Articles | Volume 18, issue 5
https://doi.org/10.5194/tc-18-2407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-2407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań 62-712, Poland
Jakub Z. Kalita
Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań 62-712, Poland
Christiaan R. Diemont
Department of Geography, Sheffield University, Sheffield, S10 2NT, UK
Stephen J. Livingstone
Department of Geography, Sheffield University, Sheffield, S10 2NT, UK
Chris D. Clark
Department of Geography, Sheffield University, Sheffield, S10 2NT, UK
Martin Margold
Department of Physical Geography and Geoecology, Charles University, Prague 128 43, Czech Republic
Related authors
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Xi Lu, Liming Jiang, Daan Li, Yi Liu, Andrew Sole, and Stephen John Livingstone
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-304, https://doi.org/10.5194/essd-2025-304, 2025
Preprint under review for ESSD
Short summary
Short summary
To support generalized automated monitoring and modeling of Greenland’s outlet glaciers, this study presents a benchmark dataset of over 12,000 manually delineated calving front positions from 2002 to 2021. With high spatial accuracy and wide coverage, it enables evaluation of automated detection methods, improves model boundary conditions, and supports long-term studies of glacier change and sea-level rise.
Tancrède P. M. Leger, Jeremy C. Ely, Christopher D. Clark, Sarah L. Bradley, Rosie E. Archer, and Jiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1616, https://doi.org/10.5194/egusphere-2025-1616, 2025
Short summary
Short summary
This study uses state-of-the-art computer simulations to better understand how the Greenland ice sheet has changed over the past 24,000 years. By comparing model results with geological data, it reveals when and why the ice sheet grew and shrank, helping improve future predictions of sea level rise and climate change.
Benjamin J. Stoker, Helen E. Dulfer, Chris R. Stokes, Victoria H. Brown, Christopher D. Clark, Colm Ó Cofaigh, David J. A. Evans, Duane Froese, Sophie L. Norris, and Martin Margold
The Cryosphere, 19, 869–910, https://doi.org/10.5194/tc-19-869-2025, https://doi.org/10.5194/tc-19-869-2025, 2025
Short summary
Short summary
The retreat of the northwestern Laurentide Ice Sheet allows us to investigate how the ice drainage network evolves over millennial timescales and understand the influence of climate forcing, glacial lakes and the underlying geology on the rate of deglaciation. We reconstruct the changes in ice flow at 500-year intervals and identify rapid reorganisations of the drainage network, including variations in ice streaming that we link to climatically driven changes in the ice sheet surface slope.
Sophie L. Norris, Martin Margold, David J. A. Evans, Nigel Atkinson, and Duane G. Froese
The Cryosphere, 18, 1533–1559, https://doi.org/10.5194/tc-18-1533-2024, https://doi.org/10.5194/tc-18-1533-2024, 2024
Short summary
Short summary
Associated with climate change between the Last Glacial Maximum and the current interglacial period, we reconstruct the behaviour of the southwestern Laurentide Ice Sheet, which covered the Canadian Prairies, using detailed landform mapping. Our reconstruction depicts three shifts in the ice sheet’s dynamics. We suggest these changes resulted from ice sheet thinning triggered by abrupt climatic change. However, we show that regional lithology and topography also play an important role.
Tancrède P. M. Leger, Christopher D. Clark, Carla Huynh, Sharman Jones, Jeremy C. Ely, Sarah L. Bradley, Christiaan Diemont, and Anna L. C. Hughes
Clim. Past, 20, 701–755, https://doi.org/10.5194/cp-20-701-2024, https://doi.org/10.5194/cp-20-701-2024, 2024
Short summary
Short summary
Projecting the future evolution of the Greenland Ice Sheet is key. However, it is still under the influence of past climate changes that occurred over thousands of years. This makes calibrating projection models against current knowledge of its past evolution (not yet achieved) important. To help with this, we produced a new Greenland-wide reconstruction of ice sheet extent by gathering all published studies dating its former retreat and by mapping its past margins at the ice sheet scale.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023, https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
Benjamin J. Stoker, Martin Margold, John C. Gosse, Alan J. Hidy, Alistair J. Monteath, Joseph M. Young, Niall Gandy, Lauren J. Gregoire, Sophie L. Norris, and Duane Froese
The Cryosphere, 16, 4865–4886, https://doi.org/10.5194/tc-16-4865-2022, https://doi.org/10.5194/tc-16-4865-2022, 2022
Short summary
Short summary
The Laurentide Ice Sheet was the largest ice sheet to grow and disappear in the Northern Hemisphere during the last glaciation. In northwestern Canada, it covered the Mackenzie Valley, blocking the migration of fauna and early humans between North America and Beringia and altering the drainage systems. We reconstruct the timing of ice sheet retreat in this region and the implications for the migration of early humans into North America, the drainage of glacial lakes, and past sea level rise.
