a minor role. The developed model offers a predictive capability and could be of particular interest to offshore and marine activities.
Cited articles
Antropova, Y. K., Mueller, D., Samsonov, S. V., Komarov, A. S., Bonneau, J., and Crawford, A. J.: Grounding-line retreat of Milne Glacier, Ellesmere Island, Canada over 1966–2023 from satellite, airborne, and ground radar data, Remote Sens. Environ., 315, 114478, https://doi.org/10.1016/j.rse.2024.114478, 2024. a, b, c, d, e
Azaneu, M., Webber, B., Heywood, K. J., Assmann, K. M., Dotto, T. S., and Abrahamsen, E. P.: Influence of shelf break processes on the transport of warm waters onto the eastern Amundsen Sea continental shelf, J. Geophys. Res.-Oceans, 128, e2022JC019535, https://doi.org/10.1029/2022JC019535, 2023. a
Benn, D. I., Luckman, A., Åström, J. A., Crawford, A. J., Cornford, S. L., Bevan, S. L., Zwinger, T., Gladstone, R., Alley, K., Pettit, E., and Bassis, J.: Rapid fragmentation of Thwaites Eastern Ice Shelf, The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, 2022. a
Bhatia, M. P., Waterman, S., Burgess, D. O., Williams, P. L., Bundy, R. M., Mellett, T., Roberts, M., and Bertrand, E. M.: Glaciers and nutrients in the Canadian Arctic Archipelago marine system, Global Biogeochem. Cycles, 35, e2021GB006976, https://doi.org/10.1029/2021GB006976, 2021. a
Bonneau, J., Laval, B. E., Mueller, D., Hamilton, A. K., Friedrichs, A. M., and Forrest, A. L.: Winter dynamics in an epishelf lake: quantitative mixing estimates and ice shelf basal channel considerations, J. Geophys. Res.-Oceans, 126, e2021JC017324, https://doi.org/10.1029/2021JC017324, 2021. a, b, c
Bonneau, J., Laval, B. E., Mueller, D., Hamilton, A. K., and Antropova, Y.: Heat fluxes in a glacial fjord: The role of buoyancy-driven circulation and offshore forcing, Geophys. Res. Lett., 51, e2024GL111242, https://doi.org/10.1029/2024GL111242, 2024a. a, b, c
Bonneau, J., Mueller, D., and Laval, B. E.: Numerical Modelling of Milne Fiord 2011–2019, FRDR [data set], https://doi.org/10.20383/103.0887, 2024c. a
Bradley, A., Bett, D., Dutrieux, P., De Rydt, J., and Holland, P. R.: The influence of Pine Island Ice Shelf calving on basal melting, J. Geophys. Res.-Oceans, 127, e2022JC018621, https://doi.org/10.1029/2022JC018621, 2022. a, b, c, d
Braun, C., Hardy, D. R., Bradley, R. S., and Sahanatien, V.: Surface mass balance of the Ward Hunt Ice Rise and Ward Hunt Ice Shelf, Ellesmere Island, Nunavut, Canada, J. Geophys. Res.-Atmos., 109, D22110, https://doi.org/10.1029/2004JD004560, 2004. a, b
Cai, Z., You, Q., Wu, F., Chen, H. W., Chen, D., and Cohen, J.: Arctic warming revealed by multiple CMIP6 models: Evaluation of historical simulations and quantification of future projection uncertainties, J. Climate, 34, 4871–4892, 2021. a
Carr, J. R., Stokes, C. R., and Vieli, A.: Threefold increase in marine-terminating outlet glacier retreat rates across the Atlantic Arctic: 1992–2010, Ann. Glaciol., 58, 72–91, 2017. a
Copernicus Climate Change Services, C. D. S.: ORAS5 global ocean reanalysis monthly data from 1958 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.67e8eeb7, 2021. a
Copland, L., Mueller, D., and Weir, L.: Rapid loss of the Ayles Ice Shelf, Ellesmere Island, Canada, Geophys. Res. Lett., 34, L21501, https://doi.org/10.1029/2007GL031809, 2007. a, b, c
