Articles | Volume 19, issue 4
https://doi.org/10.5194/tc-19-1695-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-1695-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacial ring forms on Axel Heiberg Island, Nunavut, Canada
Shannon M. Hibbard
CORRESPONDING AUTHOR
Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada 89512, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91101, USA
Gordon R. Osinski
Department of Earth Sciences, University of Western Ontario, London, Ontario, N6A 5B7, Canada
Etienne Godin
Centre d'Études Nordiques, Université Laval, Québec, Québec, G1V 0A6, Canada
Chimira Andres
Lassonde School of Engineering, York University, Toronto, Ontario, M3J 1P3, Canada
Antero Kukko
UNITE Flagship, Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Espoo, Finland
Department of Built environment, Aalto University, Espoo, Finland
Shawn Chartrand
School of Environmental Science, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
Anna Grau Galofre
Laboratoire de Planétologie et Géosciences, CNRS UMR 6112, Nantes, France
A. Mark Jellinek
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, British Columbia, V6T 1Z4, Canada
Wendy Boucher
School of Graduate Studies, Trent University, Peterborough, Ontario, K9L 0G2, Canada
Related authors
No articles found.
Letícia F. Castanheiro, Antonio M. G. Tommaselli, Heikki Hyyti, and Antero Kukko
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 57–62, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-57-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-57-2024, 2024
Samuel Gagnon, Daniel Fortier, Étienne Godin, and Audrey Veillette
The Cryosphere, 18, 4743–4763, https://doi.org/10.5194/tc-18-4743-2024, https://doi.org/10.5194/tc-18-4743-2024, 2024
Short summary
Short summary
Thermo-erosion gullies (TEGs) are one of the most common forms of abrupt permafrost degradation. While their inception has been examined in several studies, the processes of their stabilization remain poorly documented. For this study, we investigated two TEGs in the Canadian High Arctic. We found that, while the formation of a TEG leaves permanent geomorphological scars in landscapes, in the long term, permafrost can recover to conditions similar to those pre-dating the initial disturbance.
Mariana Batista Campos, Leticia Ferrari Castanheiro, Dipal Shah, Yunsheng Wang, Antero Kukko, and Eetu Puttonen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 43–50, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-43-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-43-2024, 2024
Simona F. Ruso, Anna Grau Galofre, and Gordon R. Osinski
EGUsphere, https://doi.org/10.5194/egusphere-2024-164, https://doi.org/10.5194/egusphere-2024-164, 2024
Preprint archived
Short summary
Short summary
We attempt to enhance the current diagnostic criteria for channels formed under ice sheets by applying mathematical relationships commonly used to describe the correlation between river size and discharge. Our analysis reveals a unique relationship between channel size and drainage area size, which we have interpreted to represent formation under an ice sheet. These relationships can be applied to extremely remote environments to discuss glaciation in locations with accessibility constraints.
L. F. Castanheiro, A. M. G. Tommaselli, T. A. C. Garcia, M. B. Campos, and A. Kukko
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 71–77, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-71-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-71-2023, 2023
T. Faitli, T. Hakala, H. Kaartinen, J. Hyyppä, and A. Kukko
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 145–150, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-145-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-145-2023, 2023
Shawn M. Chartrand, A. Mark Jellinek, Marwan A. Hassan, and Carles Ferrer-Boix
Earth Surf. Dynam., 11, 1–20, https://doi.org/10.5194/esurf-11-1-2023, https://doi.org/10.5194/esurf-11-1-2023, 2023
Short summary
Short summary
Rivers with alternating patterns of shallow and deep flows are commonly observed where a river widens and then narrows, respectively. But what if width changes over time? We use a lab experiment to address this question and find it is possible to decrease and then increase river width at a specific location and observe that flows deepen and then shallow consistent with expectations. Our observations can inform river restoration and climate adaptation programs that emphasize river corridors.
Shawn M. Chartrand and David Jon Furbish
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-16, https://doi.org/10.5194/esurf-2021-16, 2021
Preprint withdrawn
Short summary
Short summary
Sediment particles are transported along the bottom of rivers during floods. Descriptions of the transport process are commonly restricted to the strength of the water flow. In our research we use mathematical theory and data from laboratory experiments to explore whether sediment particles colliding with the river bed can help explain our observations of transport. We learn that particle collisions are likely an important component of the transport process and we offer thoughts for future work.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
A. Kukko, H. Kaartinen, G. Osinski, and J. Hyyppä
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 749–756, https://doi.org/10.5194/isprs-annals-V-2-2020-749-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-749-2020, 2020
Anna Grau Galofre, A. Mark Jellinek, Gordon R. Osinski, Michael Zanetti, and Antero Kukko
The Cryosphere, 12, 1461–1478, https://doi.org/10.5194/tc-12-1461-2018, https://doi.org/10.5194/tc-12-1461-2018, 2018
Short summary
Short summary
Water accumulated at the base of ice sheets is the main driver of glacier acceleration and loss of ice mass in Arctic regions. Previously glaciated landscapes sculpted by this water carry information about how ice sheets collapse and ultimately disappear. The search for these landscapes took us to the high Arctic, to explore channels that formed under kilometers of ice during the last ice age. In this work we describe how subglacial channels look and how they helped to drain an ice sheet.
Eliisa S. Lotsari, Mikel Calle, Gerardo Benito, Antero Kukko, Harri Kaartinen, Juha Hyyppä, Hannu Hyyppä, and Petteri Alho
Earth Surf. Dynam., 6, 163–185, https://doi.org/10.5194/esurf-6-163-2018, https://doi.org/10.5194/esurf-6-163-2018, 2018
Short summary
Short summary
This paper analyses the timing of topographical changes of a gravel bed ephemeral river channel during consecutive and moderate- and low-magnitude floods by applying a morphodynamic model calibrated with pre- and post-event surveys using RTK-GPS and mobile laser scanning. The channel acted as a braided river during lower flows but as a meandering river during higher flows. The channel changes can be greater during the long-lasting receding phase than during the rising phase of the floods.
