Articles | Volume 19, issue 3
https://doi.org/10.5194/tc-19-1391-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-1391-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
National Weather Service Alaska Sea Ice Program: gridded ice concentration maps for the Alaskan Arctic
Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
Michael Steele
Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
Mary-Beth Schreck
National Weather Service Alaska Sea Ice Program, Anchorage, AK 99513, USA
Related authors
Elizabeth Westbrook, Peter Gaube, Emmett Culhane, Frederick Bingham, Astrid Pacini, Carlyn Schmidgall, Julian Schanze, and Kyla Drushka
EGUsphere, https://doi.org/10.5194/egusphere-2025-643, https://doi.org/10.5194/egusphere-2025-643, 2025
Short summary
Short summary
We develop a machine learning methods to detect and classify how much sea ice was present around our research vessel. We used a navigation radar common on many merchant vessels attached to a screen capture device. The captured images were classified using a convolutional neural network and the resulting classification were found to be in good agreement with direct observations and satellite-based products.
Elizabeth Westbrook, Peter Gaube, Emmett Culhane, Frederick Bingham, Astrid Pacini, Carlyn Schmidgall, Julian Schanze, and Kyla Drushka
EGUsphere, https://doi.org/10.5194/egusphere-2025-643, https://doi.org/10.5194/egusphere-2025-643, 2025
Short summary
Short summary
We develop a machine learning methods to detect and classify how much sea ice was present around our research vessel. We used a navigation radar common on many merchant vessels attached to a screen capture device. The captured images were classified using a convolutional neural network and the resulting classification were found to be in good agreement with direct observations and satellite-based products.
Kyla Drushka, Elizabeth Westbrook, Frederick M. Bingham, Peter Gaube, Suzanne Dickinson, Severine Fournier, Viviane Menezes, Sidharth Misra, Jaynice Pérez Valentín, Edwin J. Rainville, Julian J. Schanze, Carlyn Schmidgall, Andrey Shcherbina, Michael Steele, Jim Thomson, and Seth Zippel
Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024, https://doi.org/10.5194/essd-16-4209-2024, 2024
Short summary
Short summary
The NASA SASSIE mission aims to understand the role of salinity in modifying sea ice formation in early autumn. The 2022 SASSIE campaign collected measurements of upper-ocean properties, including stratification (layering of the ocean) and air–sea fluxes in the Beaufort Sea. These data are presented here and made publicly available on the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC), along with code to manipulate the data and generate the figures presented herein.
Cited articles
Agnew, T. and Howell, S.: The use of operational ice charts for evaluating passive microwave ice concentration data, Atmosphere-Ocean, 41, 317–331, https://doi.org/10.3137/ao.410405, 2003.
Beitsch, A., Kaleschke, L., and Kern, S.: Investigating High-Resolution AMSR2 Sea Ice Concentrations during the February 2013 Fracture Event in the Beaufort Sea, Remote Sens., 6, 3841–3856, https://doi.org/10.3390/rs6053841, 2014.
Beitsch, A., Kern, S., and Kaleschke, L.: Comparison of SSM/I and AMSR-E sea ice concentrations with ASPeCt ship observations around antarctica, IEEE T. Geosci. Remote, 53, 1985–1996, https://doi.org/10.1109/TGRS.2014.2351497, 2015.
Boylan, B. M.: Increased maritime traffic in the Arctic: Implications for governance of Arctic sea routes, Marine Policy, 131, 104566, https://doi.org/10.1016/j.marpol.2021.104566, 2021.
Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Kreiner, M. B.: AI4Arctic Sea Ice Challenge Dataset, Technical University of Denmark, Collection, https://doi.org/10.11583/DTU.c.6244065.v2, 2022.
Canadian Ice Service: Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format, Version 1, Boulder, Colorado USA, National Snow and Ice Data Center [data set], https://doi.org/10.7265/N51V5BW9, 2009.
Cavalieri, D. J., Gloersen, P., and Campbell, W. J.: Determination of sea ice parameters with the Nimbus 7 SMMR, J. Geophys. Res., 89, 5355–5369, https://doi.org/10.1029/JD089iD04p05355, 1984.
Cavalieri, D. J., Burns, B. A., and Onstott, R. G.: Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data, J. Geophys. Res., 95, 5359–5369, https://doi.org/10.1029/JC095iC04p05359, 1990.
