
The Cryosphere, 19, 1391–1411, 2025
https://doi.org/10.5194/tc-19-1391-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

National Weather Service Alaska Sea Ice Program: gridded ice
concentration maps for the Alaskan Arctic
Astrid Pacini1, Michael Steele1, and Mary-Beth Schreck2

1Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
2National Weather Service Alaska Sea Ice Program, Anchorage, AK 99513, USA

Correspondence: Astrid Pacini (apacini@uw.edu)

Received: 14 June 2024 – Discussion started: 20 June 2024
Revised: 18 December 2024 – Accepted: 13 January 2025 – Published: 28 March 2025

Abstract. There are many challenges associated with ob-
taining high-fidelity sea ice concentration (SIC) information,
and products that rely solely on passive microwave measure-
ments often struggle to represent conditions at low concen-
tration, especially within the marginal ice zone and during
periods of active melt. Here, we present a newly gridded SIC
product for the Alaskan Arctic, generated with data from the
National Weather Service Alaska Sea Ice Program (hereafter
referred to as ASIP), that synthesizes a variety of satellite
SIC and in situ observations from 2007–present. These SIC
fields have been primarily used for operational purposes and
have not yet been gridded or independently validated. In this
study, we first grid the ASIP product into 0.05° resolution
in both latitude and longitude (hereafter referred to as grid-
ded ASIP, or grASIP). We then perform extensive intercom-
parison with an international database of ship-based in situ
SIC observations, supplemented with observations from sail-
drones. Additionally, an intercomparison between three ice
products is performed: (i) grASIP, (ii) a high-resolution pas-
sive microwave product (AMSR2), and (iii) a product avail-
able from the National Snow and Ice Data Center (MASIE)
that originates from the US National Ice Center (USNIC) op-
erational IMS product. This intercomparison demonstrates
that all products perform similarly when compared to in situ
observations generally, but grASIP outperforms the other
products during periods of active melt and in low-SIC re-
gions. Furthermore, we show that the similarity in perfor-
mance among products is partly due to the deficiencies in the
in situ observations’ geographical distribution, as most in situ
observations are far from the ice edge in locations where all
products agree. We find that the grASIP ice edge is generally
farther south than both the AMSR2 and MASIE ice edges

by an average of approximately 50 km in winter and 175 km
in summer for grASIP vs. AMSR2 and 10 km in winter and
40 km in summer for grASIP vs. MASIE.

Key points.

1. ASIP is an operational, mostly remote-sensing-based sea ice
dataset for the Alaskan Arctic that has not previously been
gridded or independently validated. Here we describe how the
data are read, reformatted, gridded, and validated against a
relatively underutilized in situ sea ice concentration dataset.
These in situ data are also used for validation with two other
satellite-based products: AMSR2 and MASIE.

2. All three products considered (grASIP, AMSR2, MASIE) per-
form similarly when compared against in situ observations
when the full SIC range of 0 %–100 % is considered.

3. For the marginal ice zone (MIZ; SIC ≥ 20 % & ≤ 80 %),
grASIP performs better than AMSR2 at predicting the pres-
ence of ice; MASIE has by definition no information at SIC
< 40 %. In the MIZ, grASIP tends to overpredict SIC, while
AMSR2 underpredicts SIC by a larger amount.

4. We find that the grASIP ice edge is on average farther south
than both the AMSR2 and MASIE ice edges, with no system-
atic differences as a function of longitude in the Alaskan Arc-
tic.

1 Introduction

The significant change in Arctic sea ice cover over the last
century is a clear indicator of the effects of anthropogenic
greenhouse gas emissions on our high-latitude oceans (e.g.,
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IPCC, 2023). Strong reductions in sea ice extent and thick-
ness, changes in ice age, and changes in ice drift and de-
formation characterize the modern record (e.g., Haine and
Martin, 2017; Perovich et al., 2020). Serreze and Stroeve
(2015) demonstrated that September sea ice extent is de-
creasing at a rate of 13.3 % per decade over the satellite
record. Synchronously, the mean ice thickness has decreased
from 3.20 m (1958–1976) to 1.43 m (2003–2007) (Kwok and
Rothrock, 2009; Lindsay and Schweiger, 2015; Haine and
Martin, 2017). Beyond the physical and ecosystem impacts
of these trends, changes in sea ice are altering the opera-
tional and research environments for ships transiting the Arc-
tic Ocean and its marginal seas; increased shipping is oc-
curring along both the Northwest Passage and the Northern
Sea Route (e.g., Arctic Council, 2009; Boylan, 2021), which
in turn necessitates increased infrastructure in the region for
safety and governance. At the very basic level, these ships
need reliable ice maps to inform routing decisions. How-
ever, despite the clear trends in Arctic sea ice and the need to
measure these changes, there are many challenges associated
with obtaining high-fidelity measurements of sea ice concen-
tration (SIC). This is especially true in low-concentration en-
vironments and during periods of active melt (e.g., Kern et
al., 2020).

Historically, there have been two main approaches to mea-
suring SIC from satellite: passive microwave measurements
and the use of other imagery to create synthesized ice maps.
The former provides a continuous, near-daily record of ice
conditions in polar regions since October 1978. Thus, pas-
sive microwave is a powerful tool for diagnosing and analyz-
ing the long-term evolution of ice, as a consistent processing
algorithm can be applied to a consistent observational record
(e.g., Meier et al., 2015). There are numerous algorithms
and quality control methodologies in place to process these
measurements of brightness temperature (e.g., Cavalieri et
al., 1984, 1999; Comiso, 1986; Comiso and Nishio, 2008;
Lavergne et al., 2019). Detailed comparisons of these algo-
rithms are provided by Ivanova et al. (2014, 2015); further-
more, Ivanova et al. (2015) document potential challenges
these algorithms face, including the presence of melt ponds,
thin ice, and atmospheric effects. A key challenge to bright-
ness temperature measurements is the inability of these mea-
surements to distinguish between meltwater on the surface of
ice, leads in the ice, and open-water conditions (e.g., Kern et
al., 2020; Meier and Notz, 2010; Gogineni et al., 1992; Gren-
fell and Lohanick, 1985). This leads to an underestimation of
sea ice concentration, which in turn results in an underesti-
mation of sea ice extent during periods of active melt, es-
pecially in summer months (e.g., Kern et al., 2020; Ivanova
et al., 2015; Rösel et al., 2012; Markus and Dokken, 2002;
Comiso and Kwok, 1996; Steffen and Schweiger, 1991; Cav-
alieri et al., 1990).

A second method for obtaining ice concentration infor-
mation from satellite relies on an analyst to synthesize the
information in and across different satellite imagery. These

maps are drawn by utilizing active sensors such as scatterom-
eters and synthetic aperture radar (SAR), as well as passive
sensors such as visible and microwave imagers. Operational
maps are drawn by an analyst using available imagery, but
they are not consistent over the historical record due to im-
provements in satellite technology, the availability of clear
imagery (often dependent on cloud and weather conditions),
and changes in analyst personnel (e.g., Kern et al., 2020).
These human-synthesized ice charts can be higher-resolution
than their passive microwave counterparts and may better
represent summertime conditions owing to their use of multi-
ple satellite products. On the other hand, there are a growing
number of products that use the same inputs but produce sea
ice concentration maps automatically for research and opera-
tions (e.g., MAp-Guided Ice Classification developed for the
Canadian Ice Service – Leigh et al., 2014; AI14Arctic Sea Ice
Challenge Dataset, which merges Sentinel-1 SAR imagery
with passive microwave data – Buus-Hinkler et al., 2022).
We define operational ice charts as maps that are intended to
serve stakeholders who need SIC information for real-time
operation. Often, analyst-generated products provide ice in-
formation using polygons instead of a regular grid, and these
polygons can be smaller than the footprint of some satel-
lites (e.g., SSMI). That said, these polygons typically provide
ice concentration ranges, not specific ice concentration val-
ues, and thus provide a quantized ice concentration estimate
rather than a continuous field. As with passive microwave
products, there are many processing agencies and techniques
used to generate synthesized ice maps. For example, the US
National Ice Center produces pan-Arctic daily, weekly, and
monthly ice charts as well as domain-specific services upon
request. Also, the Danish Meteorological Institute publishes
operational ice maps of conditions around Greenland, while
the Norwegian Meteorological Institute covers the Atlantic
Arctic, including the Nordic Seas, eastern Greenland, Ice-
land, and Svalbard. The Finish Meteorological Institute re-
ports on the Baltic Sea, and the Arctic and Antarctic Re-
search Institute focuses on the Barents, Kara, Laptev, and
East Siberian seas. Finally, the Canadian Ice Service covers
the Canadian Arctic.

