Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5239-2024
https://doi.org/10.5194/tc-18-5239-2024
Research article
 | 
19 Nov 2024
Research article |  | 19 Nov 2024

Extending the Center for Western Weather and Water Extremes (CW3E) atmospheric river scale to the polar regions

Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich

Related authors

An Analysis of Cloud Microphysical Features over UAE Using Multiple Data Sources
Zhenhai Zhang, Vesta Afzali Gorooh, Duncan Axisa, Chandrasekar Radhakrishnan, Eun Yeol Kim, Venkatachalam Chandrasekar, and Luca Delle Monache
EGUsphere, https://doi.org/10.5194/egusphere-2024-1400,https://doi.org/10.5194/egusphere-2024-1400, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Atmospheric Interactions
Understanding the drivers of near-surface winds in Adélie Land, East Antarctica
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
The Cryosphere, 18, 2239–2256, https://doi.org/10.5194/tc-18-2239-2024,https://doi.org/10.5194/tc-18-2239-2024, 2024
Short summary
Control of the temperature signal in Antarctic proxies by snowfall dynamics
Aymeric P. M. Servettaz, Cécile Agosta, Christoph Kittel, and Anaïs J. Orsi
The Cryosphere, 17, 5373–5389, https://doi.org/10.5194/tc-17-5373-2023,https://doi.org/10.5194/tc-17-5373-2023, 2023
Short summary
Atmospheric drivers of melt-related ice speed-up events on the Russell Glacier in southwest Greenland
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023,https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Climatology and surface impacts of atmospheric rivers on West Antarctica
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023,https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Continuous monitoring of surface water vapour isotopic compositions at Neumayer Station III, East Antarctica
Saeid Bagheri Dastgerdi, Melanie Behrens, Jean-Louis Bonne, Maria Hörhold, Gerrit Lohmann, Elisabeth Schlosser, and Martin Werner
The Cryosphere, 15, 4745–4767, https://doi.org/10.5194/tc-15-4745-2021,https://doi.org/10.5194/tc-15-4745-2021, 2021
Short summary

Cited articles

Adusumilli, S., Fish, A. M., Fricker, H. A., and Medley, B.: Atmospheric river precipitation contributed to rapid increases in surface height of the west Antarctic ice sheet in 2019, Geophys. Res. Lett., 48, e2020GL091076, https://doi.org/10.1029/2020GL091076, 2021. 
Alley, R. B., Clark, P. U., Huybrechts, P., and Joughin, I.: Ice-sheet and sea-level changes, Science, 310, 456–460, https://doi.org/10.1126/science.1114613, 2005. 
Antarctic Meteorological Research and Data Center: Dome C II Automatic Weather Station, 2022 quality-controlled observational data, AMRDC Data Repository [data set], https://doi.org/10.48567/x7a9-cx26, 2022. 
Baiman, R., Winters, A. C., Lenaerts, J., and Shields, C. A.: Synoptic drivers of atmospheric river induced precipitation near Dronning Maud Land, Antarctica, J. Geophys. Res.-Atmos., 128, e2022JD037859, https://doi.org/10.1029/2022JD037859, 2023. 
Bonne, J. L., Steen-Larsen, H. C., Risi, C., Werner, M., Sodemann, H., Lacour, J. L., Fettweis, X., Cesana, G., Delmotte, M., Cattani, O., and Vallelonga, P.: The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event, J. Geophys. Res.-Atmos., 120, 2970–2989, https://doi.org/10.1002/2014JD022602, 2015. 
Download
Short summary
Atmospheric rivers (ARs) are long, narrow corridors of strong water vapor transport in the atmosphere. ARs play an important role in extreme weather in polar regions, including heavy rain and/or snow, heat waves, and surface melt. The standard AR scale is developed based on the midlatitude climate and is insufficient for polar regions. This paper introduces an extended version of the AR scale tuned to polar regions, aiming to quantify polar ARs objectively based on their strength and impact.