S. Junttila, M. Vastaranta, R. Linnakoski, J. Sugano, H. Kaartinen, A. Kukko, M. Holopainen, H. Hyyppä, and J. Hyyppä
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 81–85, https://doi.org/10.5194/isprs-archives-XLII-3-W3-81-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-81-2017, 2017
Etienne Godin, Daniel Fortier, and Esther Lévesque
Biogeosciences, 13, 1439–1452, https://doi.org/10.5194/bg-13-1439-2016, https://doi.org/10.5194/bg-13-1439-2016, 2016
Short summary
Short summary
Bowl-shaped ice-wedge polygons in permafrost regions can retain snowmelt water and moisture in their center. On Bylot Island (NU, CA), a rapidly developing thermal erosion gully eroded the polygons' ridges, impacting the polygon centers' ground moisture and temperature, plant cover and species. An intact polygon was homogeneous in its center for the aforementioned elements, whereas eroded polygons had a varying response following the breach, with heterogeneity as their new equilibrium state.
Related subject area
Discipline: Glaciers | Subject: Geomorphology
Glacial erosion and history of Inglefield Land, northwest Greenland
Subglacial and subaerial fluvial sediment transport capacity respond differently to water discharge variations
Projected climate change will double the Late Holocene maximum to present ice loss in Central-Western Greenland by 2070
In situ 10Be modeling and terrain analysis constrain subglacial quarrying and abrasion rates at Sermeq Kujalleq (Jakobshavn Isbræ), Greenland
Asynchronous glacial dynamics of Last Glacial Maximum mountain glaciers in the Ikh Bogd Massif, Gobi Altai mountain range, southwestern Mongolia: aspect control on glacier mass balance
Comment on “Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina” by Halla et al. (2021)
Formation of glacier tables caused by differential ice melting: field observation and modelling
High-resolution inventory to capture glacier disintegration in the Austrian Silvretta
Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya
Caleb K. Walcott-George, Allie Balter-Kennedy, Jason P. Briner, Joerg M. Schaefer, and Nicolás E. Young
EGUsphere, https://doi.org/10.5194/egusphere-2024-2983, https://doi.org/10.5194/egusphere-2024-2983, 2024
Short summary
Short summary
Understanding the history and drivers of Greenland Ice Sheet change is important to forecast future ice sheet retreat. We combined geologic mapping and cosmogenic nuclide measurements to investigate how the Greenland Ice Sheet formed the landscape of Inglefield Land, northwest Greenland. We found that Inglefield Land was covered by warm- and cold-based ice during multiple glacial cycles and that much of Inglefield Land is an ancient landscape.
Ian Delaney, Andrew Tedstone, Mauro A. Werder, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2580, https://doi.org/10.5194/egusphere-2024-2580, 2024
Short summary
Short summary
Sediment transport in rivers and under glaciers depends on water velocity and channel width. In rivers, water discharge changes affect flow depth, width, and velocity. Under glaciers, pressurized water changes velocity more than shape. Due to these differences, this study shows that sediment transport under glaciers varies widely and peaks before water flow does, creating a complex relationship. Understanding these dynamics helps interpret sediment discharge from glaciers in different climates.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1770, https://doi.org/10.5194/egusphere-2024-1770, 2024
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (Central-Western Greenland). By > 2070 glacier mass loss may double the rate from the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
Purevmaa Khandsuren, Yeong Bae Seong, Hyun Hee Rhee, Cho-Hee Lee, Mehmet Akif Sarikaya, Jeong-Sik Oh, Khadbaatar Sandag, and Byung Yong Yu
The Cryosphere, 17, 2409–2435, https://doi.org/10.5194/tc-17-2409-2023, https://doi.org/10.5194/tc-17-2409-2023, 2023
Short summary
Short summary
Moraine is an awe-inspiring landscape in alpine areas and stores information on past climate. We measured the timing of moraine formation on the Ih Bogd Massif, southern Mongolia. Here, glaciers move synchronously as a response to changing climate; however, our glacier on the northern slope reached its maximum extent 3 millennia after the southern one. We ran a 2D ice surface model and found that the diachronous behavior of glaciers was real. Aspect also controls the mass of alpine glaciers.
W. Brian Whalley
The Cryosphere, 17, 699–700, https://doi.org/10.5194/tc-17-699-2023, https://doi.org/10.5194/tc-17-699-2023, 2023
Short summary
Short summary
Examination of recent Google Earth images of glaciers and rock glaciers in the
Dry Andeshas sufficient detail to show surface meltwater pools. These pools have exposures of glacier ice that core the rock glaciers with volume loss. Such pools are seen on debris-covered glaciers and rock glaciers worldwide and cast doubt on the
permafrostorigin of rock glaciers.
Marceau Hénot, Vincent J. Langlois, Jérémy Vessaire, Nicolas Plihon, and Nicolas Taberlet
The Cryosphere, 16, 2617–2628, https://doi.org/10.5194/tc-16-2617-2022, https://doi.org/10.5194/tc-16-2617-2022, 2022
Short summary
Short summary
Glacier tables are structures frequently encountered on temperate glaciers. They consist of a rock supported by a narrow ice foot which forms through differential melting of the ice. In this article, we investigate their formation by following their dynamics on the Mer de Glace (the Alps, France). We explain this phenomenon by a combination of the effect of turbulent flux, short-wave flux and direct solar radiation that sets a critical size above which a rock will form a glacier table.
Andrea Fischer, Gabriele Schwaizer, Bernd Seiser, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 15, 4637–4654, https://doi.org/10.5194/tc-15-4637-2021, https://doi.org/10.5194/tc-15-4637-2021, 2021
Short summary
Short summary
Eastern Alpine glaciers have been receding since the Little Ice Age maximum, but until now the majority of glacier margins could be delineated unambiguously. Today the outlines of totally debris-covered glacier ice are fuzzy and raise the discussion if these features are still glaciers. We investigated the fate of glacier remnants with high-resolution elevation models, analyzing also thickness changes in buried ice. In the past 13 years, the 46 glaciers of Silvretta lost one-third of their area.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
Cited articles
Aartolahti, T.: Ring ridge hummocky moraines in northern Finland, Fenn.-Int. J. Geogr., 134, 5–22, 1974.