While passive microwave can provide insight on long-term
trends, manually synthesized products can describe in high
resolution the daily state of the sea ice pack. For example, in
the field, operational stakeholders rely on these data to decide
on ship routes and instrumentation deployment locations; in
research, these maps provide valuable high-resolution infor-
mation for summertime conditions and small-scale dynamics
(e.g., Chiodi et al., 2021). Synthesized ice maps can also be a
valuable tool for driving operational models and weather pre-
dictions (e.g., Meier et al., 2015), although most large-scale
users rely on low-latency SIC fields from passive microwave
(e.g., Chin et al., 2017).

There are a few studies that compare the accuracy of
these manually synthesized ice products with satellite data.
For example, Agnew and Howell (2003) compare weekly
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Canadian Ice Service sea ice charts (Canadian Ice Service,
2009) from 1979–1996 with passive microwave data derived
using the NASA Team algorithm to show that the NASA
Team algorithm underpredicts sea ice area in the Canadian
Arctic by 20.4 %–33.5 % during summer melt periods and
by 7.6 %–43.5 % in the fall while ice is growing. Another
study by Meier et al. (2015) compares passive microwave
measurements against Multisensor Analyzed Sea Ice Extent
(MASIE), a product that originates from the US National Ice
Center (USNIC) operational IMS product (U.S. National Ice
Center, 2008), from 2006–2014. They show that MASIE pro-
duces a higher-resolution ice edge compared with the passive
microwave ice edge and that sea ice extent from MASIE is
generally larger than that derived from passive microwave.

In this study, we present data from an operational SIC
product for the Alaskan Arctic generated by the National
Weather Service Alaska Sea Ice Program (hereafter referred
to as ASIP). Our motivation comes in part from a case study
of conditions in the Beaufort Sea on 21 August 2022 (Fig. 1).
The color scale used in all panels in Fig. 1 is the World Mete-
orological Organization (WMO) standard for ice charts. De-
tails of the WMO ice nomenclature can be found in Sect. 2.1;
throughout this study we follow ASIP and international ice
chart convention by using the WMO color code and descrip-
tors for characterizing ice concentration ranges (World Mete-
orological Organization, 2014; Environment Canada, 2005).
For AMSR2 data, we re-binned individual grid cells into the
WMO ice concentration ranges. As such, data were rounded
to the nearest tens place in concentration; e.g., a pixel with
an ice concentration of 35 %–64 % would fall into the yel-
low band that represents 4/10 to 6/10 ice. During this time,
the NASA Salinity and Stratification at the Sea Ice Edge
(SASSIE) field program was operating in the Pacific Arc-
tic (Drushka et al., 2024). As part of the field program, four
remotely operated Wave Glider vehicles (Thomson, 2023)
were deployed to obtain measurements of salinity near the
sea ice edge. To do this successfully, there was a critical
need for accurate daily ice edge information. Figure 1a de-
picts the ice concentration on 21 August 2022 from a 25 km
resolution passive microwave dataset (AMSR2) that relies
on the NASA Team 2 algorithm, obtained from the USNIC
(Markus et al., 2018). This date was chosen in order to rep-
resent conditions in the middle of the Wave Glider deploy-
ment. This product shows compact ice north of 72° N, with
pockets of open water found at 73° N, 150° W and 74.5° N,
146° W as well as open water west of 157° W and south
of 72° N. AMSR2 data processed using the ASI algorithm
(Fig. 1b; Spreen et al., 2008) at 3.125 km resolution show a
similar ice distribution as in Fig. 1a, although with higher
spatial detail (including larger areas of open water within
the pack). We compare these two passive microwave mea-
surements with MASIE (Fig. 1c; U.S. National Ice Center
et al., 2010), which uses a binary ice flag to indicate either
ice or open water and a 40 % ice concentration cut-off (see
details in Sect. 2.3.2). Consistent with both AMSR2 prod-

ucts, MASIE indicates compact ice north of 72° N, although
MASIE indicates the presence of ice to the west of 157° W.
MASIE also predicts a region of ice to the east of Prudhoe
Bay, extending south from the ice pack toward Alaska near
71° N. Finally, ASIP (Fig. 1d) shows ice throughout the do-
main north of 72° N, consistent with MASIE. However, ASIP
also identifies significantly more low-concentration ice at the
southern boundary of the ice pack, including a tongue of ice
extending toward the southeast in the direction of Prudhoe
Bay. This tongue is not present in the other three products
considered.

The positions of the four Wave Gliders for 1 week prior
to and 1 week after these maps are shown in gray in Fig. 1.
Images taken during the Wave Glider deployment cruise on
board the RV Ukpik and mission-specific support from the
USNIC (which included visible images of ice conditions)
demonstrated that ice was clearly present during the deploy-
ment, in agreement with ASIP and in disagreement with
AMSR2 and MASIE. Furthermore, the presence of ice dur-
ing deployment resulted in two Wave Gliders being deployed
to the west of the tongue of ice at approximately 150° W and
two to the east of this tongue. Despite efforts to join these
tracks over the 2 weeks shown in the figure, the persistence
of this ice tongue resulted in two separate survey regions.
Therefore, it is clear that in this case, ASIP best represented
the presence of low-concentration ice near the Alaskan coast.
A second motivation for investigating the use of ASIP was its
superior performance in evaluating sea ice during a NASA-
sponsored saildrone cruise in the northeast Chukchi Sea, also
during summer 2022 (not shown here; see García-Reyes et
al., 2023). These two NASA-sponsored field campaigns, in
addition to the previously discussed increase in vessel activ-
ity near the Arctic ice pack, motivate this detailed investiga-
tion of the performance of ASIP in the Pacific Arctic more
broadly.

The paper is structured as follows. First, we describe the
data reading, reformatting, and gridding methodology (ul-
timately producing a gridded ASIP, or what we refer to as
grASIP); then we perform an intercomparison with in situ
measurements of sea ice, compare grASIP to a passive mi-
crowave product (AMSR2) and a second product (MASIE),
and finally investigate the location of the ice edge in all three
products.

2 Data

2.1 National Weather Service Alaska Sea Ice Program

The National Weather Service’s Alaska Sea Ice Program pro-
vides real-time ice information for conditions in the Pacific
Arctic (Heim and Schreck, 2017). This product is primarily
operational; ASIP supports ships working in the region, in-
cluding shipping and transportation vessels, the fishing fleet,
the Coast Guard, tourist vessels, and research vessels. ASIP
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Figure 1. Sea ice conditions according to different ice products for 21 August 2022. (a) AMSR2 at 25 km resolution using the NASA Team 2
algorithm (Markus et al., 2018). (b) AMSR2 at 3.125 km using the ASI algorithm (Spreen et al., 2008). (c) MASIE ice/no ice (U.S. National
Ice Center et al., 2010). (d) National Weather Service Alaska Sea Ice Program. The track lines of four Wave Gliders operating in the region
are overlaid in white, representing the tracks for 1 week prior to 1 week after the ice images (14–28 August 2022). (e) Image taken by Jim
Thomson during the Wave Glider deployment cruise on 12 August 2022. The location of the image is marked by the black star in (a)–(d).

also supports Alaska native communities and subsistence
hunts, the oil and gas industry, Alaska Fish and Wildlife,
the Department of Homeland Security, and National Weather
Service forecasters (Hufford, 2009; Deemer et al., 2017).
ASIP issues a variety of products to stakeholders, including
text-based and graphical information. Specifically, ASIP is-

sues daily sea ice maps for the full domain (135° W–175° E,
45–80° N) and regional sectors, a 5 d graphical sea ice fore-
cast, text-based sea ice forecasts for 5 d into the future, in-
cluding regional forecasts for the Beaufort, Chukchi, and
Bering seas, and a 3-month sea ice outlook for the entire do-
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main. Additionally, ASIP publishes a sea surface temperature
analysis for the region.

The data are produced following World Meteorological
Organization (WMO) standards for archiving digital ice
charts (Joint, WMO-IOC, 2004). Specifically, all ice maps
are presented as GIS shapefiles following SIGRID-3 vec-
tor archive format. ASIP creates daily SIGRID-3 ice charts
for Alaskan waters including the Beaufort Sea, Chukchi
Sea, Bering Sea, and Cook Inlet. These SIGRID-3 files
have two main components: the shapefile containing the ice
analysis information (ice polygons and related attributes)
and the metadata describing the ice analysis data under the
SIGRID-3 format. The sea ice analysis represents ice con-
ditions valid at approximately 00:30 UTC and is based on
imagery acquired over the preceding 24 h. Imagery utilized
includes synthetic aperture radar (SAR), Polar Orbiter Satel-
lite (POES), visible and infrared imagery such as Visible In-
frared Imaging Radiometer Suite (VIIRS), other optical or
infrared sensors prioritized by latency and image quality, as
well as local observations and forecast weather conditions.
ASIP data include published ice charts three times per week
(Monday, Wednesday, and Friday) from 2007–June 2014 and
daily data from July 2014–present. Prior to March 2007,
ASIP published hand-drawn charts which are not included
in this analysis. As the USNIC also produces operational ice
maps covering this region, one might ask whether these prod-
ucts have been compared. ASIP and USNIC are collabora-
tors, but they have independent data streams and these two
ice maps have not been compared in the scientific literature.