Cavalieri, D. J., Crawford, J. P., Drinkwater, M. R., Eppler, D. T., Farmer, L. D., Jentz, R. R., and Wackerman, C. C.: Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager, J. Geophys. Res.-Oceans, 96, 21989–22008, https://doi.org/10.1029/91JC02335, 1991.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C., and Zwally, H. J.: Deriving long‐term time series of sea ice cover from satellite passive‐microwave multisensor data sets, J. Geophys. Res.-Oceans, 107, 15803–15814, https://doi.org/10.1029/1999JC900081, 1999.
Chin, T. M., Vazquez-Cuervo, J., and Armstrong, E. M.: A multi-scale high-resolution analysis of global sea surface temperature, PO.DAAC, CA, USA [data set], https://doi.org/10.5067/GHGMR-4FJ04, 2017.
Chiodi, A. M., Zhang, C., Cokelet, E. D., Yang, Q., Mordy, C. W., Gentemann, C. L., Cross, J. N., Lawrence-Slavas, N., Meinig, C., Steele, M., Harrison, D. E., Stabeno, P. J., Tabisola, H. M., Zhang, D., Burger, E. F., O'Brien, K. M., and Wang, M.: Exploring the Pacific Arctic Seasonal Ice Zone With Saildrone USVs, Front. Marine Sci., 8, 1–20, https://doi.org/10.3389/fmars.2021.640697, 2021.
Cokelet, E. D., Meinig, C., Lawrence-Slavas, N., Stabeno, P. J., Mordy, C. W., Tabisola, H. M., Jenkins, R., and Cross, J. N.: The Use of Saildrones to Examine Spring Conditions in the Bering Sea: Instrument Comparisons, Sea Ice Meltwater and Yukon River Plume Studies, OCEANS 2015 – MTS/IEEE Washington, Washington, DC, USA, 1–7, https://doi.org/10.23919/OCEANS.2015.7404357, 2015.
Comiso, J. C.: Characteristics of Arctic winter sea ice from satellite multispectral microwave observations., J. Geophys. Res., 91, 975–994, https://doi.org/10.1029/JC091iC01p00975, 1986.
Comiso, J. C. and Kwok, R.: Surface and radiative characteristics of the summer Arctic sea ice cover from multisensor satellite observations, J. Geophys. Res.-Oceans, 101, 28397–28416, https://doi.org/10.1029/96JC02816, 1996.
Comiso, J. C. and Nishio, F.: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data, J. Geophys. Res.-Oceans, 113, C02S07, https://doi.org/10.1029/2007JC004257, 2008.
Council, A.: Arctic Marine Shipping Assessment 2009 Report, Arctic Council, https://www.researchgate.net/profile/Hajo-Eicken/publication/255891922_Arctic_Marine_Shipping_Assessment_2009_Report/links/5ad39ab30f7e9b2859360173/Arctic-Marine-Shipping-Assessment-2009-Report.pdf (last access: 12 March 2025), 2009.
Deemer, G. J., Bhatt, U. S., Eicken, H., Posey, P. G., Hutchings, J. K., Nelson, J., Heim, R., Allard, R. A., Wiggins, H., and Creek, K.: Broadening the sea-ice forecaster toolbox with community observations: A case study from the northern Bering Sea, Arct. Sci., https://doi.org/10.1139/as-2016-0054, 2017.
Drushka, K., Westbrook, E., Bingham, F. M., Gaube, P., Dickinson, S., Fournier, S., Menezes, V., Misra, S., Pérez Valentín, J., Rainville, E. J., Schanze, J. J., Schmidgall, C., Shcherbina, A., Steele, M., Thomson, J., and Zippel, S.: Salinity and Stratification at the Sea Ice Edge (SASSIE): an oceanographic field campaign in the Beaufort Sea, Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024, 2024.
Environment Canada: Manual of Standard Procedures for Observing and Reporting Ice Conditions (MANICE), Issuing authority: Assistant Deputy Minister, Meteorological Service of Canada, 2005.
Intergovernmental Panel on Climate Change (IPCC): Ocean, Cryosphere and Sea Level Change. In: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1211–362, https://doi.org/10.1017/9781009157896.011, 2023.
García-Reyes, M., Minnett, P. J., Steele, M., Castro, S., Cornillon, P., Armstrong, E., Vazquez-Cuervo, J., Tsontos, V., Cokelet, E., and Wick, G. A.: 2022 Arctic Saildrone Cruise Report, Zenodo [data set], https://doi.org/10.5281/zenodo.7709660, 2023.