Copland, L., Mortimer, C., White, A., McCallum, M. R., and Mueller, D.: Factors contributing to recent Arctic ice shelf losses, in: Arctic ice shelves and ice islands, edited by: Copland, L. and Mueller, D., 263–285, Springer, 2017. a
Davison, B., Cowton, T., Cottier, F. R., and Sole, A.: Iceberg melting substantially modifies oceanic heat flux towards a major Greenlandic tidewater glacier, Nat. Commun., 11, 5983, https://doi.org/10.1038/s41467-020-19805-7, 2020. a
De Rydt, J., Holland, P. R., Dutrieux, P., and Jenkins, A.: Geometric and oceanographic controls on melting beneath Pine Island Glacier, J. Geophys. Res.-Oceans, 119, 2420–2438, 2014. a
England, J. H., Evans, D. J., and Lakeman, T. R.: Holocene history of Arctic ice shelves, in: Arctic ice shelves and ice islands, edited by: Copland, L. and Mueller, D., 185–205, Springer, 2017. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Glasser, N. and Scambos, T. A.: A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse, J. Glaciol., 54, 3–16, 2008. a
Greene, C. A., Gardner, A. S., Wood, M., and Cuzzone, J. K.: Ubiquitous acceleration in Greenland Ice Sheet calving from 1985 to 2022, Nature, 625, 523–528, 2024. a
Hager, A. O., Sutherland, D. A., and Slater, D. A.: Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers, The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024, 2024. a
Hamilton, A. K., Laval, B. E., Mueller, D. R., Vincent, W. F., and Copland, L.: Dynamic response of an Arctic epishelf lake to seasonal and long-term forcing: implications for ice shelf thickness, The Cryosphere, 11, 2189–2211, https://doi.org/10.5194/tc-11-2189-2017, 2017. a, b
Hamilton, A. K., Mueller, D., Bonneau, J., and Laval, B. E.: Milne Fiord currents from ADCP (Acoustic Doppler Current Profiler), Polar Data Catalogue [data set], https://doi.org/10.21963/13345, 2024. a
Hill, E. A., Carr, J. R., and Stokes, C. R.: A review of recent changes in major marine-terminating outlet glaciers in Northern Greenland, Front. Earth Sci., 4, 111, https://doi.org/10.3389/feart.2016.00111, 2017. a, b, c
Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H., and Lyberth, B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters, Nat. Geosci., 1, 659–664, 2008. a
Holmes, F. A., Kirchner, N., Prakash, A., Stranne, C., Dijkstra, S., and Jakobsson, M.: Calving at Ryder glacier, northern Greenland, J. Geophys. Res.-Earth Surf., 126, e2020JF005872, https://doi.org/10.1029/2020JF005872, 2021. a
Jackson, R. H., Nash, J. D., Kienholz, C., Sutherland, D. A., Amundson, J. M., Motyka, R. J., Winters, D., Skyllingstad, E., and Pettit, E. C.: Meltwater intrusions reveal mechanisms for rapid submarine melt at a tidewater glacier, Geophys. Res. Lett., 47, e2019GL085335, https://doi.org/10.1029/2019GL085335, 2020. a
Jahn, A., Holland, M. M., and Kay, J. E.: Projections of an ice-free Arctic Ocean, Nat. Rev. Earth Environ., 5, 164–176, 2024. a
Jakob, L. and Gourmelen, N.: Glacier mass loss between 2010 and 2020 dominated by atmospheric forcing, Geophys. Res. Lett., 50, e2023GL102954, https://doi.org/10.1029/2023GL102954, 2023. a
Jakobsson, M., Mayer, L. A., Nilsson, J., Stranne, C., Calder, B., O’Regan, M., Farrell, J. W., Cronin, T. M., Brüchert, V., Chawarski, J., Eriksson, B., Jonas, Fredriksson, J., Gemery, L., lueder, A., Holmes, F. A., Jerram, K., Kirchner, N., Mix, A., Muchowski, J., Prakash, A., Reilly, B., Thornton, B., Ulfsbo, A., Weidner, E., Åkesson, H., Handl, T., Ståhl, E., Boze, L.-G., Reed, S., West, G., and Padman, J.: Ryder Glacier in northwest Greenland is shielded from warm Atlantic water by a bathymetric sill, Commun. Earth Environ., 1, 45, https://doi.org/10.1038/s43247-020-00043-0, 2020. a, b