The WMO standard for digital ice charts stipulates that
data be encoded following a set of concentration and spec-
ified colors (World Meteorological Organization, 2014; En-
vironment Canada, 2005). Each polygon of ice information
contains alphanumeric information on SIC, stage of devel-
opment and thickness, and ice form and floe size. SIC in-
formation is expressed in tenths: areas with no concentration
information are ice-free, a concentration value of less than
one-tenth is called open water/bergy water, 1/10–3/10 in-
dicates “very open ice”, 4/10–6/10 represents “open ice”,
7/10–8/10 represents “close ice”, and 9/10–10/10 indicates
“very close ice”; a fast ice category is also encoded. For stage
of development information, alphanumeric codes correspond
to different ice descriptors (e.g., Code 1 indicates new ice
< 10 cm, and Code 6 indicates first-year ice ≥ 30 cm). A
similar system is employed for ice form and floe size (e.g.,
Code 0 indicates pancake ice, and Code 6 indicates vast floe
2–10 km). In this paper we focus only on SIC, but we note
that the reading, reformatting, gridding, and validating pre-
sented here could also be done for stage/thickness and for-
m/floe size. The WMO also defines a standard color bar to
indicate these concentration ranges (e.g., Figs. 1; 2a, d). It
is important to note that the WMO and, in turn, ASIP call
< 1/10 concentration “open water/bergy bits”, which is not
the nomenclature that will be adopted in the remainder of

this study. From this point on, open water refers to conditions
where no ice is present (the WMO refers to this as ice-free).

A polygon is generated by an individual analyst. Available
imagery for the preceding 24 h is visualized, and the ana-
lyst uses these data to manually select the contour represent-
ing the bounds of a given polygon. Generally, polygons are
drawn around ice that appears homogenous or ice floes that
look relatively evenly distributed. On any given day, up to ap-
proximately 300 polygons are specified, with smaller, higher-
resolution polygons generally near the ice edge and larger
polygons within the ice pack. The daily number of polygons
specified varies seasonally, with more polygons drawn in fall,
winter, and spring and fewer polygons drawn in late summer,
when little ice is present across the domain. Additionally, the
number of polygons has steadily increased over time, coin-
cident with an improvement in the resolution of the imagery
used to generate ASIP maps. Fig. 2a and d illustrate winter
and summer polygon examples.

The first step in our procedure is to read the data. The con-
centration and alphanumeric codes are converted to numer-
ical values (i.e., the character string associated with a poly-
gon (e.g., 68) is converted to 6/10–8/10). Subsequently, the
data are gridded. Here, we choose a 0.05° grid (in both lati-
tude and longitude) with no interpolation. For a given ASIP
polygon, each grid point that lies within its boundary is as-
signed that polygon’s ice concentration value. The choice of
0.05° is made in order to resolve the smallest polygons, with-
out rendering the dataset too large, as there is no native grid
or resolution to the polygons themselves. Polygons embed-
ded fully within other polygons present a challenge to this
gridding algorithm, as a choice must be made as to which
polygon takes precedence. In this study it is stipulated that
a smaller polygon will always supersede a larger polygon;
this means that if a smaller polygon is embedded in a larger
polygon, then for the spatial extent of the smaller polygon,
the value of that smaller polygon is utilized, and for the re-
mainder of the large polygon, the value of the larger polygon
is utilized. To obtain a single value of SIC from the range
of concentrations identified by the analyst (Table 1), we take
the mean value of the range (see Fig. 2b, e) and present the
range divided in half as error bars (e.g., a polygon coded as
1/10–3/10 ice would have 20 % SIC, with 10 % error bars)
(see Fig. 2c, f). A similar methodology has been utilized
for other datasets converted from SIGRID format into grid-
ded numerical fields (e.g., U.S. National Ice Center, 2020).
From this point forward, grASIP will refer to our gridded SIC
dataset and thus differs from the source data published by the
National Weather Service (https://www.weather.gov/afc/ice,
last access: 10 March 2025).

It is important to note that there are only 11 concentra-
tion ranges used by ASIP polygons (Table 1), which means
that our gridded product also has only these 11 discrete val-
ues. Alternatively, one could imagine producing a spatially
smoothed version of this dataset using a fixed or perhaps
variable length scale. This is beyond the scope of this pa-

https://doi.org/10.5194/tc-19-1391-2025 The Cryosphere, 19, 1391–1411, 2025

https://www.weather.gov/afc/ice


1396 A. Pacini et al.: National Weather Service Alaska Sea Ice Program

Figure 2. Example NWS ASIP polygons and resulting gridded product (grASIP) for example winter (top row; 25 February 2022) and
summer (bottom row; 19 September 2022) conditions. (a, d) Raw ice polygons derived from shapefiles that indicate WMO standard primary
ice type concentration. (b, e) Gridded SIC for the corresponding day; see text for details on the ice concentration calculation. (c, f) SIC error
bars, calculated as described in the text.

Table 1. WMO standard ice concentration ranges, with correspond-
ing average SIC.

Ice concentration range SIC (%)

0
< 1/10 5
1/10–3/10 20
2/10–4/10 30
3/10–5/10 40
4/10–6/10 50
5/10–7/10 60
6/10–8/10 70
7/10–9/10 80
8/10–10/10 90
9+ (meaning > 9/10) 95
10 (shore-fast ice only) 100

per, as our goal here is simply to ingest and reformat, grid,
and validate the raw grASIP data and to compare these data
with other ice concentration products. That said, if these data
were to be ingested into climate models or weather forecasts,
then continuous fields could be of interest. Therefore, efforts
to produce a smoothed product are ongoing.

2.2 In situ observations

We use a total of 5991 in situ observations from the Pa-
cific Arctic for the years 2007–2022, which include ship-
based observations and saildrone measurements (Table 2 and
Fig. 3a). Most of these observations were collected during
summer months (Fig. 3b) with a relatively even distribution
among years (with the exception of 2012 and 2021, which
had low sampling rates) (Fig. 3c). These in situ observations
span a range of SIC, with the majority sampling either open
water or compact ice (Fig. 3d). Note that the saildrone obser-
vations are not included in Fig. 3d because these only provide
binary ice/no ice information (Table 2) and therefore cannot
be binned into concentration ranges.

2.2.1 Ship-based observations

The ship-based observations are predominantly obtained
from the international Ice Watch program. This program fol-
lows Antarctic Sea Ice Processes & Climate protocol (AS-
PeCt) (e.g., Worby and Allison, 1999; Worby and Dirita,
1999) extended to the Arctic through the software for Arctic
Shipborne Sea Ice Standardization Tool (ASSIST) (Hutch-
ings et al., 2020). This program facilitates standardized col-
lection of ship-based human observations of ice and mete-
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Table 2. In situ observations with platform, cruise dates, observation type (either binary ice/no ice or SIC %), and data source.

Observational platform Dates Observation type Data source

CCGS Louis S. St-Laurent 26 July–31 August 2007 % Ice Watch
CCGS Louis S. St-Laurent 17 July–20 August 2008 % Ice Watch
CCGS Louis S. St-Laurent 17 September–15 October 2009 % Ice Watch
CCGS Louis S. St-Laurent 15 September–15 October 2010 % Ice Watch
CCGS Louis S. St-Laurent 21 July–18 August 2011 % Ice Watch
USCGC Healy 15 August–28 September 2011 % Ice Watch
CCGS Louis S. St-Laurent 1 August–8 September 2012 % Ice Watch
CCGS Louis S. St-Laurent 1 August–2 September 2013 % Ice Watch
USCGC Healy 12 May–23 June 2014 % ArcticData
CCGS Louis S. St-Laurent 21 September–17 October 2014 % Ice Watch
USCGC Healy 9 August–12 October 2015 % Ice Watch
CCGS Louis S. St-Laurent 18 September–18 October 2015 % Ice Watch
RV Sikuliaq 1 October–10 November 2015 % Ice Watch
CCGS Sir Wilfrid Laurier 1–22 July 2016 % ArcticData
CCGS Louis S. St-Laurent 22 September–16 October 2016 % Ice Watch
USCGC Healy 26 August–15 September 2017 % ArcticData
RV Araon 3–26 August 2018 % Ice Watch
CCGS Louis S. St-Laurent 5 September–2 October 2018 % Ice Watch
USCGC Healy 14 September–19 October 2018 % Ice Watch
Saildrones (×3) 15 May–11 October 2019 binary Chiodi et al. (2021)
CCGS Louis S. St-Laurent 12–25 September 2019 % Ice Watch
RV Sikuliaq 7 November–27 December 2019 % Ice Watch
KV Svalbard 15 October–25 November 2020 % Ice Watch
Saildrones (×2) 18 June–17 July 2022 binary García-Reyes et al. (2023)