Gentemann, C. L., Minnett, P., Steele, M., Castro, S., Cornillon, P., Armstrong, E., Vazquez, J., Tsontos, V., and Cokelet, E.: 2019 Arctic Saildrone Cruise Report (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.5851764, 2019.
Gogineni, S. P., Moore, R. K., Grenfell, T. C., Barber, D. G., Digby, S., and Drinkwater, M.: The effects of freeze-up and melt processes on microwave signatures, in: Microwave Remote Sensing of Sea Ice, Geophysical Monograph Series, 68, 329–341, https://doi.org/10.1029/GM068p0329, 1992.
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., and Blankenship, D. D.: The Climate Data Toolbox for MATLAB, Geochem. Geophy. Geosy., 2, 3774–3781, https://doi.org/10.1029/2019GC008392, 2019.
Grenfell, T. C. and Lohanick, A. W.: Temporal variations of the microwave signatures of sea ice during the late spring and early summer near Mould Bay NWT., J. Geophys. Res., 90, 5063–5074, https://doi.org/10.1029/JC090iC03p05063, 1985.
Haine, T. W. and Martin, T.: The Arctic-Subarctic sea ice system is entering a seasonal regime: Implications for future Arctic amplification, Sci. Rep., 7, 4618, https://doi.org/10.1038/s41598-017-04573-0, 2017.
Heim, R., and Schreck, M.B.: NWS Alaska Sea Ice Program: Operations, Customer Support and Challenges, 14th Conference on Polar Meteorology and Oceanography, Washington US, 22–26 January 2017, https://ams.confex.com/ams/97Annual/webprogram/Paper312501.html (last access: 12 March 2025), 2017.
Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T., and Kasheta, T.: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576–1586, https://doi.org/10.1002/hyp.6720, 2007.
Heygster, G., Wiebe, H., Spreen, G., and Kaleschke, L.: AMSR-E geolocation and validation of sea ice concentrations based on 89 GHz data, J. Remote Sens. Soc. Japan, 29, 226–235, 2009.
Hufford, G.: National Weather Service Alaska Region Sea Ice Program, 3rd Symposium on the Impacts of an Ice-Diminishing Arctic on Naval and Maritime Operations, Annaoplis MD, 9–11 June, 2009, https://www.star.nesdis.noaa.gov/star/documents/2009Ice/Day2/Hufford_day2.pdf (last access: 12 March 2025), 2009.
Hutchings, J., Delamere, J., and Heil, P.: The Ice Watch Manual, https://icewatch.met.no (last access: 26 April 2023), 2020.
Ivanova, N., Johannessen, O. M., Pedersen, L. T., and Tonboe, R. T.: Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE T. Geosci. Remote, 52, 7233–7246, https://doi.org/10.1109/TGRS.2014.2310136, 2014.
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, 2015.
Joint, WMO-IOC: SIGRID-3: A vector archive format for sea ice charts: developed by the International Ice Charting Working Group's Ad Hoc Format Team for the WMO Global Digital Sea Ice Data Bank Project, https://www.bsis-ice.de/IcePortal/docs/JCOMM_TR23_SIGRID3_1214.pdf (last access: 13 March 2025), 2004.
Kaleschke, L., Lüpkes, C., Vihma, T., Haarpaintner, J., Bochert, A., Hartmann, J., and Heygster, G.: SSM/I Sea Ice Remote Sensing for Mesoscale Ocean-Atmosphere Interaction Analysis, Can. J. Remote Sens., 27, 526–537, https://doi.org/10.1080/07038992.2001.10854892, 2001.
Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., Tonboe, R. T., Saldo, R., and Sørensen, A. M.: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations, The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019, 2019.
Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., and Tonboe, R.: Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions, The Cryosphere, 14, 2469–2493, https://doi.org/10.5194/tc-14-2469-2020, 2020.
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, 15, https://doi.org/10.1029/2009GL039035, 2009.
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019.
Leigh, S., Wang, Z., and Clausi, D. A.: Automated Ice–Water Classification Using Dual Polarization SAR Satellite Imagery, IEEE T. Geosci. Remote, 52, 9, https://doi.org/10.1109/TGRS.2013.2290231, 2014.
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015.
Markus, T. and Dokken, S. T.: Evaluation of late summer passive microwave Arctic sea ice retrievals, IEEE T. Geosci. Remote, 40, 348–356, https://doi.org/10.1109/36.992795, 2002.