Åkerman, H. J. and Malmström, B.: Permafrost mounds in the Abisko area, northern Sweden, Geogr. Ann. A, 68, 155–165, https://doi.org/10.1080/04353676.1986.11880169, 1986.
Allen, C. R., O'Brien, R. M. G., and Sheppard, S. M. F.: The chemical and isotopic characteristics of some northeast Greenland surface and pingo waters, Arctic Alpine Res., 8, 297–317, 1976.
Andersen, D. T., Pollard, W. H., McKay, C. P., and Heldmann, J.: Cold springs in permafrost on Earth and Mars, J. Geophys. Res. E, 107, 4-1–4-7 https://doi.org/10.1029/2000je001436, 2002.
Arp, C. D., Jones, B. M., Urban, F. E., and Grosse, G.: Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska, Hydrol. Process., 25, 2422–2438, https://doi.org/10.1002/hyp.8019, 2011.
Balkwill, H. R.: Evolution of Sverdrup Basin, Arctic Canada, AAPG Bull. American Assoc. Pet. Geol., 62, 1004–1028, https://doi.org/10.1306/c1ea4f86-16c9-11d7-8645000102c1865d, 1978.
Bednarski, J. M.: Quaternary history of Axel Heiberg Island bordering Nansen Sound, Northwest Territories, emphasizing the last glacial maximum, Can. J. Earth Sci., 35, 520–533, https://doi.org/10.1139/e97-124, 1998.
Benn, D. and Evans, D.: Glaciers and Glaciation, 2nd ed. Hodder Education, London, UK, https://doi.org/10.4324/9780203785010, 2010.
Blatter, H.: On the thermal regime of an Arctic valley glacier: a study of White Glacier, Axel Heiberg Island, NWT, Canada, J. Glaciol., 33, 114, 200–211, https://doi.org/10.3189/S0022143000008704, 1987.
Bluemle, J. P. and Clayton, L. E. E.: Large‐scale glacial thrusting and related processes in North Dakota, Boreas, 13, 279–299, https://doi.org/10.1111/j.1502-3885.1984.tb01124.x, 1984.
Bluemle, J. P.: Hydrodynamic blowouts in North Dakota, in: Glaciotectonics and mapping glacial deposits, edited by: Aber, J., Canadian Plains Research Centre, University of Regina, 259–266, ISBN 9780889770751, 1993.
Boone, S. J. and Eyles, N.: Geotechnical model for great plains hummocky moraine formed by till deformation below stagnant ice, Geomorphology, 38, 109–124, https://doi.org/10.1016/S0169-555X(00)00072-6, 2001.
Boulton, G. S.: The development of a complex supraglacial moraine at the margin of Sørbreen, Ny Friesland, Vestspitsbergen, J. Glaciol., 6, 717–735, https://doi.org/10.3189/S0022143000019961, 1967.
Boulton, G. S.: Modern Arctic glaciers as depositional models for former ice sheets, J. Geol. Soc. Lond., 128, 361–393, https://doi.org/10.1144/gsjgs.128.4.0361, 1972.
Boulton, G. S. and Caban, P.: Groundwater flow beneath ice sheets: part II – its impact on glacier tectonic structures and moraine formation, Quaternary Sci. Rev., 14, 563–587, https://doi.org/10.1016/0277-3791(95)00058-W, 1995.
Boyes, B. M., Pearce, D. M., and Linch, L. D.: Glacial geomorphology of the Kola Peninsula and Russian Lapland, J, Maps, 17, 497–515, https://doi.org/10.1080/17445647.2021.1970036, 2021.
Boyes, B. M., Pearce, D. M., Linch, L. D., and Nash, D. J.: Younger Dryas and Early Holocene ice-margin dynamics in northwest Russia, Boreas, 53, 376–400, https://doi.org/10.1111/bor.12653, 2024.
Burn, C. R.: Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada, Can. J. Earth Sci., 39, 1281–1298, https://doi.org/10.1139/e02-035, 2002.
Calmels, F., Allard, M., and Delisle, G.: Development and decay of a lithalsa in Northern Quebec: a geomorphological history, Geomorphology, 97, 287–299, https://doi.org/10.1016/j.geomorph.2007.08.013, 2008.
Chartrand, S. M., Jellinek, A. M., Kukko, A., Grau Galofre, A., Osinski, G. R., and Hibbard, S.: High Arctic channel incision modulated by climate change and the emergence of polygonal ground, Nat. Commun., 14, 5297, https://doi.org/10.1038/s41467-023-40795-9, 2023.
Clayton, L.: Karst Topography on Stagnant Glaciers, J. Glaciol., 5, 107–112, https://doi.org/10.3189/S0022143000028628, 1964.
Clayton, L.: Stagnant glacier features of the Missouri Coteau in North Dakota, North Dakota Geological Survey Miscellaneous Series, 30, 25–46, https://hdl.handle.net/2027/uiug.30112026912987 (last access: 12 December 2024), 1967.
Clayton, L. and Moran, S. R.: A glacial process-form model, in: Glacial Geomorphology, edited: Coates, D. R., SUNY-Binghamton Publications in Geomorphology, Binghamton, NY, 89–119, https://doi.org/10.1007/978-94-011-6491-7, 1974.
Clayton, L., Teller, J. T., and Attig, J. W.: Surging of the southwestern part of the Laurentide Ice Sheet, Boreas, 14, 235–241, https://doi.org/10.1111/j.1502-3885.1985.tb00726.x, 1985.
Constable, A. J., Harper, S., Dawson, J., Holsman, K., Mustonen, T., Piepenburg, D., and Rost, B.: Cross-Chapter Paper 6: Polar Regions, in: Climate Change 2022: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2319–2368, https://doi.org/10.1017/9781009325844, 2022.
Coulombe, S., Fortier, D., Lacelle, D., Kanevskiy, M., and Shur, Y.: Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada), The Cryosphere, 13, 97–111, https://doi.org/10.5194/tc-13-97-2019, 2019.