orological information. Generally, the Ice Watch protocol
requires ice observations to be made within 1 nmi of the
ship with 360° visibility during a 10 min sampling window.
The Ice Watch program and the ASSIST software specifi-
cally provide instructions for determining parameters like to-
tal ice concentration, open-water amount, snow, topography,
melt, and other information including ice type, thickness, and
floe size. This terminology comes from the ASPeCt proto-
col, which in turn is derived from WMO codes and is used
to maintain consistency between the hemispheres. Previous
studies have evaluated in situ observations of ice to validate
satellite ice edges, especially in the Antarctic (e.g., Worby
and Comiso, 2004; Beitsch et al., 2015), and recent stud-
ies by Kern et al. (2019, 2020) have evaluated ice products
using in situ observations globally (Kern et al., 2019) and
within the Arctic (Kern et al., 2020). In this study, we uti-
lize all Ice Watch data within the Pacific Arctic, as defined
in Fig. 3, from 2007–2022 (see Table 1 for details). Worby
and Comiso (2004) determine an accuracy of 5 %–10 % for
Ice Watch SIC, computed by comparing the range of esti-
mated SIC recorded by simultaneous observations made by
different observers. Unfortunately, there were not enough in-
stances of simultaneous SIC estimates available to perform
the same calculation in the Pacific Arctic. Specifically, there
were no Ice Watch observations from different ships occur-
ring within 24 h of each other and less than 0.25° apart in
latitude and longitude.

While most ship observations utilized in this study are ob-
tained through the Ice Watch program, a few cruises con-
ducted ice watches without reporting the data through AS-
SIST. As specified in Table 2, we utilize 20 Ice Watch cruises
that entered the Pacific Arctic during the period of interest
(2007–2022) and three cruises that reported ice data to the
Arctic Data Center. Two of these cruises (CCGS Sir Wilfrid
Laurier 2016 and USCGC Healy 2017) provided ice concen-
tration information through the Marine Mammal Watch that
is a part of the National Science Foundation’s Distributed
Biological Observatory program (Moore, 2019a, b; Moore
and Grebmeier, 2018). The final non-Ice Watch cruise fol-
lowed Ice Watch observation protocol for the Study of Under
Ice Blooms in the Chukchi Ecosystem program (Polashenski,
2016). For the purposes of this analysis, all in situ SIC data
are averaged onto a daily grid centered at midnight UTC,
since most ice maps are valid at or near this time stamp.
This avoids biasing the analysis due to ships reporting at
different temporal frequencies, although it also reduces the
database size and effective spatial resolution for ships tran-
siting through the MIZ. Following Kern et al. (2019), if a 24 h
window on a given ship has fewer than three observations, it
is discarded and those data are not utilized in the intercom-
parison. This daily averaging reduces the number of in situ
observations to 896.
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Figure 3. In situ observations. (a) Map of in situ observations, shaded by year of observation. (b) Histogram of the seasonal distribution
of in situ observations. (c) Histogram of the interannual distribution of in situ observations. (d) Histogram of the SIC distribution of in situ
observations.

2.2.2 Saildrones

Uncrewed surface vehicles (USVs) facilitate the collection of
high-resolution surface ocean information and meteorologi-
cal parameters near the air–sea interface. In this study, we uti-
lize two USV campaigns to the Pacific Arctic performed by
saildrones (Cokelet et al., 2015; Meinig et al., 2015; Mordy et
al., 2017; Gentemann et al., 2019; García-Reyes et al., 2023).
Saildrones are wind-driven platforms with solar-powered in-
strumentation. In this study, we rely on saildrones outfitted
with cameras to detect the presence or absence of ice. The
saildrones were outfitted with wing-mounted cameras ∼ 5 m
above the surface that captured images in three directions ev-
ery 5–60 min: upwards (sky), downwards (hull and imme-
diate surroundings), and horizontally. The footprint of sail-
drone camera imagery (∼ 0.3 nm radius, based on Fig. 9 in
Chiodi et al., 2021) is generally smaller than that provided
by human observations of sea ice from ships (∼ 1 nm radius).
Readers are referred to Chiodi et al. (2021) for details on the
conversion of image files to a time series of ice/no ice from
the saildrone tracks. We utilize the data presented in Chiodi et
al. (2021) for three saildrones operating in the Pacific Arctic

in 2019, and we perform the same analysis on the imagery
from two saildrones in 2022. The saildrone data (2019 and
2022) are averaged on a daily grid with binary ice/no ice in-
formation only, with the stipulation that ice must be present
for at least 25 % of the day to constitute the saildrone being
in ice. Furthermore, the conditions encountered by the sail-
drones are unlikely to be SIC > 40 % because the vehicles
themselves are not meant to operate in the ice.

2.3 Other ice concentration datasets

It is of interest to compare grASIP data with other satellite-
based measurements of SIC in the region. For this analy-
sis, we utilize a high-resolution passive microwave product
(AMSR2) and a product from the National Snow and Ice
Data Center (MASIE), both of which are used often in the
scientific literature. AMSR2 at 3.125 km resolution was cho-
sen in order to compare grASIP with a high-resolution, solely
passive-microwave-based product. MASIE was chosen, in-
stead of the USNIC IMS operational product, for example,
because it offers a unique daily high-resolution map of ice
extent, is provided in an easy-to-use gridded format, and
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represents a product commonly used in the scientific liter-
ature that is generated following methodology similar to the
grASIP dataset.

2.3.1 Passive microwave (AMSR2)

The Advanced Microwave Scanning Radiometer 2 (AMSR2)
is a multi-frequency passive microwave sensor on board the
JAXA Global Change Observation Mission-Water (GCOM-
W1) satellite. This sensor is a follow-up to AMSR-E, which
was on board the NASA satellite Aqua from 2002–2011.
AMSR2 measures brightness temperatures at a number of
different frequency channels using vertical (V) and horizon-
tal (H) polarization; the 89 GHz channel provides the small-
est footprint and highest resolution among these channels.
Because AMSR-E and AMSR2 channels differ, AMSR2
brightness temperatures are then converted to AMSR-E
brightness temperatures using a series of empirically de-
rived conversion coefficients to maintain consistency be-
tween datasets (Melsheimer, 2024).

The Arctic radiation and turbulence interaction study
(ARTIST) sea ice (ASI) algorithm was developed for Spe-
cial Sensor Microwave Imager (SSM/I) data (Kaleschke et
al., 2001) and adapted to AMSR-E data (Spreen et al., 2008)
to compute SIC from brightness temperatures. ASI relies on
the difference between the V and H polarizations at 89 GHz
to convert brightness temperature into SIC using tie points
and a series of weather corrections that rely on the 18, 23,
and 37 GHz frequency channels. Subsequently, SIC is com-
puted using the bootstrap algorithm (Comiso, 1986). Further
algorithm details can be found in Melsheimer (2024). Why
choose this algorithm over other AMSR2 products? Many
studies have compared the performance of ASI-derived SIC
to other SIC algorithms and data sources (e.g., Wiebe et al.,
2009; Heygster et al., 2009; Ivanova et al., 2015). For ex-
ample, Beitsch et al. (2014) compared ASI at 3.125 km with
ASI at 6.25 and 12.5 km, as well as SIC from bootstrapping,
to SIC observed by MODIS images. They found that ASI at
3.125 km was better able to capture the size and structure of
leads in the sea ice when compared to the other listed dataset;
thus, the 3.125 km resolution product is an ideal dataset to
compare with the other high-resolution SIC products used
in this study. Note that AMSR2 at 25 km resolution using
the NASA Team 2 algorithm (Markus et al., 2018) shown in
Fig. 1a is not considered in the remainder of this analysis.

The swath SIC data are then gridded onto daily Arc-
tic and Antarctic polar stereographic grids that align with
the National Snow and Ice Data Center’s grids (at 6.25
and 3.125 km). In this study, we utilize daily 3.125 km data
from 2012–2022 obtained from the University of Bremen
data archive (Melsheimer and Spreen, 2019; https://data.
seaice.uni-bremen.de/amsr2/asi_daygrid_swath/n3125/, last
access: 30 May 2023). Based on error propagation due
to sources of uncertainty in radiometric measurements, tie
points, and atmospheric contributions, the errors are esti-

mated to vary across concentration ranges; the data exhibit
a 5.7 % error at 100 % SIC, which increases to 25 % er-
ror at 0 % SIC (Spreen et al., 2008). To match the resolu-
tion of grASIP, we re-gridded the AMSR2 data onto a 0.05°
latitude–longitude grid for the analysis in Sect. 4.3.

