Articles | Volume 19, issue 6
https://doi.org/10.5194/tc-19-2067-2025
https://doi.org/10.5194/tc-19-2067-2025
Research article
 | 
19 Jun 2025
Research article |  | 19 Jun 2025

Glacial erosion and history of Inglefield Land, northwestern Greenland

Caleb K. Walcott-George, Allie Balter-Kennedy, Jason P. Briner, Joerg M. Schaefer, and Nicolás E. Young

Related authors

New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA
Karlee K. Prince, Jason P. Briner, Caleb K. Walcott, Brooke M. Chase, Andrew L. Kozlowski, Tammy M. Rittenour, and Erica P. Yang
Geochronology, 6, 409–427, https://doi.org/10.5194/gchron-6-409-2024,https://doi.org/10.5194/gchron-6-409-2024, 2024
Short summary
Equilibrium line altitudes of alpine glaciers in Alaska suggest Last Glacial Maximum summer temperature was 2–5 °C lower than during the pre-industrial
Caleb K. Walcott, Jason P. Briner, Joseph P. Tulenko, and Stuart M. Evans
Clim. Past, 20, 91–106, https://doi.org/10.5194/cp-20-91-2024,https://doi.org/10.5194/cp-20-91-2024, 2024
Short summary
Drill-site selection for cosmogenic-nuclide exposure dating of the bed of the Greenland Ice Sheet
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022,https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Cosmogenic ages indicate no MIS 2 refugia in the Alexander Archipelago, Alaska
Caleb K. Walcott, Jason P. Briner, James F. Baichtal, Alia J. Lesnek, and Joseph M. Licciardi
Geochronology, 4, 191–211, https://doi.org/10.5194/gchron-4-191-2022,https://doi.org/10.5194/gchron-4-191-2022, 2022
Short summary

Related subject area

Discipline: Glaciers | Subject: Geomorphology
Tracing ice loss from the Late Holocene to the future in eastern Nuussuaq, central western Greenland
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
The Cryosphere, 19, 1973–1993, https://doi.org/10.5194/tc-19-1973-2025,https://doi.org/10.5194/tc-19-1973-2025, 2025
Short summary
Glacial ring forms on Axel Heiberg Island, Nunavut, Canada
Shannon M. Hibbard, Gordon R. Osinski, Etienne Godin, Chimira Andres, Antero Kukko, Shawn Chartrand, Anna Grau Galofre, A. Mark Jellinek, and Wendy Boucher
The Cryosphere, 19, 1695–1716, https://doi.org/10.5194/tc-19-1695-2025,https://doi.org/10.5194/tc-19-1695-2025, 2025
Short summary
Subglacial and subaerial fluvial sediment transport capacity respond differently to water discharge variations
Ian Delaney, Andrew Tedstone, Mauro A. Werder, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2580,https://doi.org/10.5194/egusphere-2024-2580, 2024
Short summary
In situ 10Be modeling and terrain analysis constrain subglacial quarrying and abrasion rates at Sermeq Kujalleq (Jakobshavn Isbræ), Greenland
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023,https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Asynchronous glacial dynamics of Last Glacial Maximum mountain glaciers in the Ikh Bogd Massif, Gobi Altai mountain range, southwestern Mongolia: aspect control on glacier mass balance
Purevmaa Khandsuren, Yeong Bae Seong, Hyun Hee Rhee, Cho-Hee Lee, Mehmet Akif Sarikaya, Jeong-Sik Oh, Khadbaatar Sandag, and Byung Yong Yu
The Cryosphere, 17, 2409–2435, https://doi.org/10.5194/tc-17-2409-2023,https://doi.org/10.5194/tc-17-2409-2023, 2023
Short summary

Cited articles

Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019. 
Andersen, J. L., Egholm, D. L., Knudsen, M. F., Linge, H., Jansen, J. D., Pedersen, V. K., Nielsen, S. B., Tikhomirov, D., Olsen, J., and Fabel, D.: Widespread erosion on high plateaus during recent glaciations in Scandinavia, Nat. Commun., 9, 830, https://doi.org/10.1038/s41467-018-03280-2, 2018. 
Andersen, J. L., Egholm, D. L., Olsen, J., Larsen, N. K., and Knudsen, M. F.: Topographical evolution and glaciation history of South Greenland constrained by paired 26Al/10Be nuclides, Earth Planet. Sc. Lett., 542, 116300, https://doi.org/10.1016/j.epsl.2020.116300, 2020. 
Andrews, J. T., Clark, P. U., and Stravers, J. A.: The patterns of glacial erosion across the eastern Canadian Arctic, in: Quaternary environments: Eastern Canadian Arctic, Baffin Bay, and West Greenland, edited by: Andrews, J. T., Allen and Unwin, Winchester, Massachusetts, 69–92, ISBN 9781032747187, 1985. 
Andrews, J. T., Milliman, J. D., Jennings, A. E., Rynes, N., and Dwyer, J.: Sediment Thicknesses and Holocene Glacial Marine Sedimentation Rates in Three East Greenland Fjords (ca. 68° N), J. Geol., 102, 669–683, https://doi.org/10.1086/629711, 1994. 
Download
Short summary
Understanding the history and drivers of Greenland Ice Sheet change is important for forecasting future ice sheet retreat. We combined geologic mapping and cosmogenic nuclide measurements to investigate how the Greenland Ice Sheet formed the landscape of Inglefield Land, northwestern Greenland. We found that Inglefield Land was covered by warm- and cold-based ice during multiple glacial cycles and that much of Inglefield Land is an ancient landscape.
Share