Coxon, P.: A radiocarbon dated early post glacial pollen diagram from a pingo remnant near Millstreet, County Cork, Irish J. Earth Sci., 9–20, https://www.jstor.org/stable/30002257, 1986.
Coxon, P. and O'Callaghan, P.: The distribution and age of pingo remnants in Ireland, in: Periglacial processes and landforms in Britain and Ireland, edited by: Boardman, J., Cambridge University Press, United Kingdom, 195–202, ISBN 9780521169127, 1987.
Demidov, V., Demidov, N., Verkulich, S., and Wetterich, S.: Distribution of pingos on Svalbard, Geomorphology, 412, 108326, https://doi.org/10.1016/j.geomorph.2022.108326, 2022.
Dionne, J. C.: Periglacial features and phenomena in the James Bay area, subarctic Quebec, Geogr. Phys. Quat., 32, 187–247, https://doi.org/10.7202/1000303ar, 1978.
Dredge, L. A., Kerr, D. E., and Wolfe, S. A.: Surface materials and related ground ice conditions, Slave Province, NWT, Canada, Can. J. Earth Sci., 36, 1227–123, https://doi.org/10.1139/e98-087, 1999.
Dyke, A. S. and Evans, D. J.: Ice-marginal terrestrial landsystems: northern Laurentide and Innuitian ice sheet margins, in: Glacial landsystems, edited by: Evans, D. J. A., Arnold, London, 143–165, https://doi.org/10.4324/9780203784976, 2003.
Dyke, A. S., Dredge, L. A., and Hodgson, D. A.: North America deglacial marine- and lake-limit surfaces, in: Geographie Physique et Quaternaire, Presses de l'Universite de Montreal, 155–185, https://doi.org/10.7202/014753ar, 2005.
Ebert, K. and Kleman, J.: Circular moraine features on the Varanger Peninsula, northern Norway, and their possible relation to polythermal ice sheet coverage, Geomorphology, 62, 159–168, https://doi.org/10.1016/j.geomorph.2004.02.009, 2004.
Embleton, C. and King, C. A. M.: Glacial geomorphology. Edward Arnold Publishers Ltd., London, UK, ISBN: 9780713157925, 1975.
Embry, A. and Beauchamp, B.: Chapter 13 Sverdrup Basin, in: Sedimentary Basins of the World, Elsevier, 451–471, https://doi.org/10.1016/S1874-5997(08)00013-0, 2008.
England, J., Atkinson, N., Bednarski, J., Dyke, A. S., Hodgson, D. A., and Cofaigh, C. Ó.: The Innuitian Ice Sheet: configuration, dynamics and chronology, Quaternary Sci. Rev., 25, 689–703, https://doi.org/10.1016/j.quascirev.2005.08.007, 2006.
Environment Canada: Canadian Climate Normals 1981–2010 Station Data, Eureka A station, Nunavut, Government of Canada, http://climate.weather.gc.ca/climate_normals/ (last access: 12 June 2021), 2021.
Esri: “Imagery” [basemap]. Scale Not Given, “World Imagery”, https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9, (last access: 20 June 2020), 2018.
Evans, D. J., Lemmen, D. S., and Rea, B. R.: Glacial landsystems of the southwest Laurentide Ice Sheet: modern Icelandic analogues, J. Quaternary Sci., 14, 673–691, 1999.
Evans, D. J., Young, N. J., and Ó Cofaigh, C.: Glacial geomorphology of terrestrial-terminating fast flow lobes/ice stream margins in the southwest Laurentide Ice Sheet, Geomorphology, 204, 86–113, https://doi.org/10.1016/j.geomorph.2013.07.031, 2014.
Evans, D. J. A.: Controlled moraines: origins, characteristics and palaeoglaciological implications, Quaternary Sci. Rev., 28, 183–208, https://doi.org/10.1016/j.quascirev.2008.10.024, 2009.
Eyles, N.: Facies of supraglacial sedimentation on Icelandic and alpine temperate glaciers, Can. J. Earth Sci., 16, 1341–1361, 1979.
Eyles, N.: Modern Icelandic glaciers as depositionalmodels for “hummocky moraine” in the Scottish Highlands, in: Tills and Related Deposits, edited by: Evenson, E. B., Schluchter, C., and Rabassa, J., Balkema, Rotterdam, 47–59, ISBN-13: 978-9061915119, 1983.
Eyles, N., Boyce, J. I., and Barendregt, R. W.: Hummocky moraine: sedimentary record of stagnant Laurentide Ice Sheet lobes resting on soft beds, Sediment. Geol., 123, 163–174, https://doi.org/10.1016/S0037-0738(98)00129-8, 1999.
Fairbridge, R. W.: Inversion (of topography, relief), in: Geomorphology, Encyclopedia of Earth Science, Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-31060-6_193, 1968.
Flint, R. F.: Glacial and Quaternary Geology, Wiley, ISBN-13: 978-0471264354, 1971.
French, H. M.: Ice cored mounds and patterned ground, Southern Banks Island, Western Canadian Arctic, Geogr. Ann. A, 53, 32–38, https://doi.org/10.1080/04353676.1971.11879832, 1971.
French, H. M. and Harry, D. G.: Observations on buried glacier ice and massive segregated ice, western Arctic coast, Canada, Permafrost Periglac., 1, 31–43, https://doi.org/10.1002/ppp.3430010105, 1990.
Geological Survey of Canada: Surficial geology, western Fosheim Peninsula and eastern Axel Heiberg Island, Nunavut, NTS 49-G and 340-B southwest; Geological Survey of Canada, Canadian Geoscience Map 392 (Surficial Data Model v.2.3.14 conversion of Open File 501), scale 1:125 000, https://doi.org/10.4095/313535, 2022.
Gravenor, C. P. and Kupsch, W. O.: Ice-Disintegration Features in Western Canada, J. Geol., 67, 48–64, https://doi.org/10.1086/626557, 1959.
Gray, J. M.: The Loch Lomond Readvance and contemporaneous sea-levels in Loch Etive and neighbouring areas of western Scotland, Proc. Geol. Assoc., 86, 227–238, https://doi.org/10.1016/S0016-7878(75)80102-7, 1975.