Jeffries, M. O.: Glaciers and the morphology and structure of Milne ice shelf, Ellesmere Island, NWT, Canada, Arct. Alp. Res., 18, 397–405, 1986. a
Jeffries, M. O.: Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics, Rev. Geophys., 30, 245–267, 1992. a
Johnson, H., Münchow, A., Falkner, K., and Melling, H.: Ocean circulation and properties in Petermann Fjord, Greenland, J. Geophys. Res.-Oceans, 116, C01003, https://doi.org/10.1029/2010JC006519, 2011. a
Joughin, I., Shapero, D., Smith, B., Dutrieux, P., and Barham, M.: Ice-shelf retreat drives recent Pine Island Glacier speedup, Sci. Adv., 7, eabg3080, https://doi.org/10.1126/sciadv.abg3080, 2021. a
Kochtitzky, W. and Copland, L.: Retreat of Northern Hemisphere marine-terminating glaciers, 2000–2020, Geophys. Res. Lett., 49, e2021GL096501, https://doi.org/10.1029/2021GL096501, 2022. a, b, c
Losch, M.: Modeling ice shelf cavities in a z coordinate ocean general circulation model, J. Geophys. Res.-Oceans, 113, C08043, https://doi.org/10.1029/2007JC004368, 2008. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766, 1997. a
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell, Nature, 558, 383–389, 2018. a
Millan, R., Mouginot, J., and Rignot, E.: Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015, Environ. Res. Lett., 12, 024016, https://doi.org/10.1088/1748-9326/aa5b04, 2017. a, b
Millan, R., Mouginot, J., Derkacheva, A., Rignot, E., Milillo, P., Ciraci, E., Dini, L., and Bjørk, A.: Ongoing grounding line retreat and fracturing initiated at the Petermann Glacier ice shelf, Greenland, after 2016, The Cryosphere, 16, 3021–3031, https://doi.org/10.5194/tc-16-3021-2022, 2022. a, b, c, d, e
Millan, R., Jager, E., Mouginot, J., Wood, M., Larsen, S., Mathiot, P., Jourdain, N., and Bjørk, A.: Rapid disintegration and weakening of ice shelves in North Greenland, Nat. Commun., 14, 6914, https://doi.org/10.1038/s41467-023-42198-2, 2023. a
Morlighem, M., Wood, M., Seroussi, H., Choi, Y., and Rignot, E.: Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge, The Cryosphere, 13, 723–734, https://doi.org/10.5194/tc-13-723-2019, 2019. a
Motyka, R. J., Truffer, M., Fahnestock, M., Mortensen, J., Rysgaard, S., and Howat, I.: Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat, J. Geophys. Res.-Earth Surf., 116, F01007, https://doi.org/10.1029/2009JF001632, 2011. a
Mouginot, J., Rignot, E., Bjørk, A. A., Van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, 2019. a
Mueller, D., Vincent, W. F., and Jeffries, M. O.: Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake, Geophys. Res. Lett., 30, 2031, https://doi.org/10.1029/2003GL017931, 2003. a, b
Mueller, D., Hamilton, A. K., Bonneau, J., Friedrichs, D. M., Rajewicz, J. S., White, A., Copland, L., Garbo, A., Richer-McCallum, M., Antropova, Y., Crocker, G., de Jong, T., Graves, K., Kim, J., Brenner, S., Wilson, N., Wray, P., Xu, K., Mortimer, C., Pope, S., Forrest, A., and Laval, B. E.: Milne Fiord CTD (Conductivity, Temperature, Depth) profiles, 2008–2019, Polar Data Catalogue [data set], https://doi.org/10.21963/12102, 2021a. a