2.3.2 Multisensor product (MASIE)

Multisensor Analyzed Sea Ice Extent (MASIE) is a product
available from the National Snow and Ice Data Center (U.S.
National Ice Center et al., 2010). MASIE originates from the
US National Ice Center operational Interactive Multisensor
Snow and Ice Mapping System (U.S. National Ice Center,
2008; Helfrich et al., 2007), valid at 00:00 UTC. The data are
then converted to gridded ice maps by NSIDC. It is important
to note that while USNIC and IMS are operational centers,
NSIDC is not. Accordingly, while the source data for MASIE
are operational SIC maps, MASIE itself is not an operational
product, as defined in Sect. 1. Similar to ASIP, to gener-
ate IMS maps at the source of the MASIE product, human
analysts consider available imagery from synthetic aperture
radar, visible and infrared imagery, passive microwave mea-
surements, and scatterometer data to generate these maps.
These binary maps of ice/no ice are generated at both 1 and
4 km resolution and use a cut-off threshold of 40 % SIC,
meaning that grid cells with greater than 40 % SIC are des-
ignated as having ice, and grid cells with less than 40 %
SIC are considered ice-free (U.S. National Ice Center et al.,
2010). In this study, we utilize daily 4 km data from 2007–
2022 obtained from the National Snow and Ice Data Center
(https://nsidc.org/data/g02186/versions/1, last access: 18 Oc-
tober 2023). To match the resolution of grASIP, MASIE data
are re-gridded onto a 0.05° latitude–longitude grid for the
analysis in Sect. 4.3.

3 Methods

3.1 Parity analysis

We compare the three SIC products (grASIP, AMSR2,
MASIE) to in situ observations to assess errors in the former,
assuming the in situ observations are accurate. For each SIC
product, the grid cell nearest the in situ observation in lati-
tude, longitude, and time is queried. If the time gap between
the nearest SIC map and the in situ observation exceeds 12 h,
the comparison is not made. The SIC grid cell is then con-
verted to a binary ice/no ice value and compared against
the in situ observation, also converted to a binary ice/no ice
value. The motivation for, and methodology behind, convert-
ing SIC to binary values is explained in Sect. 3.2. This con-
version is done for a variety of SIC values. Unless otherwise
stated, for grASIP this meant that for SIC greater than or
equal to 20 % ice was considered present, and for SIC less
that 20 %, ice was considered absent. The same was done for
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Table 3. Accuracy and matchup counts for data combinations specified. For the 20 %–80 % SIC range calculation, data are inclusive (i.e., data
greater than or equal to 20 % and less than or equal to 80 % are included). The 0 %–40 % range and the 80 %–100 % range are non-inclusive.
The 0 %–20 % range is not considered, since only 11 data points fall in this range. Note that these accuracy estimates are a function of an
imperfect input dataset, given that the in situ observations do not cover all grid cells and all time points and are biased towards favorable
operating conditions. grASIP data are underlined, AMSR2 data are in bold, and MASIE data are italicized.

Data points (no.) Accuracy (%) Weighted accuracy (%) Q1 Q2 Q3 Q4

grASIP 752 94.3 91.1 535 33 10 174
AMSR2 747 92.2 85.8 544 57 1 145
MASIE 301 90.7 84 50 8 20 223
grASIP vs. AMSR2 714 95.2, 92.7 91.9, 85.0 534, 542 24, 51 9, 1 146, 120
grASIP vs. MASIE 228 87.3, 89.9 83, 85.3 45, 46 13, 8 16, 15 154, 159
grASIP vs. AMSR2 vs. MASIE 190 90.5, 86.8, 90.0 86.5, 89.6, 86.7 43, 54, 44 5, 23, 7 13, 2, 12 129, 111, 127
grASIP vs. AMSR2 in (0 %–40 %) 28 42.9, 21.4 16, 22 12, 6
grASIP vs. AMSR2 in [20 %–80 %] 70 54.6, 25.8 30, 49 36, 17
grASIP vs. AMSR2 in (80 %–100 %) 79 88.4, 53.2 18, 37 61, 42

AMSR2. MASIE is already binary, so a conversion to binary
was not necessary.

Confusion matrices are a tool often used in the machine
learning literature to evaluate model performance (e.g., Sam-
mut and Webb, 2011); here we adapt the method to assess
the performance of our three SIC products. Confusion matri-
ces focus on the number of correct and incorrect matchups
between two datasets; in this case, the matchups between in
situ observations (taken as truth) and gridded SIC observa-
tions are tallied. Within these matrices, correct matchups lie
along the parity (i.e., 1 : 1) line; incorrect matchups fall in
the upper left and lower right quadrants. We thus prefer to
use the term “parity analysis” in the following analysis.

For each matchup (e.g., grASIP vs. AMSR2 vs. MASIE),
we first define the intersection of all three datasets with re-
spect to three variables: (i) years covered (e.g., 2012–2022
for the three-way comparison, since AMSR2 only starts in
2012), (ii) minimum SIC threshold (i.e., > 40 %, from the
MASIE criterion), and (iii) binary ice vs. no ice (i.e., con-
verting the SIC from grASIP and AMSR2 into the MASIE
ice/no ice framework). Unfortunately, these constraints result
in a reduction in matchups by 75 % for the three-way com-
parison (grASIP vs. AMSR2 vs. MASIE) (Table 3). This is
because the saildrone observations (which represent a high
percentage of the original in situ dataset) were discarded for
this analysis, as saildrone data are considered binary for the
20 % SIC threshold, but not for the 40 % SIC threshold (see
Sect. 2.2.2 for details on this).

3.2 Motivation for and conversion to binary ice/no ice

A binary ice/no ice framework is used throughout most of
this study in order to assess the ability of grASIP, AMSR2,
and MASIE to detect the simple presence or absence of ice.
The in situ SIC data are converted from SIC to a binary value
by specifying that all grid cells with SIC greater than or
equal to 20 % (or 40 %, depending on the comparison) are
considered ice pixels, while grid cells with less than 20 %

(40 %) SIC contain no ice. Similarly, grASIP and AMSR2
data are converted to binary ice/no ice information following
the same methodology.

With the exception of Sect. 4.1.2, our comparisons be-
tween ice maps and in situ observations are performed in this
binary ice/no ice framework, which we feel is best for two
main reasons. First, human observations of SIC are subjec-
tive. While Worby and Comiso (2004) quote an uncertainty
of 5 %–10 % in human-made SIC observations, this is likely
an underestimate. As Kern et al. (2019) describe, untrained or
less experienced observers will be able to assess SIC at low
concentrations (< 30 %) and at high concentrations (> 80 %)
relatively easily; however, human observers will naturally
struggle in the SIC ranges between these extremes, which is
a region of particular interest in this study. Even among ex-
perienced observers, there will be discrepancies in the iden-
tified SIC exceeding 10 %. Further complication and error
are introduced because of constraints on visibility, speed of
the ship, distribution of floes, preferential navigation to avoid
ice or to raft to an ice floe, and more. Our second reason for
choosing a binary framework has to do with the ranges of SIC
provided by ASIP, which are often on the order of 20 %. This
means that a grid cell reporting 80 % could actually exhibit
70 % or 90 % SIC and still fall in that particular classification
range. Additionally, ASIP polygons and ranges are assigned
by human observers with variable input data, and thus sub-
jectivity is introduced in the designation of such polygons.
When coupled, these two factors can result in an error range
of 40 %, almost half of the SIC range.

3.3 Defining the ice edge

In this study, we define the ice edge as the location of ei-
ther the 20 % or 40 % ice concentration contour. The 15 %
SIC contour is a common choice for defining the ice edge in
passive microwave products (Zwally et al., 1983; Cavalieri et
al., 1991; Meier and Stewart, 2019) and generally falls into
the WMO’s ice-free and open-water categories (see Fig. 1).
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Here, we choose 20 % because grASIP will never report 15 %
SIC (Table 1). The ice edge in this study is identified by using
the gridded SIC maps to draw a contour corresponding to the
chosen threshold. Of course, these gridded products, as de-
scribed previously, are derived following differing method-
ologies. For grASIP, the data are first presented as polygons
and then gridded to 0.05° resolution, after which point the ice
edge contour is identified. For AMSR2, we re-grid the source
data onto the 0.05° latitude–longitude domain and again use
the gridded fields to draw a contour and obtain the daily ice
edge. For MASIE, we re-grid the data onto the 0.05° grid;
since we re-grid MASIE, this interpolation introduces non-
binary values along the ice edge. To remain as true as possi-
ble to the source data, the 0.5 contour is chosen as represent-
ing the ice/no ice boundary, which accurately recovers the
original ice edge. It is important to note that for MASIE, we
can only represent the 40 % ice concentration contour.

3.4 Footprint size

It is important to keep in mind that the footprint size and
shapes of the products compared in this study vary. For ASIP,
the analyst utilizes satellite imagery and draws a polygon
around ice that appears homogenous or ice floes that are gen-
erally evenly distributed. Therefore, each polygon has a dif-
ferent shape and size. As described previously, AMSR2 syn-
thesizes a range of footprint sizes from different frequency
channels to obtain a final grid size of 3.125 km. Similar to
ASIP, the USNIC analyst that generates the IMS product at
the root of MASIE grids all satellite data onto a ∼ 4 km (and
1 km starting in 2014) grid and then relies on all available
ice data to identify which grid cells have 40 % or more ice.
The ASSIST in situ observations are for a 1 nm radius circle
around the ship, and the frequency of the observations varies.
In this study, the in situ observations are averaged to become
daily values; thus, in some situations (when the ship is mov-
ing) this results in an extension of the spatial scale of the data
coverage. Saildrone data exhibit the smallest footprint, with
high temporal resolution (again, averaged into daily values).
As such, while the comparison performed in the remainder of
this analysis treats the SIC observations from the individual
products without considering footprint size, it is important
to remember that the methodologies behind each dataset re-
sult in inherent differences in footprint sizes. The potential
impacts of these differences are explored in the Discussion
section.