Hallet, B.: Stone circles: Form and soil kinematics, Philos. T. R. Soc. Lond. Ser. A, 371, 20120357, https://doi.org/10.1098/rsta.2012.0357, 2013.
Hallet, B. and Prestrud, S.: Dynamics of periglacial sorted circles in western Spitsbergen, Quaternary Res., 26, 81–99, https://doi.org/10.1016/0033-5894(86)90085-2, 1986.
Ham, N. R. and Attig, J. W.: Ice wastage and landscape evolution along the southern margin of the Laurentide Ice Sheet, north-central Wisconsin, Boreas, 25, 171–186, https://doi.org/10.1111/j.1502-3885.1996.tb00846.x, 1996.
Harris, S. A., French, H. M., Heginbottom, J. A., Johnston, G. H., Ladanyi, B., Sego, D. C., and van Everdingen, R. O.: Glossary of permafrost and related ground-ice terms, Associate Committee on Geotechnical Research, National Research Council of Canada, Ottawa, ACGR-TM-142, 159 pp., https://doi.org/10.4224/20386561, 1988.
Harrison, J. C. and Jackson, M. P. A.: Exposed evaporite diapirs and minibasins above a canopy in central Sverdrup Basin, Axel Heiberg Island, Arctic Canada, Basin Res., 26, 567–596, https://doi.org/10.1111/bre.12037, 2014.
Henkemans, E.: Geochemical Characterization of Groundwaters, Surface Waters and Water-Rock Interaction in an Area of Continuous Permafrost Adjacent to the Greenland Ice Sheet, Kangerlussuaq, Southwest Greenland, Ph.D. thesis, Earth and Environmental Sciences, University of Waterloo, Canada, 308 pp., http://hdl.handle.net/10012/10193 (last access: 12 December 2024), 2016.
Hibbard, S. and Osinski, G.: Ground Penetrating Radar of Mokka Fjord Ring Forms, Axel Heiberg Island, Nunavut, Canada, Zenodo [data set], https://doi.org/10.5281/zenodo.15178607, 2025.
Hibbard, S. M., Osinski, G. R., and Godin, E.: Vermicular Ridge Features on Dundas Harbour, Devon Island, Nunavut, Geomorphology, 395, 107947, https://doi.org/10.1016/j.geomorph.2021.107947, 2021.
Hibbard, S., Kukko, A., and Osinski, G.: Digital Elevation Model and Hillshade of Mokka Fjord Ring Forms on Axel Heiberg Island, Nunavut, Canada, Zenodo [data set], https://doi.org/10.5281/zenodo.15185014, 2025.
Holmes, G. W., Hopkins, D. M., and Foster, H. L.: Pingos in central Alaska, H1-H40, Washington, DC, US Government Printing Office, https://doi.org/10.3133/b1241H, 1968.
Hoppe, G.: Hummocky Moraine Regions with special reference to the interior of Norrbotten, Geogr. Ann., 34, 1–72, https://doi.org/10.2307/520144, 1952.
Hošek, J., Prach, J., Křížek, M., Šída, P., Moska, P., and Pokorný, P.: Buried Late Weichselian thermokarst landscape discovered in the Czech Republic, central Europe, Boreas, 48, 988–1005, https://doi.org/10.1111/bor.12404, 2019.
Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J. C., Wulder, M. A., Pyörälä, J., Liang, X., Yu, X., Wang, Y., Kaartinen, H., Virtanen, J. P., and Hyyppä, J.: Accurate derivation of stem curve and volume using backpack mobile laser scanning, ISPRS J. Photogramm. Remote Sens., 161, 246–262, https://doi.org/10.1016/j.isprsjprs.2020.01.018, 2020.
Jennings, C. E.: Terrestrial ice streams – a viewfromthe lobe, Geomorphology, 75, 100–124, https://doi.org/10.1016/j.geomorph.2005.05.016, 2006.
Johnson, M. D. and Clayton, L.: Chapter 10: Supraglacial landsystems in lowland terrain, edited by: Evans, D. J. A., in: Glacial Landsystems, London, 228–258, https://doi.org/10.4324/9780203784976, 2003.
Johnson, M. D., Mickelson, D. M., Clayton, L., and Attig, J. W.: Composition and genesis of glacial hummocks, western Wisconsin, USA, Boreas, 24, 97–116, https://doi.org/10.1111/j.1502-3885.1995.tb00630.x, 1995.
Johnson, W. H. and Menzies, J.: Supraglacial and ice-marginal deposits and landforms, in: Modern and Past Glacial Environments, edited by: Menzies, J., Butterworth-Heinemann, 317–333, https://doi.org/10.1016/B978-075064226-2/50013-1, 2002.
Jorgenson, M. T. and Shur, Y.: Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle, J. Geophys. Res., 112, F02S17, https://doi.org/10.1029/2006JF000531, 2007.
Kääb, A., Girod, L., and Berthling, I.: Surface kinematics of periglacial sorted circles using structure-from-motion technology, The Cryosphere, 8, 1041–1056, https://doi.org/10.5194/tc-8-1041-2014, 2014.
Kasse, K. and Bohncke, S.: Weichselian upper pleniglacial aeolian and ice‐cored morphology in the southern Netherlands (Noord‐Brabant, groote peel), Permafrost Periglac., 3, 327–342, https://doi.org/10.1002/ppp.3430030407, 1992.
Kessler, M. A., Murray, A. B., Werner, B. T., and Hallet, B.: A model for sorted circles as self organized patterns, J. Geophys. Res.-Sol. Ea., 106, 13287–13306, https://doi.org/10.1029/2001JB000279, 2001.
Knudsen, C. G., Larsen, E., Sejrup, H. P., and Stalsberg, K.: Hummocky moraine landscape on Jæren, SW Norway-implications for glacier dynamics during the last deglaciation, Geomorphology, 77, 153–168, https://doi.org/10.1016/j.geomorph.2005.12.011, 2006.