Mueller, D., Hamilton, A. K., Bonneau, J., and Laval, B. E.: Milne Fiord Oceanographic Mooring, 2011–2019, Polar Data Catalogue [data set], https://doi.org/10.21963/12101, 2021b. a
Mueller, D., Bonneau, J., Hamilton, A. K., Antropova, Y., Forrest, A. L., and Laval, B. E.: Milne Fiord CTD (Conductivity, Temperature, Depth) profiles, Polar Data Catalogue [data set], https://doi.org/10.21963/13383, 2024. a
Noël, B., Van De Berg, W. J., Lhermitte, S., Wouters, B., Schaffer, N., and van den Broeke, M. R.: Six decades of glacial mass loss in the Canadian Arctic Archipelago, J. Geophys. Res.-Earth Surf., 123, 1430–1449, 2018. a
Ochwat, N., Scambos, T., Fahnestock, M., and Stammerjohn, S.: Characteristics, recent evolution, and ongoing retreat of Hunt Fjord Ice Shelf, northern Greenland, J. Glaciol., 69, 57–70, 2023. a
Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F., and Hale, R.: IceBridge MCoRDS L2 Ice Thickness, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/GDQ0CUCVTE2Q, 2010. a
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P.: ArcticDEM, Harvard Dataverse [data set], 1, 2018–2030, 2018. a
Richer-McCallum, M.: Analysis of ice types along the northern coast of Ellesmere Island, Nunavut, Canada, and their relationship to Synthetic Aperture Radar (SAR) backscatter, Master's thesis, Carleton University, 2015. a
Rignot, E.: Hinge-line migration of Petermann Gletscher, north Greenland, detected using satellite-radar interferometry, J. Glaciol., 44, 469–476, 1998. a
Rignot, E., Xu, Y., Menemenlis, D., Mouginot, J., Scheuchl, B., Li, X., Morlighem, M., Seroussi, H., den Broeke, M. v., Fenty, I., Cai, C., An, L., and de Fleurian, B.: Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades, Geophys. Res. Lett., 43, 6374–6382, 2016. a, b, c, d, e, f, g, h, i
Rosevear, M. G., Gayen, B., Vreugdenhil, C. A., and Galton-Fenzi, B. K.: How Does the Ocean Melt Antarctic Ice Shelves?, Annu. Rev. Marine Sci., 17, 325–353, 2025. a
Scambos, T. A., Bohlander, J., Shuman, C. A., and Skvarca, P.: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophys. Res. Lett., 31, L18402, https://doi.org/10.1029/2004GL020670, 2004. a
Schaffer, J., von Appen, W.-J., Dodd, P. A., Hofstede, C., Mayer, C., de Steur, L., and Kanzow, T.: Warm water pathways toward Nioghalvfjerdsfjorden Glacier, Northeast Greenland, J. Geophys. Res.-Oceans, 122, 4004–4020, 2017. a
Schaffer, J., Kanzow, T., von Appen, W.-J., von Albedyll, L., Arndt, J. E., and Roberts, D. H.: Bathymetry constrains ocean heat supply to Greenland’s largest glacier tongue, Nat. Geosci., 13, 227–231, 2020. a
Si, Y., Stewart, A. L., Silvano, A., and Naveira Garabato, A. C.: Antarctic Slope Undercurrent and onshore heat transport driven by ice shelf melting, Sci. Adv., 10, eadl0601, https://doi.org/10.1126/sciadv.adl0601, 2024. a
Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H., Fettweis, X., and Holte, J.: Estimating Greenland tidewater glacier retreat driven by submarine melting, The Cryosphere, 13, 2489–2509, https://doi.org/10.5194/tc-13-2489-2019, 2019. a
Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164, 1963. a
Steiger, N., Darelius, E., Kimura, S., Patmore, R. D., and Wåhlin, A.: The dynamics of a barotropic current impinging on an ice front, J. Phys. Oceanogr., 52, 2957–2973, 2022. a