Camilla M. Rootes and Christopher D. Clark
E&G Quaternary Sci. J., 71, 111–122, https://doi.org/10.5194/egqsj-71-111-2022, https://doi.org/10.5194/egqsj-71-111-2022, 2022
Short summary
Short summary
Glacial trimlines are visible breaks in vegetation or landforms that mark the former extent of glaciers. They are often observed as faint lines running across valley sides and are useful for mapping the three-dimensional shape of former glaciers or for assessing by how much present-day glaciers have thinned and retreated. Here we present the first application of a new trimline classification scheme to a case study location in central western Spitsbergen, Svalbard.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Régis Mourgues, Christopher D. Clark, Paul Bessin, David Peigné, and Nigel Atkinson
The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, https://doi.org/10.5194/tc-15-2889-2021, 2021
Short summary
Short summary
Subglacial bedforms are commonly used to reconstruct past glacial dynamics and investigate processes occuring at the ice–bed interface. Using analogue modelling and geomorphological mapping, we demonstrate that ridges with undulating crests, known as subglacial ribbed bedforms, are ubiquitous features along ice stream corridors. These bedforms provide a tantalizing glimpse into (1) the former positions of ice stream margins, (2) the ice lobe dynamics and (3) the meltwater drainage efficiency.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Cited articles
Ahlmann, H. W., Laurell, E., and Mannerfelt, C.: Det norrländska landskapet, Ymer, 62, 1–50, 1942.
All, T., Flodén, T., and Puura, V.: A complex model of Mesoproteozoic sedimentary and igneous suites in a graben setting north of Gotland, Baltic Sea, GFF, 128, 53–63, https://doi.org/10.1080/11035890601281053, 2006.
Amantov, A., Fjeldskaar, W., and Cathles, L.: Glacial Erosion/Sedimentation of the Baltic Region and the Effect on the Postglacial Uplift, in: The Baltic Sea Basin, edited by: Harff, J., Björck, S., and Hoth, P., Springer Berlin Heidelberg, Berlin, Heidelberg, 53–71, https://doi.org/10.1007/978-3-642-17220-5_3, 2011.
Batchelor, C. L. and Dowdeswell, J. A.: Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins, Mar. Geol., 363, 65–92, https://doi.org/10.1016/j.margeo.2015.02.001, 2015.
Bennett, M. R.: Ice streams as the arteries of an ice sheet: their mechanics, stability and significance, Earth-Sci. Rev., 61, 309–339, https://doi.org/10.1016/S0012-8252(02)00130-7, 2003.
Björck, S.: A review of the history of the Baltic Sea, 13.0–8.0 ka BP, Quatern. Int., 27, 19–40, https://doi.org/10.1016/1040-6182(94)00057-C, 1995.
Björck, S., Dennegård, B., and Sandgren, P.: The marine stratigraphy of the Hanö Bay, SE Sweden, based on different sediment stratigraphic methods, Geol. Fören. Stock. För., 112, 265–280, https://doi.org/10.1080/11035899009454774, 1990.
Boulton, G. S. and Clark, C. D.: A highly mobile Laurentide ice sheet revealed by satellite images of glacial lineations, Nature, 346, 813–817, https://doi.org/10.1038/346813a0, 1990.
Boulton, G. S. and Jones, A. S.: Stability of Temperate Ice Caps and Ice Sheets Resting on Beds of Deformable Sediment, J. Glaciol., 24, 29–43, https://doi.org/10.3189/S0022143000014623, 1979.
Boulton, G. S., Smith, G. D., Jones, A. S., and Newsome, J.: Glacial geology and glaciology of the last mid-latitude ice sheets, J. Geol. Soc., 142, 447–474, https://doi.org/10.1144/gsjgs.142.3.0447, 1985.
Boulton, G. S., Dongelmans, P., Punkari, M., and Broadgate, M.: Palaeoglaciology of an ice sheet through a glacial cycle: the European ice sheet through the Weichselian, Quaternary Sci. Rev., 20, 591–625, https://doi.org/10.1016/S0277-3791(00)00160-8, 2001.