Krüger, J.: Glacial morphology and deposits in Denmark, in: Glacial deposits in north-west Europe, edited by: Ehlers, J. and Balkema, A. A., Rotterdam, Netherlands, 181, ISBN 9789061912231, 1983.
Krüger, J., Kjær, K.H., and Schomacker, A.: 7 Dead-Ice Environments: A Landsystems Model for a Debris-Charged, Stagnant Lowland Glacier Margin, Kötlujökull, Dev. Quat. Sci., 13, 105–126, https://doi.org/10.1016/S1571-0866(09)01307-4, 2010.
Kukko, A., Kaartinen, H., Hyyppä, J., and Chen, Y.: Multiplatform mobile laser scanning: Usability and performance, Sensors, 12, 11712–11733, https://doi.org/10.3390/s120911712, 2012.
Kukko, A., Kaijaluoto, R., Kaartinen, H., Lehtola, V. V., Jaakkola, A., and Hyyppä, J.: Graph SLAM correction for single scanner MLS forest data under boreal forest canopy, ISPRS J. Photogramm. Remote Sens., 132, 199–209, https://doi.org/10.1016/j.isprsjprs.2017.09.006, 2017.
Kukko, A., Kaartinen, H., Osinski, G., and Hyyppä, J.: Modeling Permafrost Terrain Using Kinematic, Dual-Wavelength Laser Scanning, ISPRS Annals of the Photogrammetry, Remote Sens. Spat. Inf. Sci., 2, 749–756, https://doi.org/10.5194/isprs-annals-V-2-2020-749-2020, 2020.
Lagerbäck, R.: The Veiki moraines in northern Sweden-widespread evidence of an Early Weichselian deglaciation, Boreas, 17, 469–486, https://doi.org/10.1111/j.1502-3885.1988.tb00562.x, 1988.
Levson, V. M. and Rutter, N. W.: Late Quaternary stratigraphy, sedimentology, and history of the Jasper townsite area, Alberta, Canada, Can. J. Earth Sci., 26, 1325–1342, https://doi.org/10.1139/e89-112, 1989.
Liestøl, O.: Pingos, springs, and permafrost in Spitsbergen, Norsk Polarinstitutt Årbok 1975, Oslo, 7–29, http://hdl.handle.net/11250/172803 (last access: 12 December 2024), 1977.
Liang, X., Wang, Y., Jaakkola, A., Kukko, A., Kaartinen, H., Hyyppä, J., Honkavaara, E., and Liu, J.: Forest data collection using terrestrial image-based point clouds from a handheld camera compared to terrestrial and personal laser scanning, IEEE Trans. Geosci. Remote Sens., 53, 5117–5132, 2015.
Lindsay, J. B.: The Whitebox Geospatial Analysis Tools project and open-access GIS, Proceedings of the GIS Research UK 22nd Annual Conference, The University of Glasgow, 16–18 April, https://doi.org/10.13140/RG.2.1.1010.8962, 2014.
Lindsay, J. B.: Whitebox GAT: A case study in geomorphometric analysis, Comput. Geosci., 95, 75–84, https://doi.org/10.1016/j.cageo.2016.07.003, 2016.
Lundqvist, J.: Rogen (ribbed) moraine – identification and possible origin, Sediment. Geol., 62, 281–292, https://doi.org/10.1016/0037-0738(89)90119-X, 1989.
Mackay, J. R.: The Mackenzie Delta area, N. W. T., Geol. Surv. of Can., Ottawa, Ont., Misc. Rep. M41-23, 202 pp., https://emrlibrary.gov.yk.ca/gsc/miscellaneous_reports/mr-23 (last access: 12 December 2024), 1963.
Mackay, J. R.: The Mackenzie Delta area, Northwest Territories, Geological Survey of Canada Report 23, Energy, Mines and Resources Canada, https://doi.org/10.4095/119932, 1974.
Mackay, J. R.: Pingo Growth and collapse, Tuktoyaktuk Peninsula Area,Western Arctic Coast, Canada: a long-term field study, Géog. Phys. Quatern., 52, 271–323, https://doi.org/10.7202/004847ar, 1998.
Mackay, J. R. and Dallimore, S. R.: Massive ice of the Tuktoyaktuk area, western Arctic coast, Canada, Can. J. Earth Sci., 29, 1235–1249, https://doi.org/10.1139/e92-099, 1992.
Mckenzie, G. D.: Observations on a Collapsing Kame Terrace In Glacier Bay National Monument, South-Eastern Alaska, J. Glaciol., 8, 413–425, https://doi.org/10.3189/s0022143000027003, 1969.
McKenzie, G. D. and Goodwin, R. G.: Development of Collapsed Glacial Topography in the Adams Inlet Area, Alaska, USA, J. Glaciol., 33, 55–59, https://doi.org/10.3189/s0022143000005347, 1987.
Menzies, J. and Shilts, W. W.: Subglacial environments, in: Modern and Past Glacial Environments, edited by: Menzies, J., Butterworth-Heinemann, 183–278, https://doi.org/10.1016/B978-075064226-2/50011-8, 2002.
Middleton, M., Heikkonen, J., Nevalainen, P., Hyvönen, E., and Sutinen, R.: Machine learning-based mapping of micro-topographic earthquake-induced paleo-Pulju moraines and liquefaction spreads from a digital elevation model acquired through laser scanning, Geomorphology, 358, 107099, https://doi.org/10.1016/j.geomorph.2020.107099, 2020.
Mollard, J. D.: Ice-shaped ring-forms in Western Canada: their airphoto expressions and manifold polygenetic origins, Quaternary Int., 68, 187–198, https://doi.org/10.1016/S1040-6182(00)00043-4, 2000.
Moore, P. L.: Numerical Simulation of Supraglacial Debris Mobility: Implications for Ablation and Landform Genesis, Front. Earth Sci., 9, 710131, https://doi.org/10.3389/feart.2021.710131, 2021.
Morse, P. D. and Burn, C. R.: Perennial frost blisters of the outer Mackenzie Delta, western Arctic coast, Canada, Earth Surf. Process. Land., 39, 200–213, https://doi.org/10.1002/esp.3439, 2014.