Straneo, F., Sutherland, D. A., Holland, D. M., Gladish, C., Hamilton, G. S., Johnson, H. L., Rignot, E., Xu, Y., and Koppes, M.: Characteristics of ocean waters reaching Greenland's glaciers, Ann. Glaciol., 53, 202–210, 2012. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, 2012. a
Thomas, R. H. and Bentley, C. R.: A model for Holocene retreat of the West Antarctic ice sheet, Quaternary Res., 10, 150–170, 1978. a
Timmermans, M.-L. and Marshall, J.: Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate, J. Geophys. Res.-Oceans, 125, e2018JC014378, https://doi.org/10.1029/2018JC014378, 2020. a
Van Wychen, W., Davis, J., Burgess, D. O., Copland, L., Gray, L., Sharp, M., and Mortimer, C.: Characterizing interannual variability of glacier dynamics and dynamic discharge (1999–2015) for the ice masses of Ellesmere and Axel Heiberg Islands, Nunavut, Canada, J. Geophys. Res.-Earth Surf., 121, 39–63, 2016. a, b
Veillette, J., Mueller, D., Antoniades, D., and Vincent, W. F.: Arctic epishelf lakes as sentinel ecosystems: Past, present and future, J. Geophys. Res.-Biogeo., 113, G04014, https://doi.org/10.1029/2008JG000730, 2008. a
Veillette, J., Lovejoy, C., Potvin, M., Harding, T., Jungblut, A. D., Antoniades, D., Chénard, C., Suttle, C. A., and Vincent, W. F.: Milne Fiord epishelf lake: A coastal Arctic ecosystem vulnerable to climate change, Écoscience, 18, 304–316, 2011. a
Vincent, W. F. and Mueller, D.: Witnessing ice habitat collapse in the Arctic, Science, 370, 1031–1032, 2020. a
Vincent, W. F., Gibson, J., and Jeffries, M.: Ice-shelf collapse, climate change, and habitat loss in the Canadian high Arctic, Polar Rec., 37, 133–142, 2001. a
White, P. L., Bertrand, E. M., Spence, J. S., Cavaco, M. A., Parrott, C., Waterman, S., Rowland, E., Roberts, M. E., Noah, T., Mellett, T., Hallé, D., Hamilton, A. K., Bundy, R. M., Didier, D., and Bhatia, M. P.: Shifting phytoplankton ecological strategies along a continuum of tidewater glacier retreat, ISME Communications, 5, ycaf045, https://doi.org/10.1093/ismeco/ycaf045, 2025. a
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M., Cai, C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J., Noël, B., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.: Ocean forcing drives glacier retreat in Greenland, Sci. Adv., 7, eaba7282, https://doi.org/10.1126/sciadv.aba7282, 2021. a
Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., and Flexas, M. M.: Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations, Geophys. Res. Lett., 40, 4648–4653, 2013. a
Zhao, K. X., Stewart, A. L., and McWilliams, J. C.: Sill-influenced exchange flows in ice shelf cavities, J. Phys. Oceanogr., 49, 163–191, 2019. a
Zhao, K. X., Stewart, A. L., and McWilliams, J. C.: Geometric constraints on glacial fjord–shelf exchange, J. Phys. Oceanogr., 51, 1223–1246, 2021. a
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019. a
Short summary
Arctic glaciers and ice shelves are retreating due to warmer oceans, but the link between ocean warming and ice loss is complex. We used a numerical model to study these processes in Milne Fiord, a unique site with an ice shelf and a tidewater glacier. Our results show that submarine melting is an important thinning mechanism and that glacier retreat will continue for decades. This research highlights the ongoing and future changes in Arctic ice structures.
Arctic glaciers and ice shelves are retreating due to warmer oceans, but the link between ocean...