Articles | Volume 18, issue 6
https://doi.org/10.5194/tc-18-2653-2024
https://doi.org/10.5194/tc-18-2653-2024
Research article
 | Highlight paper
 | 
03 Jun 2024
Research article | Highlight paper |  | 03 Jun 2024

Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector

David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg

Related authors

Brief Communication: Antarctic sea ice loss brings observed trends into agreement with climate models
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2881,https://doi.org/10.5194/egusphere-2023-2881, 2023
Short summary
Characteristics and rarity of the strong 1940s westerly wind event over the Amundsen Sea, West Antarctica
Gemma K. O'Connor, Paul R. Holland, Eric J. Steig, Pierre Dutrieux, and Gregory J. Hakim
The Cryosphere, 17, 4399–4420, https://doi.org/10.5194/tc-17-4399-2023,https://doi.org/10.5194/tc-17-4399-2023, 2023
Short summary
A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams
Beatriz Recinos, Daniel Goldberg, James R. Maddison, and Joe Todd
The Cryosphere, 17, 4241–4266, https://doi.org/10.5194/tc-17-4241-2023,https://doi.org/10.5194/tc-17-4241-2023, 2023
Short summary
Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0)
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023,https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022,https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
The importance of cloud properties when assessing surface melting in an offline-coupled firn model over Ross Ice shelf, West Antarctica
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024,https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Responses of the Pine Island and Thwaites glaciers to melt and sliding parameterizations
Ian Joughin, Daniel Shapero, and Pierre Dutrieux
The Cryosphere, 18, 2583–2601, https://doi.org/10.5194/tc-18-2583-2024,https://doi.org/10.5194/tc-18-2583-2024, 2024
Short summary
Extreme melting at Greenland's largest floating ice tongue
Ole Zeising, Niklas Neckel, Nils Dörr, Veit Helm, Daniel Steinhage, Ralph Timmermann, and Angelika Humbert
The Cryosphere, 18, 1333–1357, https://doi.org/10.5194/tc-18-1333-2024,https://doi.org/10.5194/tc-18-1333-2024, 2024
Short summary
The complex basal morphology and ice dynamics of the Nansen Ice Shelf, East Antarctica
Christine F. Dow, Derek Mueller, Peter Wray, Drew Friedrichs, Alexander L. Forrest, Jasmin B. McInerney, Jamin Greenbaum, Donald D. Blankenship, Choon Ki Lee, and Won Sang Lee
The Cryosphere, 18, 1105–1123, https://doi.org/10.5194/tc-18-1105-2024,https://doi.org/10.5194/tc-18-1105-2024, 2024
Short summary
Unveiling spatial variability within the Dotson Melt Channel through high-resolution basal melt rates from the Reference Elevation Model of Antarctica
Ann-Sofie Priergaard Zinck, Bert Wouters, Erwin Lambert, and Stef Lhermitte
The Cryosphere, 17, 3785–3801, https://doi.org/10.5194/tc-17-3785-2023,https://doi.org/10.5194/tc-17-3785-2023, 2023
Short summary

Cited articles

Alevropoulos-Borrill, A. V., Nias, I. J., Payne, A. J., Golledge, N. R., and Bingham, R. J.: Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100, The Cryosphere, 14, 1245–1258, https://doi.org/10.5194/tc-14-1245-2020, 2020. 
Arthern, R. J. and Williams, C. R.: The sensitivity of West Antarctica to the submarine melting feedback, Geophys. Res. Lett., 44, 2352–2359, https://doi.org/10.1002/2017GL072514, 2017. 
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res.-Atmos., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006. 
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations, J. Geophys. Res.-Earth Surf., 120, 1171–1188, https://doi.org/10.1002/2014JF003239, 2015. 
Asay-Davis, X. S., Jourdain, N. C., and Nakayama, Y.: Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet, Current Climate Change Reports, 3, 316–329, https://doi.org/10.1007/s40641-017-0071-0, 2017. 
Download
Co-editor-in-chief
This manuscript addresses the stability of one of the most vulnerable regions of West Antarctica. Focusing on the so-called "doomsday" glacier, Thwaites glacier, the authors use a novel model that combines ice sheet and ocean to investigate how the ice melts at the pinning point - the points where the glacier is "pinned" to the bedrock.
Short summary
A new ice–ocean model simulates future ice sheet evolution in the Amundsen Sea sector of Antarctica. Substantial ice retreat is simulated in all scenarios, with some retreat still occurring even with no future ocean melting. The future of small "pinning points" (islands of ice that contact the seabed) is an important control on this retreat. Ocean melting is crucial in causing these features to go afloat, providing the link by which climate change may affect this sector's sea level contribution.