Markus, T., Comiso, J. C., and Meier, W. N.: AMSR-E/AMSR2 Unified L3 Daily 25 km Brightness Temperatures & Sea Ice Concentration Polar Grids (AU_SI25, Version 1), Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/TRUIAL3WPAUP, 2018.
Meier, W. and Notz, D.: A note on the accuracy and reliability of satellite-derived passive microwave estimates of sea-ice extent, CliC Arctic sea ice working group, Consensus document, CLIC International Project Office, Tromsø, Norway, 28 October 2010.
Meier, W. N. and Stewart, J. S.: Assessing uncertainties in sea ice extent climate indicators, Environ. Res. Lett., 14, 035005, https://doi.org/10.1088/1748-9326/aaf52c, 2019.
Meier, W. N., Fetterer, F., Stewart, J. S., and Helfrich, S.: How do sea-ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting, Ann. Glaciol., 56, 332–340, https://doi.org/10.3189/2015AoG69A694, 2015.
Meinig, C., Lawrence-Slavas, N., Jenkins, R., and Tabisola, H. M.: The use of Saildrones to examine spring conditions in the Bering Sea: Vehicle specification and mission performance, OCEANS 2015 – MTS/IEEE Washington, Washington, DC, USA, 1–6, https://doi.org/10.23919/OCEANS.2015.7404348, 2015.
Melsheimer, C.: ASI Version 5 Sea Ice Concentration User Guide, https://data.seaice.uni-bremen.de/amsr2/ASIuserguide.pdf (last access: 14 March 2025), 2024.
Melsheimer, C. and Spreen, G.: AMSR2 ASI sea ice concentration data, Arctic, version 5.4 (NetCDF) (July 2012–December 2018), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898399, 2019.
Moore, S.: Marine Mammal Watch, Northern Bering Sea and Chukchi Sea, July, 2016, Arctic Data Center [data set], https://doi.org/10.18739/A27P8TD2J, 2019a.
Moore, S.: Marine Mammal Watch, Northern Bering Sea and Chukchi Sea, August–September, 2017, Arctic Data Center [data set], https://doi.org/10.18739/A25Q4RM2M, 2019b.
Moore, S. E. and Grebmeier, J. M.: The distributed biological observatory: Linking physics to biology in the Pacific Arctic region + supplementary file (see article tools), Arctic, 71, 5, https://doi.org/10.14430/arctic4606, 2018.
Mordy, C. W., Cokelet, E. D., Robertis, A. D., Jenkins, R., Kuhn, C. E., Lawrence-Slavas, N., Berchok, C. L., Crance, J. L., Sterling, J. T., Cross, J. N., Stabeno, P. J., Meinig, C., Tabisola, H. M., Burgess, W., and Wangen, I.: Advances in Ecosystem Research: Saildrone Surveys of Oceanography, Fish, and Marine Mammals in the Bering Sea, Oceanography, 30, 113–115, https://doi.org/10.5670/oceanog.2017.230, 2017.
Pacini, A., Steele, M., and Schreck, M. B.: Gridded Alaska Sea Ice Program ice concentration data, 2007–2022, Arctic Data Center [data set], https://doi.org/10.18739/A28G8FK4F, 2025.
Perovich, D., Meier, W., Tschudi, M., Hendricks, S., Petty, A. A., Divine, D., Farrell, S., Gerland, S., Haas, C., Kaleschke, L., Pavlova, O., Ricker, R., Tian-Kunze, X., Webster, M., and Wood, K.: NOAA Arctic Report Card 2020, https://doi.org/10.25923/n170-9h57, 2020.
Polashenski, C.: Underway Sea Ice Observations during SUBICE 2014, Arctic Data Center [data set], https://doi.org/10.18739/A2416T03D, 2016.
Rösel, A., Kaleschke, L., and Birnbaum, G.: Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network, The Cryosphere, 6, 431–446, https://doi.org/10.5194/tc-6-431-2012, 2012.
Sammut, C. and Webb, G. I. (Eds.): Encyclopedia of Machine Learning, Springer Science & Business Media, https://doi.org/10.1007/978-0-387-30164-8, 2011.
Serreze, M. C. and Stroeve, J.: Arctic sea ice trends, variability and implications for seasonal ice forecasting, Philos. T. Roy. Soc. A, 373, 20140159, https://doi.org/10.1098/rsta.2014.0159, 2015.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C2, https://doi.org/10.1029/2005JC003384, 2008.
Steele, M. and Ermold, W.: Loitering of the retreating sea ice edge in the Arctic Seas, J. Geophys. Res.-Oceans, 120, 7699–7721, https://doi.org/10.1002/2015JC011182, 2015.