4 Results

4.1 Ice maps compared with in situ observations

4.1.1 grASIP

The parity calculation, as described in Sect. 3, for grASIP
data from 2007–2022 is presented. We note that saildrone

Figure 4. Full parity plot for ASIP data: 2007–2022.

observations are binary: the image either includes ice or does
not include ice. For this calculation, these binary saildrone
camera observations of ice are taken to be SIC > 20 % and
thus included as a positive encounter with ice. See Sect. 3.1.4
for further discussion on saildrone data use (and Fig. 1 of
Chiodi et al., 2021, for example images of ice encounters).

As shown in Fig. 4 and Table 3, grASIP correctly identifies
the presence of ice with an accuracy of (535+ 174)/(535+
174+10+33)·100= 94.3 % when compared with the in situ
observations. grASIP overpredicts ice 1.3 % of the time and
underpredicts ice 4.4 % of the time. Since this dataset con-
tains more ice-free than in-ice matchups (known as a class
imbalance in the confusion matrix literature), we also include
the weighted average accuracy. This is done by computing
the accuracy for the no ice condition, which represents the
specificity (or true negative rate; Q1 / (Q1+Q3)), and the ac-
curacy for ice conditions, which represents the sensitivity (or
true positive rate; Q4 / (Q2+Q4)) and then averaging these
two values together. In this case, the weighted accuracy is
91.1 % (Table 3); again, it is important to note that this ac-
curacy estimate is only in relation to the available in situ ob-
servations, which are not domain-wide and do not cover all
times and ice conditions.

4.1.2 grASIP, AMSR2, and MASIE

grASIP’s overall accuracy of 94.3 % is high, but to under-
stand what that value means, it is critical to compute the cor-
responding accuracy rate of other products as well. To do
so, AMSR2 passive microwave data and MASIE synthesized
data are considered, and the parity calculation is redone. Re-
call that the temporal resolution of the three ice maps varies,
and the SIC information varies, which imposes the following
constraints on the in situ data used for the accuracy calcu-
lation: (i) years covered, (ii) minimum SIC threshold, and
(iii) binary ice vs. no ice information.
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Figure 5. Parity plot for the three ice products (grASIP, AMSR2, and MASIE) combined. In situ observations with ice concentration in-
formation (non-binary) from 2012–2022 are used. SIC cut-off is 40 % for all four products (in situ observations, ASIP, AMSR2, and by
definition MASIE).

Given these constraints, since MASIE has an inherent cut-
off threshold of 40 %, a 40 % SIC threshold must be used
for grASIP, AMSR2, and the in situ observations. Therefore,
for all four datasets (grASIP, AMSR2, MASIE, and in situ
observations) when SIC < 40 % it is considered as having
no ice, while when SIC ≥ 40 % it is considered as having
ice. To do this calculation, we need in situ observations that
provide SIC estimates and thus exclude the binary in situ ob-
servations from this comparison (i.e., excluding the saildrone
data).

The resultant overall accuracy estimates (Fig. 5 and Ta-
ble 3) are similar to our original analysis for grASIP (Fig. 4),
with grASIP exhibiting 90.5 % accuracy, AMSR2 exhibit-
ing 86.8 % accuracy, and MASIE exhibiting 90.0 % accuracy,
again with the caveat that the in situ data are not comprehen-
sive and thus result in imperfect accuracy estimates. grASIP
and MASIE tend to overpredict ice (n= 13 for grASIP and
n= 12 for MASIE in Q3), whereas AMSR2 tends to under-
predict ice (n= 23 in Q2). These results are not sensitive
to the choice of cut-off SIC. Specifically, given the product
accuracy of 5 %–10 % SIC, we repeat the calculation for a
range of cut-off thresholds. The pattern is consistent at 40 %,
45 %, and 50 % (grASIP and MASIE overpredict ice, and
AMSR2 underpredicts ice). At 35 %, the pattern is true for
grASIP (overpredicts ice) and AMSR2 (underpredicts ice),
but MASIE is now even (overpredicts and underpredicts at
the same rate). At 30 %, grASIP is even, AMSR2 still under-
predicts ice, and MASIE underpredicts ice.

Since most in situ observations in the subset of data
queried for this calculation contain ice, these accuracy es-
timates favor products that overpredict ice (grASIP and
MASIE). The weighted accuracy estimates (Table 2, calcu-
lation described in Sect. 3.1.1) reveal consistent accuracy
estimates among all three products when this sample bias
is taken into consideration. This overall similarity in accu-
racy estimates (90.5 % vs. 86.8 % vs. 90.0 %; weighted accu-
racy 86.5 % vs. 89.6 % vs. 86.7 %) was a surprise: given the
dramatic differences in ice edge position (e.g., Fig. 1), one

would expect similarly dramatic differences in accuracy. The
lack of such differences is explained in Sect. 4.2.

4.1.3 grASIP vs. AMSR2

We now discard the SIC > 40 % criterion for comparison
of only grASIP and AMSR2 (but at this point keep the bi-
nary ice/no ice framework). The resulting accuracy is 95.2 %
for grASIP and 92.7 % for AMSR2 (see Table 3 for details;
weighted accuracies are 91.9 % for grASIP and 85.0 % for
AMSR2). The primary difference between the datasets is
an underprediction of ice by AMSR2 compared to grASIP.
Specifically, while grASIP incorrectly identifies 24 in situ
observations as having no ice, when in fact ice is present,
AMSR2 incorrectly identifies just over double that number,
51.

We now also discard the ice/no ice framework in order to
explore the accuracy of the products across all SIC ranges.
We caution that there are high uncertainties embedded into
this analysis for all three data sources: grASIP, AMSR2, and
in situ observations. Data are binned at 10 % resolution, with
the lower bound inclusive, except at 0 % and 100 % (e.g.,
[0 %–10 %], [10 %–20 %), . . . [90 %–100 %]), similar to the
methodology employed by Kern et al. (2019). This is consis-
tent with the error bars on the in situ values (estimated to be
approximately 10 %, Kern et al., 2019) and the error bars as-
sociated with converting concentration ranges to SIC values
(see Fig. 2c, d, Table 1). As shown in Fig. 6, grASIP tends
to overpredict ice and AMSR2 tends to underpredict ice, es-
pecially for SIC < 50 %. This overprediction and underpre-
diction can be quantified by computing the root mean square
error (RMSE) and the mean average distance (MAD) for the
binned data and for the scattered data. In other words, RMSE
and MAD can be computed for the data that constitute the
shading in Fig. 6 (binned data), and the same statistics can
be computed for the data that constitute the scatter points in
Fig. 6 (scattered data).

The resultant statistics indicate that AMSR2 underpre-
dicts ice at a larger magnitude than that at which grASIP
overpredicts ice for both the average data and the binned
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Figure 6. SIC-based parity plot for grASIP and AMSR2. Red and blue squares indicate the product average for the given in situ concentration
range (referred to as scattered data in the text); see text for details. Error bars indicate the standard deviation of the values in that bin. The
solid line indicates the linear fit through the product averages. The dashed gray line indicates the 1 : 1 line for reference.

data (Table 4). This is especially clear in the MAD binned
data, where grASIP has a MAD of 3.6 (overprediction) and
AMSR2 has a MAD of −5.4 (underprediction), but this pat-
tern is consistent across the datasets. Therefore, while nei-
ther product is perfect, the overprediction of ice by grASIP is
smaller than the underprediction of ice by AMSR2. Given the
high uncertainties in each dataset (see Sect. 3.2), more work
is needed to confirm or disprove these results. It is also im-
portant to remember that grASIP data will never fall into the
10 %–20 % SIC interval (see Fig. 6a, Table 1), which could
impact these results as well.

4.1.4 grASIP vs. AMSR2 within the MIZ

As described in the Introduction, we seek to assess the perfor-
mance of different ice products in low-ice conditions. While
MASIE reports binary ice information and cannot be used
to isolate specific concentration ranges, grASIP and AMSR2
data can identify the marginal ice zone (MIZ), defined here
to be between 20 % and 80 % ice concentration.