Müller, F.: Analysis of some stratigraphic observations and radiocarbon dates from two pingos in the Mackenzie Delta area, NWT, Arctic, 15, 279–288, 1962.
Munro, M. and Shaw, J.: Erosional origin of hummocky terrain in south-central Alberta, Canada, Geology, 25, 1027–1030, https://doi.org/10.1130/0091-7613(1997)025<1027:EOOHTI>2.3.CO;2, 1997.
Munro‐Stasiuk, M. J. and Sjogren, D.: The erosional origin of hummocky terrain, Alberta, Canada, in: Glacier science and environmental change, edited by: Knight, P. G., Blackwell Science Ltd, Blackwell Publishing, Malden, MA, USA, 33–36, https://doi.org/10.1002/9780470750636.ch5, 2006.
Ó Cofaigh, C., England, J., and Zreda, M.: Late Wisconsinan glaciation of southern Eureka Sound: Evidence for extensive Innuitian ice in the Canadian High Arctic during the Last Glacial Maximum, Quaternary Sci. Rev., 19, 1319–1341, https://doi.org/10.1016/S0277-3791(99)00104-3, 2000.
Ó Cofaigh, C., Evans, D., and England, J.: Ice marginal terrestrial landsystems: Sub-polar glacier margins of the Canadian and Greenland high arctic, in: Glacial Landsystems, edited by: Evans, D., Chap. 3, ISBN 13: 978-0340806661, 2003.
Ó Cofaigh, C., Lemman, D. S., Evans, D. J. A., and Bednarski, J.: Glacial landform-sediment assemblages in the Canadian High Arctic and their implications for late Quaternary glaciations, Ann. Glaciol., 28, 195–201, https://doi.org/10.3189/172756499781821760, 1999.
Ommanney, C. S. L.: A study in glacier inventory: the ice masses of Axel Heiberg Island, Canadian Arctic Archipelago, Axel Heiberg Island Research Reports, Glaciology No. 3, McGill University, Montreal, Quebec, 105 pp., 1969.
O'Neill, H. B., Wolfe, S. A., and Duchesne, C.: New ground ice maps for Canada using a paleogeographic modelling approach, The Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019, 2019.
Paquette, M., Fortier, D., and Lamoureux, S. F.: Cryostratigraphical studies of ground ice formation and distribution in a High Arctic polar desert landscape, Resolute Bay, Nunavut1, Can. J. Earth Sci., 59, 759–771, https://doi.org/10.1139/cjes-2020-0134, 2020.
Parizek, R. R.: Glacial ice-contact rings and ridges. United States Contributions to Quaternary Research, Geol. Soc. Am. Speci. Paper, 123, 49–102, 1969.
Patterson, C. J.: Southern Laurentide ice lobes were created by ice streams: Des Moines Lobe in Minnesota, USA, Sediment. Geol., 111, 249–261, https://doi.org/10.1016/S0037-0738(97)00018-3, 1997.
Patterson, C. J.: Laurentide glacial landscapes: the role of ice streams, Geology, 26, 643–646, https://doi.org/10.1130/0091-7613(1998)026<0643:LGLTRO>2.3.CO;2, 1998.
Paul, M. A.: The supraglacial landsystem, in: Glacial Geology, edited by: Eyles, N., Oxford, 71–90 https://doi.org/10.1016/B978-0-08-030263-8.50009-9, 1983.
Paulen, R. C. and McClenaghan, M. B.: Late wisconsin ice-flow history in the buffalo head hills kimberlite field, north-central alberta, Can. J. Earth Sci., 52, 51–67, https://doi.org/10.1139/cjes-2014-0109, 2014.
Pissart, A.: Palsas, lithalsas and remnants of these periglacial mounds, A progress report, Prog. Phys. Geogr.-Earth Environ., 26, 605–621, https://doi.org/10.1191/0309133302pp354ra, 2002.
Pissart, A.: The remnants of Younger Dryas lithalsas on the Hautes Fagnes Plateau in Belgium and elsewhere in the world, Geomorphology, 52, 5–38, https://doi.org/10.1016/S0169-555X(02)00246-5, 2003.
Pissart, A. and French, H. M.: Pingo investigations, north-central Banks Island, Canadian Arctic, Can. J. Earth Sci., 13, 937–946, https://doi.org/10.1139/e76-096, 1976.
Pissart, A. and French, H. M.: The origin of pingos in regions of thick permafrost, western Canadian Arctic, Quaestiones Geographicae, 4, 149–160, http://hdl.handle.net/2268/248067 (last access: 10 December 2024), 1977.
Pollard, W. and Bell, T.: Massive ice formation in the Eureka Sound Lowlands: A landscape model, in: Proceedings, Seventh International Permafrost Conference, Laval, Quebec City, Quebec, Canada, Université Laval, Centre d'etudes nordiques, Collection Nordicana, 903–908, Corpus ID: 55786003, 1998.
Pollard, W., Omelon, C., Andersen, D., and McKay, C.: Perennial spring occurrence in the Expedition Fiord area of western Axel Heiberg Island, Canadian High Arctic, Can. J. Earth Sci., 36, 105–120, https://doi.org/10.1139/e98-097, 1999.
Porter, C., Morin, P., Howat, I., Noh,M., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M. J., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Harvard Dataverse, V1, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Rampton, V. N.: Quaternary Geology of the Tuktoyaktuk Coastlands, Northwest Territories, Memoir 423, Geological Survey of Canada, Ottawa, ON, Canada, 1988.
Rapp, A. and Rudberg, S.: Recent periglacial phenomena in Sweden, Biuletyn Peryglacjalny 8, Państwowe Wydawn, Naukowe, 143–154, 1960.
Ross, N., Brabham, P., and Harris, C.: The glacial origins of relict “pingos”, Wales, UK, Ann. Glaciol., 60, 138–150, https://doi.org/10.1017/aog.2019.40, 2019.