Steffen, K. and Schweiger, A.: NASA team algorithm for sea ice concentration retrieval from Defense Meteorological Satellite Program special sensor microwave imager: comparison with Landsat satellite imagery, J. Geophys. Res., 96, 21971–21987, https://doi.org/10.1029/91jc02334, 1991.
Stroeve, J. C., Jenouvrier, S., Campbell, G. G., Barbraud, C., and Delord, K.: Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels, The Cryosphere, 10, 1823–1843, https://doi.org/10.5194/tc-10-1823-2016, 2016.
Strong, C.: Atmospheric influence on Arctic marginal ice zone position and width in the Atlantic sector, February–April 1979–2010, Clim. Dynam., 39, 3091–3102, https://doi.org/10.1007/s00382-012-1356-6, 2012.
Strong, C. and Rigor, I. G.: Arctic marginal ice zone trending wider in summer and narrower in winter, Geophys. Res. Lett., 40, 4864–4868, https://doi.org/10.1002/grl.50928, 2013.
Strong, C., Foster, D., Cherkaev, E., Eisenman, I., and Golden, K. M.: On the Definition of Marginal Ice Zone Width, J. Atmos. Ocean. Tech., 34, 1565–1584, https://doi.org/10.1175/JTECH-D-16-0171.1, 2017.
Thomson, J.: SASSIE Arctic Field Campaign Wave Glider Data Fall 2022. Ver. 1, PO.DAAC, CA, USA [data set], https://doi.org/10.5067/SASSIE-GLID2, 2023.
U.S. National Ice Center: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1, Boulder, Colorado USA, National Snow and Ice Data Center [data set], https://doi.org/10.7265/N52R3PMC, 2008.
U.S. National Ice Center: U.S. National Ice Center Arctic and Antarctic Sea Ice Concentration and Climatologies in Gridded Format, Version 1, Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center [data set], https://doi.org/10.7265/46cc-3952, 2020.
U.S. National Ice Center, Fetterer, F., Savoie, M., Helfrich, S., and Clemente-Colón, P.: Multisensor Analyzed Sea Ice Extent – Northern Hemisphere (MASIE-NH) (G02186, Version 1), Boulder, Colorado USA, National Snow and Ice Data Center [data set], https://doi.org/10.7265/N5GT5K3K, 2010.
Wiebe, H., Heygster, G. and Markus, T.: Comparison of the ASI ice concentration algorithm with Landsat-7 ETM+ and SAR imagery, IEEE T. Geosci. Remote, 47, 3008–3015, 2009.
Worby, A. P. and Allison, I. A.: A technique for making ship-based observations of Antarctic sea ice thickness and characteristics – Part I: Observational Techniques and Results, Research Report No. 14, Antarctic Cooperative Research Centre, Hobart, TAS, Australia, 1999.
Worby, A. P. and Comiso, J. C.: Studies of the Antarctic sea ice edge and ice extent from satellite and ship observations, Remote Sens. Environ., 92, 98–111, https://doi.org/10.1016/j.rse.2004.05.007, 2004.
Worby, A. P. and Dirita, V.: A technique for making ship-based observations of Antarctic sea-ice thickness and characteristics – Part II: User Operating Manual, Research Report No. 14, Antarctic Cooperative Research Centre, Hobart, TAS, Australia, 1999
World Meteorological Organization (WMO): WMO Sea-Ice Nomenclature. Volume 1 – Terminology and Codes, Volume II – Illustrated Glossary, Volume III – International System of Sea-Ice Symbols, Fifth Session of Joint Commission on Marine Meteorology (JCOMM) Expert Team on Sea Ice, WMO Publication No. 259, 2014.
Zwally, H. J., Parkinson, C. L., and Comiso, J. C.: Variability of Antarctic Sea Ice: and Changes in Carbon Dioxide, Science, 220, 1005–1012, https://doi.org/10.1126/science.220.4601.1005, 1983.
Short summary
While sea ice concentration data are critically important for climate research, obtaining high-resolution data remains a challenge. Here we present and validate the US National Weather Service Alaska Sea Ice Program (ASIP) ice maps. These maps are shown to be highly accurate when compared to in situ observations and to outperform a passive-microwave-based product, especially at low concentrations. Therefore, ASIP data provide an exciting new tool to study ice conditions in the Pacific Arctic.
While sea ice concentration data are critically important for climate research, obtaining...