The resulting parity plot (Fig. 7) demonstrates that, al-
though not perfect, grASIP outperforms AMSR2 in these
low-SIC environments. grASIP exhibits an accuracy of 55 %,
while AMSR2 exhibits an accuracy of 26 % (a difference of
29 %). Furthermore, if we do not limit the concentration re-
ported by the product (in other words, we specify that the in
situ observations must be between 20 % and 80 %, but the
products must simply either report or not report ice, regard-
less of the associated SIC value), the accuracy jumps to 96 %
for grASIP (63 correct, 3 incorrect) and 76 % for AMSR2
(50 correct, 16 incorrect), a difference of 20 %.

However, this analysis is limited by the availability of in
situ observations within the MIZ. Recall Fig. 3d, which il-

Figure 7. Parity plot for grASIP and AMSR2 within the MIZ. In
situ observations with ice concentration information (non-binary)
from 2012–2022 are used. Concentration cut-offs are 20 %–80 %.
Note the different horizontal scale used here relative to previous
parity plots: we are testing only within the MIZ, so only where in
situ observations show ice.

lustrates that the majority of in situ observations are either
in open water or dense ice. Additionally, recall the strikingly
similar accuracy estimates from the parity calculations pre-
sented in Fig. 5. Both results can be explained by considering
two case studies.

4.2 Case studies

Consider the position of the in situ asset on 2 October 2015
(Fig. 8a). The ship is far north within the pack ice, reporting
a compact ice cover, and far from the ice edge regardless of
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Table 4. Root mean square error (RMSE) and mean average difference (MAD) for the grASIP and AMSR2 SIC intercomparison. The first
row indicates how many data points are included in the calculation. The first two columns represent RMSE and MAD for the scattered data
(blue and red squares in Fig. 6a and b), and the middle two columns represent RMSE and MAD for the individual binned data points, rounded
to the nearest tenth. The last two columns represent RMSE and MAD for the matchups in the MIZ: 20 %–80 %.

Scatter fit Binned data MIZ [20 %–80 %]

No. of data points 10 190 81

RMSE (%) MAD (%) RMSE (%) MAD (%) RMSE (%) MAD (%)

grASIP 12.4 8.9 21.8 3.6 27.2 11.6
AMSR2 13.3 −9.9 23.8 −5.4 32.6 −9.9

Figure 8. Two case studies of ice edge position for all three products, with both the 20 % and 40 % ice concentration contours plotted from
grASIP and AMSR2. The black square indicates the location of the in situ observation.

which ice edge is considered. In this case, all products agree
that the asset is in the ice. However, all three products dis-
agree on the position of the ice edge (regardless of whether
the ice edge is defined as 20 % or the MASIE definition of
40 %). In this case study, the grASIP ice edge is further south
than both the AMSR2 and MASIE ice edges, especially east
of 158° W. The MASIE ice edge is similar to AMSR2 west of
152° W, but east of this longitude the MASIE ice edge is be-
tween the grASIP and AMSR2 edges. Similarly, consider the
position of the in situ asset on 7 September 2017 (Fig. 8b).
The ship is far south of the ice edge, reporting open-water
conditions. All products agree that the ship is in open wa-
ter, despite all three products reporting different ice edges. In
this case study, the grASIP ice edge is systematically further
south than both the AMSR2 and MASIE ice edges through-
out the domain; AMSR2 and MASIE have relatively simi-
lar ice edge positions. In these two examples, while the ice
edges vary dramatically between products, the in situ assets
are sampling in geographic positions and SIC ranges where
the products are more likely to agree.

Recall the distribution of in situ assets as a function of
ice concentration (Fig. 3d), which shows that in situ assets

are predominantly found in either open water or high SIC.
Thus, the in situ observational database has a poor sampling
of the MIZ, which is unfortunately exactly the region where
the products most strongly disagree (Fig. 7, see Table 4).

4.3 Ice edge comparison

Here we present a comparison of ice edge position between
satellite products; specifically, the average distance between
ice edges in two different products is computed. While we
are unaware of any studies that calculate the average dis-
tance between ice edges in different products, finding the
distance between two contours is a common calculation used
to define the width of the MIZ. There are a variety of al-
gorithms implemented to compute the distance between two
contours. For example, Strong et al. (2017) compared four
methodologies and concluded that a streamline definition
solving Laplace’s equation is the most rigorous, albeit com-
putationally intensive, approach. Strong (2012) and Strong
and Rigor (2013) rely on this methodology to describe the
impact of atmospheric conditions on the Atlantic Arctic MIZ
and on long-term seasonal trends in the MIZ, respectively.

The Cryosphere, 19, 1391–1411, 2025 https://doi.org/10.5194/tc-19-1391-2025



A. Pacini et al.: National Weather Service Alaska Sea Ice Program 1405

Alternatively, Stroeve et al. (2016) use a radial method to
compare the detection of the MIZ and consolidated pack ice
and coastal polynyas in two passive microwave algorithms.
Using this methodology, radial sections are traced; the al-
gorithm then flags the first point along each radial section
where ice exceeds a minimum threshold (e.g., 15 % SIC) and
then continues along the section until the ice reaches a max-
imum threshold (e.g., 80 % SIC). Here, we follow the radial
methodology for its simplified computational demands and
intuitive frame of reference, and we adapt the methodology
to this study as follows.

Here, the calculation is done by first gridding AMSR2 and
MASIE onto a 0.05° grid to match that of grASIP and second
by creating a land mask which is extended seaward by five
pixels in each direction to remove instances of land spill-over
(e.g., Cavalieri et al., 1999). Additionally, masks are imple-
mented over Wrangel and St. Lawrence islands, and a two-
dimensional 3× 3 pixel rectangular running mean is applied
to remove small-scale features and to facilitate a large-scale
analysis of basin-wide ice edge position. Then, for each lon-
gitude (at 0.5° resolution), the latitude of the ice edge is cal-
culated (either 20 % or 40 %), as defined by the first grid cell
that SIC exceeds 20 % or 40 %, for each longitude and for
each day.

This permits a comparison between ice edge location at
each longitude between product pairs. For each day and for
each longitude bin, the north–south distance between the two
products is computed. For example, if the 20 % contour in
grASIP and AMSR2 is being compared, the distance be-
tween the grASIP and AMSR2 20 % contour at each longi-
tude is computed daily. The longitudinal mean is then calcu-
lated for each day, which results in a time series of ice edge
distance between products as a function of day.

The average distance between the grASIP and AMSR2 ice
edges exhibits distinct seasonal variability, with grASIP an
average of 172 (179) km south of AMSR2 in summer and
46 (51) km farther south in winter for the 20 % (40 %) ice
edges. The comparison between grASIP at 40 % and MASIE
demonstrates the same pattern, but with significantly reduced
distances: the grASIP ice edge is 39 km farther south in sum-
mer and 10 km farther south in winter. Finally, the MASIE
ice edge is generally farther south relative to the AMSR2 ice
edge in summer (140 km) and is 45 km south of the AMSR2
ice edge in winter.

This calculation highlights that in all cases and in all sea-
sons, the grASIP ice edge is further south than the ice edge
in AMSR2 and MASIE. Furthermore, the distance between
ice edges is greater in summer than in winter in all four inter-
comparisons. This is likely due to the presence of melt ponds
and snow and melt on the surface of the ice, as passive mi-
crowave tends to struggle when water from melt is present on
the surface of the ice during the summer season (e.g., Kern
et al., 2020; Cavalieri et al., 1990).

These systematic differences have been recognized in pre-
vious studies; Meier et al. (2015) noted that MASIE exhibits

a larger sea ice extent in summer months compared to pas-
sive microwave measurements (similar to the result shown in
Fig. 9d, but for area instead of distance). As with the Meier
et al. (2015) passive microwave and MASIE comparison, all
three datasets analyzed here include inherent sources of er-
ror that can help put the systematic differences in Fig. 9 into
context. For AMSR2, as previously described, ice is under-
estimated because of wet snow and melt ponds on the surface
of the ice and because of the presence of thin ice. For MASIE
and ASIP, potential sources of error include the lack of high-
resolution imagery on any given day if conditions are cloudy.
This could result in an analyst being unwilling to move the
ice edge until another clear image is obtained, which results
in an ice edge that looks to be loitering but is in fact simply
a replica of the previous day’s ice edge (e.g., Meier et al.,
2015). The lack of high-resolution imagery could also result
in a reliance on passive microwave data to draw the ice edge;
while we cannot comment on the frequency with which ana-
lysts rely on passive microwave measurements alone, Meier
et al. (2015) present an example from September 2010 where
the MASIE ice edge remains fixed until the ice quickly re-
treats over the course of 1 d, citing this as an example of
an analyst likely waiting for a clear image. A similar phe-
nomenon was documented by Steele and Ermold (2015),
who defined a loitering ice edge as an ice edge that remains
in a fixed geographic region for multiple days in a row. They
showed that MASIE exhibited a higher tendency for loiter-
ing when compared to passive microwave data. This suggests
that it is not common for analysts to rely solely on passive
microwave measurements and suggests that analysts instead
opt to wait for new imagery before moving the ice edge. Ad-
ditionally, ASIP uses polygons that denote sea ice concen-
tration ranges; the polygon boundaries and the ice concen-
tration ranges delineated by these polygons are not overly
well-defined and repeated analysis could result in a slightly
different designation of polygon locations and concentration
ranges. Finally, one might ask whether ASIP’s primary task
is to prioritize navigational safety and thus analysts can be
conservative in their ice estimates. ASIP ice analysts do not
have this directive. Of course, implicit bias could result in a
tendency to overestimate the true ice conditions if an analyst
errs on the side of caution, but this is not a stated edict at
ASIP.