Russell, A. J., Roberts, M. J., Fay, H., Marren, P. M., Cassidy, N. J., Tweed, F. S., and Harris, T.: Icelandic jökulhlaup impacts: Implications for ice-sheet hydrology, sediment transfer and geomorphology, Geomorphology, 75, 33–64, https://doi.org/10.1016/j.geomorph.2005.05.018, 2006.
Schmertmann, J. H. and Taylor, R. S.: Quantitative data from a patterned ground site over permafrost, U.S. Army Cold Regions Research and Engineering Laboratory Research Report, 96, 76 pp., https://hdl.handle.net/11681/22899 (last access: 12 December 2024), 1965.
Schomacker, A.: What controls dead-ice melting under different climate conditions? A discussion, Earth-Sci. Rev., 90, 103–113, https://doi.org/10.1016/j.earscirev.2008.08.003, 2008.
Seppälä, M.: Pingo-like remnants in the Peltojärvi area of Finnish Lapland, Geogr. Ann. A, 54, 38–45, https://doi.org/10.1080/04353676.1972.11879855, 1972.
Shaw, J.: A meltwater model for Laurentide subglacial landscapes, in: Geomorphology sans frontières, edited by: McCann, S. B. and Ford, D. C. Wiley, Chichester, West Sussex, United Kingdom, 181–236, ISBN 978-0-471-96600-5, 1996.
Sissons, J. B.: A former ice-dammed lake and associated glacier limits in the Achnasheen area, central Ross-shire, Trans. Inst. Br. Geogr., 7, 98–116, https://doi.org/10.2307/621914, 1982.
Sollid, J. L. and Sørbel, L.: Influence of temperature conditions in formation of end moraines in Fennoscandia and Svalbard, Boreas, 17, 553–558, https://doi.org/10.1111/j.1502-3885.1988.tb00568.x, 1988.
Sparks, B. W., Williams, R. B. G. and Bell, F. G.: Presumed ground-ice depressions in East Anglia, Proc. Roy. Soc. Lond. A, 327, 1570, 329–343, https://doi.org/10.1098/rspa.1972.0049, 1972.
Stalker, A. M.: Ice-pressed drift forms and associated deposits in Alberta, Geological Survey of Canada, Bulletin, 57, 38, https://doi.org/10.4095/100566, 1960.
Sutinen, R., Hyvönen, E., Middleton, M., and Ruskeeniemi, T.: Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland, Glob. Planet. Change, 115, 24–32, https://doi.org/10.1016/j.gloplacha.2014.01.007, 2014.
Sutinen, R., Hyvönen, E., Middleton, M., and Airo, M. L.: Earthquake-induced deformations on ice-stream landforms in Kuusamo, eastern Finnish Lapland, Glob. Planet. Change, 160, 46–60, https://doi.org/10.1016/j.gloplacha.2017.11.011, 2018.
Sutinen, R., Hyvönen, E., Liwata-Kenttälä, P., Middleton, M., Ojala, A., Ruskeeniemi, T., Sutinen, A., and Mattila, J.: Electrical-sedimentary anisotropy of landforms adjacent to postglacial faults in Lapland, Geomorphology, 326, 213–224, https://doi.org/10.1016/j.geomorph.2018.01.008, 2019.
Svensson, H.: A type of circular lakes in northernmost Norway, Geogr. Ann. A, 51, 1-‒12, https://doi.org/10.1080/04353676.1969.11879787, 1969.
Taylor, A. E. and Judge, A. S.: Canadian Geothermal Data Collection – Northern Wells 1975, Earth Physics Branch, Geothermal Series 6, 142 pp., https://doi.org/10.4095/8415, 1976.
Thompson, S., Benn, D. I., Mertes, J., and Luckman, A.: Stagnation and mass loss on a Himalayan debris-covered glacier: Processes, patterns and rates, J. Glaciol., 62, 467–485, https://doi.org/10.1017/jog.2016.37, 2016.
Thomson, L. I., Osinski, G. R., and Ommanney, C .S. L.: Glacier change on Axel Heiberg Island, Nunavut, Canada, J. Glaciol., 57, 1079–1086, https://doi.org/10.3189/002214311798843287, 2011.
Thorsteinsson, R.: Geology, Eureka Sound North, District of Franklin, Geological Survey of Canada, “A” Series Map 1302A, 1 sheet, https://doi.org/10.4095/109125, 1971a.
Thorsteinsson, R.: Geology of Strand Fiord, District of Franklin. Geological Survey of Canada, Map 1301A, scale 1:250 000, https://doi.org/10.4095/123319, 1971b.
Washburn, A.: Periglacial Processes and Environments, Edward Arnold, London, ISBN-13: 978-0713156539, 1973.
Washburn, A. L.: Classification of patterned ground and review of suggested origins, Bull. Geol. Soc. Am., 67, 823–865, https://doi.org/10.1130/0016-7606(1956)67[823:COPGAR]2.0.CO;2, 1956.
Watson, E. and Watson, S.: Remains of pingos in the Cletwr basin, south-west Wales, Geogr. Ann. A, 56, 213–225, 1974.
Westoby, M. J., Rounce, D. R., Shaw, T. E., Fyffe, C. L., Moore, P. L., Stewart, R. L., and Brock, B. W.: Geomorphological evolution of a debris-covered glacier surface, Earth Surf. Process. Landf., 45, 3431–3448, https://doi.org/10.1002/esp.4973, 2020.
Wolfe, S. A., Stevens, C. W., Gaanderse, A. J., and Oldenborger, G. A.: Lithalsa distribution, morphology and landscape associations in the Great Slave Lowland, Northwest Territories, Canada, Geomorphology, 204, 302–313, https://doi.org/10.1016/j.geomorph.2013.08.014, 2014.
Short summary
This study investigates enigmatic ring forms found on Axel Heiberg Island (Umingmat Nunaat) in Nunavut, Canada. These ring forms comprised a series of ridges and troughs creating individual rings or brain-like patterns. We aim to identify how they form and assess the past climate conditions necessary for their formation. We use surface and subsurface observations and comparisons to other periglacial and glacial ring forms to infer a formation mechanism and propose a glacial origin.
This study investigates enigmatic ring forms found on Axel Heiberg Island (Umingmat Nunaat) in...