Boyce, E. S., Motyka, R. J., and Truffer, M.: Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA, J. Glaciol., 53, 211–224, https://doi.org/10.3189/172756507782202928, 2017.
Catania, G., Hulbe, C., Conway, H., Scambos, T. A., and Raymond, C. F.: Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium, J. Glaciol., 58, 741–752, 10.3189/2012JoG11J219, 2012.
Clark, C. D.: Remote Sensing Scales Related To The Frequency Of Natural Variation: An Example From Paleo-ice Flow In Canada, IEEE T. Geosci. Remote, 28, 503–508, https://doi.org/10.1109/TGRS.1990.572932, 1990.
Clark, P. U. and Walder, J. S.: Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets, GSA Bulletin, 106, 304–314, https://doi.org/10.1130/0016-7606(1994)106<0304:SDEADB>2.3.CO;2, 1994.
Cuzzone, J. K., Clark, P. U., Carlson, A. E., Ullman, D. J., Rinterknecht, V. R., Milne, G. A., Lunkka, J.-P., Wohlfarth, B., Marcott, S. A., and Caffee, M.: Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget, Earth Planet. Sci. Lett., 448, 34–41, https://doi.org/10.1016/j.epsl.2016.05.019, 2016.
Dewald, N., Livingstone, S. J., and Clark, C. D.: Subglacial meltwater routes of the Fennoscandian Ice Sheet, J. Maps, 18, 382–396, https://doi.org/10.1080/17445647.2022.2071648, 2022.
Dorokhov, D. V., Dorokhova, E. V., and Sivkov, V. V.: Iceberg and ice-keel ploughmarks on the Gdansk-Gotland Sill (south-eastern Baltic Sea), Geo-Mar. Lett., 38, 83–94, https://doi.org/10.1007/s00367-017-0517-3, 2018.
Dowling, T. P. F., Spagnolo, M., and Möller, P.: Morphometry and core type of streamlined bedforms in southern Sweden from high resolution LiDAR, Geomorphology, 236, 54–63, https://doi.org/10.1016/j.geomorph.2015.02.018, 2015.
Eissmann, L.: Rhombenporphyrgeschiebe in Elster und Saalemoränen des Leipziger Raumes, Abh. Ber. Naturkund. Mus. Mauritianum Altenbg., 5, 37–46, 1967.
EMODnet Bathymetry Consortium: EMODnet Digital Bathymetry (DTM), European Marine Observation and Data Network Bathymetry Consortium, https://doi.org/10.12770/ff3aff8a-cff1-44a3-a2c8-1910bf109f85, 2022.
Enquist, F.: Die glaziale Entwicklungsgeschichte Nordwestskandinaviens, Sveriges Geologiska Undersökning Serie C 285, Kungl. boktryckeriet. P.A. Norstedt & Söner, Stockholm, 1918.
Evans, D. J. A., Dinnage, M., and Roberts, D. H.: Glacial geomorphology of Teesdale, northern Pennines, England: Implications for upland styles of ice stream operation and deglaciation in the British-Irish Ice Sheet, Proc. Geol. Assoc., 129, 697–735, https://doi.org/10.1016/j.pgeola.2018.05.001, 2018.
Favier, L., Pattyn, F., Berger, S., and Drews, R.: Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica, The Cryosphere, 10, 2623–2635, https://doi.org/10.5194/tc-10-2623-2016, 2016.
Feldens, P., Diesing, M., Wilken, D., and Schwarzer, K.: Submarine eskers preserved on Adler Grund, south-western Baltic Sea, Baltica, 26, 137–144, https://doi.org/10.5200/baltica.2013.26.14 2013.
Flodén, T., Bjerkéus, M., Endler, R., and Lemke, W.: Cretaceous sedimentary bedrock of the Darss Sill area, southern Baltic Sea, GFF, 118, p. 80, https://doi.org/10.1080/11035899609546381, 1996.
Flodén, T., Bjerkéus, M., Sturkell, E., Gelumbauskaitė, Ž., Grigelis, A., Endler, R., and Lemke, W.: Distribution and seismic stratigraphy of glacially incised valleys in the southern part of the Baltic, Proceedings of the Fourth Marine Geological Conference–the Baltic, Sveriges Geologiska Undersökning, Ser. Ca, 86, 43–49, ISBN 9171585532, 1997.
Fowler, A. C. and Johnson, C.: Ice-sheet surging and ice-stream formation, Ann. Glaciol., 23, 68–73, https://doi.org/10.3189/S0260305500013276, 1996.