5 Discussion

In this study, we show that grASIP generally has an ice edge
further south than MASIE and AMSR2, that it is generally
more accurate, and that it exhibits more fine-scale struc-
ture when compared with shipboard observations available
in spring, summer, and fall (winter in situ observations are
sparse). Thus, if a scientist or operational stakeholder needs
to know how likely it is that ice of any SIC is present at a lo-
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Figure 9. Distance between ice edges. (a) Longitudinal-mean distance between the grASIP and AMSR2 40 % concentration contours. Blue
contours represent yearly time series, and the red contour represents the mean of all years (2013–2022). (b) Same as (a) but for grASIP and
AMSR2 at 20 %. (c) Same as (a) but for grASIP at 40 % vs. MASIE. (d) Same as (a) but for MASIE and AMSR2 at 40 %. Negative values
indicate that the first product (e.g., grASIP in panels (a)–(c) and MASIE in panel (d)) is further south than the second product. Solid green
lines indicate seasonal mean (January, February, March for winter; July, August, September for summer); dashed green lines are the standard
deviation envelopes.

cation in the Alaskan Arctic, then grASIP is the best choice
of product to use to address this question.

In most of this study, the presence or absence of an ice
framework was used; however, when the SIC values are re-
tained, there is evidence that grASIP performs better than
AMSR2 in most concentration ranges and especially within
the MIZ (Fig. 7). At low SIC, both grASIP and AMSR2
show high estimated SIC variance, with grASIP systemati-
cally overpredicting SIC and AMSR2 underpredicting SIC
(Fig. 6). However, the underprediction in AMSR2 is larger
than the overprediction in grASIP, illustrating that while nei-
ther product is perfect, grASIP outperforms AMSR2. That
said, in situ observations of the MIZ are lacking (see Fig. 3d),

indicating that there is a clear need for measurements of SIC
in this subdomain. We hypothesize that more in situ observa-
tions of the MIZ might in fact change the accuracy statistics
presented here.

Limitations in the datasets

In situ observations. Matchups within the MIZ can be quite
problematic for a variety of reasons. Despite the 5 %–10 %
error bars presented by Worby and Cosimo (2004) for the
ship-based in situ observations, it is important to recall that
this is for a 1 nmi radius around a ship, dependent on both
the observer and the visibility at that time. Of course, the
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ship could be moving during the 10 min sampling window,
thus elongating the area assessed by this in situ observa-
tion (e.g., Beitsch et al., 2015; Kern et al., 2019). Addition-
ally, weather and visibility can impact the observable radius
around the ship (e.g., Kern et al., 2019). This surveyed region
is only a small portion of a satellite grid cell, which makes
matching up the ship-based estimate with satellite estimates
challenging. This is especially true in low-SIC environments,
where small-scale ice floes and features dominate the grid
cell. As such, if a ship is moored to a floe (which is often the
case during on-ice buoy deployments or long-term drifts), it
will sample heavier ice conditions than are reflected in the
broader grid cell. Conversely, most ships will preferentially
navigate through leads or low-ice regions, potentially biasing
the in situ observations to low values (e.g., Kern et al., 2019).
Furthermore, taking daily averages of ship position and SIC
complicates this calculation, as a ship is more likely to move
across a large range of SIC measurements in 1 d when in the
MIZ than when in heavy ice because a ship can move faster
in low-SIC conditions than when backing and ramming in
high-SIC environments. As such, the ship may transit from
15 % to 50 % to 100 % ice in 1 d, and these values would av-
erage to 55 % ice cover, despite the fact that at the time of
satellite passage, the ship may be closer to the low or high
ends of this range.

ASIP. As described previously, ASIP (and most analyst-
generated blended SIC maps) is particularly valuable given
the high spatial resolution afforded by the trained attention
of an analyst and the data representation as SIC polygons.
However, ASIP inputs have changed over time as satellite
imagery has improved, the human analysts responsible for
the SIC maps have changed over time, and often bad weather
means that imagery may not be available for a specific day
or series of days. Therefore, ASIP is better suited to under-
standing the daily state of the ice pack rather than being used
to compute long-term climate trends.

Furthermore, ASIP data are presented using specific SIC
ranges, which results in 12 SIC values present in the grid-
ded maps (e.g., Table 1). As such, these maps do not pro-
vide continuous fields in space and time. In space, this is true
because adjacent polygons can be described with a differ-
ent SIC range, thus resulting in a discrete jump in SIC value
when moving from one grid cell to another or from one poly-
gon to another (e.g., Fig. 2b, e). In time, the same is true; if
a polygon is described as having 8/10–10/10 SIC on 1 d and
then a similar polygon in a similar region is described as hav-
ing 6/10–8/10 SIC the next day, a time series of a grid cell
within both polygons will exhibit a discrete SIC change from
90 % to 70 % on a given day. This is common for gridded
maps originating in shapefile-based SIC maps (e.g., U.S. Na-
tional Ice Center, 2020). This motivates the creation of spa-
tially smoothed SIC maps in space and time from the ASIP
source files, which is ongoing.

AMSR2. While AMSR2 data provide a valuable long-term
climate record with smooth SIC fields from 0 %–100 %, pas-

sive microwave measurements struggle to capture SIC con-
ditions when water from melt is present on the ice surface
(e.g., Kern et al., 2020; Cavalieri et al., 1990). Furthermore,
AMSR2 at 3.125 km resolution does not simply represent
data at this resolution; rather, this spatial resolution repre-
sents a blend of frequency channels, each with their own as-
sociated footprint (see Sect. 2.3.1 and Melsheimer, 2024, for
more details).

MASIE. Like ASIP, MASIE maps originate with a human
analyst performing a synthesis of available ice imagery. As
such, changes to the analysts responsible for map generation,
changes to satellite technology and imagery capabilities, and
weather conditions can impact the daily SIC maps and ren-
ders MASIE maps useful for understanding the daily state of
the ice pack rather than long-term climate trends.

Despite these limitations, it is evident that more in situ ob-
servations of the MIZ are needed and would likely impact the
results of our parity analysis. Further, additional validation
of data products using SAR imagery might be useful. The re-
sults of this study, both grASIP validation and the intercom-
parison between grASIP, AMSR2, and MASIE, indicate that
grASIP is a valuable product to include in scientific analysis
of ice conditions, especially in low-SIC environments, during
periods of active melt, and when isolating a high-resolution
ice edge. We note that our gridded grASIP SIC product pro-
vides a relatively accurate field (compared to in situ obser-
vations) and can thus be used as an optimal “state estimate”
of SIC in the Pacific Arctic on any given day. This should be
useful for a variety of scientific studies, including numerical
model validation.

Code availability. The codes used to read, reformat, project,
and grid the National Weather Service Alaska Sea Ice Pro-
gram data are available on GitHub at https://github.com/
astridpacini/NWS_ASIP (last access: 14 March 2025) and
https://doi.org/10.18739/A28G8FK4F (Pacini et al., 2025). The Cli-
mate Data Toolbox for MATLAB (Greene et al., 2019) was utilized
to compute land masks.

Data availability. The AMSR2 data at 3.125 km resolu-
tion were downloaded from the University of Bremen at
https://doi.org/10.1594/PANGAEA.898399 (Melsheimer and
Spreen, 2019). AMSR2 at 25 km resolution were down-
loaded from the National Snow and Ice Data Center at
https://doi.org/10.5067/TRUIAL3WPAUP (Markus et al., 2018).
MASIE data are also available for download from the National
Snow and Ice Data Center at https://doi.org/10.7265/N5GT5K3K
(U.S. National Ice Center et al., 2010). ASIP ice charts
were provided by ASIP analysts and are available upon re-
quest via email (nws.ar.ice@noaa.gov). All Ice Watch data
were downloaded from the Ice Watch data repository at
https://icewatch.met.no/about (Hutchings et al., 2020). The
two DBO cruises utilized in this study were obtained from the
Arctic Data Center (CCGS Sir Wilfrid Laurier 2016 cruise:
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https://doi.org/10.18739/A27P8TD2J, Moore, 2019a; USCGC
Healy 2017 cruise: https://doi.org/10.18739/A25Q4RM2M,
Moore, 2019b). The data from the Study of Under Ice Blooms in the
Chukchi Ecosystem USCGC Healy 2014 cruise were obtained from
the Arctic Data Center at https://doi.org/10.18739/A2416T03D
(Polashenski, 2016).
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