Frydrych, M.: Morphology of eskers in Poland, southward of the Last Glacial Maximum, Geomorphology, 415, 108418, https://doi.org/10.1016/j.geomorph.2022.108418, 2022.
Gandy, N., Gregoire, L. J., Ely, J. C., Cornford, S. L., Clark, C. D., and Hodgson, D. M.: Exploring the ingredients required to successfully model the placement, generation, and evolution of ice streams in the British-Irish Ice Sheet, Quaternary Sci. Rev., 223, 105915, https://doi.org/10.1016/j.quascirev.2019.105915, 2019.
Gauthier, M. S., Breckenridge, A., and Hodder, T. J.: Patterns of ice recession and ice stream activity for the MIS 2 Laurentide Ice Sheet in Manitoba, Canada, Boreas, 51, 274–298, https://doi.org/10.1111/bor.12571, 2022.
Gehrmann, A. and Harding, C.: Geomorphological Mapping and Spatial Analyses of an Upper Weichselian Glacitectonic Complex Based on LiDAR Data, Jasmund Peninsula (NE Rügen), Germany, https://doi.org/10.3390/geosciences8060208, 2018.
Glückert, G.: Map of glacial striation of the Scandinavian ice sheet during the last (Weichsel) glaciation in northern Europe, B. Geol. Soc. Finland, 46, 1–8, https://doi.org/10.17741/bgsf/46.1.001, 1974.
Greenwood, S. L. and Clark, C. D.: Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics, Quaternary Sci. Rev., 28, 3101–3123, https://doi.org/10.1016/j.quascirev.2009.09.014, 2009.
Greenwood, S. L., Clason, C. C., Mikko, H., Nyberg, J., Peterson, G., and Smith, C. A.: Integrated use of LiDAR and multibeam bathymetry reveals onset of ice streaming in the northern Bothnian Sea, GFF, 137, 284–292, https://doi.org/10.1080/11035897.2015.1055513, 2015.
Greenwood, S. L., Clason, C. C., Nyberg, J., Jakobsson, M., and Holmlund, P.: The Bothnian Sea ice stream: early Holocene retreat dynamics of the south-central Fennoscandian Ice Sheet, Boreas, 46, 346–362, https://doi.org/10.1111/bor.12217, 2016.
Greenwood, S. L., Avery, R. S., Gyllencreutz, R., Regnéll, C., and Tylmann, K.: Footprint of the Baltic Ice Stream: geomorphic evidence for shifting ice stream pathways, Boreas, 53, 4–26, https://doi.org/10.1111/bor.12634, 2024.
Gripp, K.: Der Ablauf der Würm-Vereisung in der Senkungszone am Südrand Skandinaviens, Meyniana, 33, 9–22, 1981.
Hall, A. and van Boeckel, M.: Origin of the Baltic Sea basin by Pleistocene glacial erosion, GFF, 142, 237–252, https://doi.org/10.1080/11035897.2020.1781246, 2020.
Hermanowski, P., Piotrowski, J. A., and Szuman, I.: An erosional origin for drumlins of NW Poland, Earth Surf. Proc. Land., 44, 2030–2050, https://doi.org/10.1002/esp.4630, 2019.
Hindmarsh, R. C. A.: Consistent generation of ice-streams via thermo-viscous instabilities modulated by membrane stresses, Geophys. Res. Lett., 36, L06502, https://doi.org/10.1029/2008GL036877, 2009.
Holmlund, P. and Fastook, J.: A time dependent glaciological model of the Weichselian Ice Sheet, Quatern. Int., 27, 53–58, https://doi.org/10.1016/1040-6182(94)00060-I, 1995.
Holmström, L.: Öfversikt af den glaciala afslipningen i Sydskandinavien, Geol. Fören. Stock. För., 26, 241–316, https://doi.org/10.1080/11035890409445487, 1904.
Houmark-Nielsen, M. and Kjær, K. H.: Southwest Scandinavia, 40–15 kyr BP: palaeogeography and environmental change, J. Quaternary Sci., 18, 769–786, https://doi.org/10.1002/jqs.802, 2003.
Jakobsson, M., O'Regan, M., Gyllencreutz, R., and Flodén, T.: Seafloor terraces and semi-circular depressions related to fluid discharge in Stockholm Archipelago, Baltic Sea, Geol. Soc. Lond. Mem., 46, 305–306, https://doi.org/10.1144/M46.162, 2016.
Jakobsson, M., Stranne, C., O'Regan, M., Greenwood, S. L., Gustafsson, B., Humborg, C., and Weidner, E.: Bathymetric properties of the Baltic Sea, Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, 2019.
Jakobsson, M., O'Regan, M., Mörth, C.-M., Stranne, C., Weidner, E., Hansson, J., Gyllencreutz, R., Humborg, C., Elfwing, T., Norkko, A., Norkko, J., Nilsson, B., and Sjöström, A.: Potential links between Baltic Sea submarine terraces and groundwater seeping, Earth Surf. Dynam., 8, 1–15, https://doi.org/10.5194/esurf-8-1-2020, 2020.
Jensen, J. B.: Late Weichselian deglaciation pattern in the southwestern Baltic: Evidence from glacial deposits off the island of Møn, Denmark, B. Geol. Soc. Denmark, 40, 314–331, 1993.
Jensen, J. B., Moros, M., Endler, R., and Members, I. E.: The Bornholm Basin, southern Scandinavia: a complex history from Late Cretaceous structural developments to recent sedimentation, Boreas, 46, 3–17, https://doi.org/10.1111/bor.12194, 2017.
Jögensen, F. and Piotrowski, J. A.: Signature of the Baltic Ice Stream on Funen Island, Denmark during the Weichselian glaciation, Boreas, 32, 242–255, https://doi.org/10.1111/j.1502-3885.2003.tb01440.x, 2003.
Jørgensen, F. and Sandersen, P. B. E.: Buried and open tunnel valleys in Denmark – erosion beneath multiple ice sheets, Quaternary Sci. Rev., 25, 1339-1363, https://doi.org/10.1016/j.quascirev.2005.11.006, 2006.
Kalm, V.: Ice-flow pattern and extent of the last Scandinavian Ice Sheet southeast of the Baltic Sea, Quaternary Sci. Rev., 44, 51–59, https://doi.org/10.1016/j.quascirev.2010.01.019, 2012.
Karpin, V., Heinsalu, A., and Virtasalo, J. J.: Late Pleistocene iceberg scouring in the north-eastern Baltic Sea, west of Estonia, Mar. Geol., 438, 106537, https://doi.org/10.1016/j.margeo.2021.106537, 2021.
Kehew, A. E., Piotrowski, J. A., and Jørgensen, F.: Tunnel valleys: Concepts and controversies – A review, Earth-Sci. Rev., 113, 33–58, https://doi.org/10.1016/j.earscirev.2012.02.002, 2012.
Kirkham, J. D., Hogan, K. A., Larter, R. D., Arnold, N. S., Ely, J. C., Clark, C. D., Self, E., Games, K., Huuse, M., Stewart, M. A., Ottesen, D., and Dowdeswell, J. A.: Tunnel valley formation beneath deglaciating mid-latitude ice sheets: Observations and modelling, Quaternary Sci. Rev., 323, 107680, https://doi.org/10.1016/j.quascirev.2022.107680, 2022.
Kjær, K. H., Houmark-Nielsen, M., and Richardt, N.: Ice-flow patterns and dispersal of erratics at the southwestern margin of the last Scandinavian Ice Sheet: signature of palaeo-ice streams, Boreas, 32, 130–148, https://doi.org/10.1111/j.1502-3885.2003.tb01434.x, 2003.
Kleman, J., Hättestrand, C., Borgström, I., and Stroeven, A.: Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model, J. Glaciol., 43, 283–299, https://doi.org/10.3189/S0022143000003233, 1997.
Kleman, J., Stroeven, A. P., and Lundqvist, J.: Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation, Geomorphology, 97, 73–90, https://doi.org/10.1016/j.geomorph.2007.02.049, 2008.
Klingberg, F. and Larsson, O.: Maringeologiska undersökningar av erosionsrännor i Kalmarsund, Sveriges Geologiska Undersökning, Rapport 2017, 13, 2017.
Kramarska, R.: Origin and development of the Odra Bank in the light of the geologic structure and radiocarbon dating, Geol. Q., 42, 277–288, 1998.
Lampe, R., Naumann, M., Meyer, H., Janke, W., and Ziekur, R.: Holocene Evolution of the Southern Baltic Sea Coast and Interplay of Sea-Level Variation, Isostasy, Accommodation and Sediment Supply, in: The Baltic Sea Basin, edited by: Harff, J., Björck, S., and Hoth, P., Springer Berlin Heidelberg, Berlin, Heidelberg, 233–251, https://doi.org/10.1007/978-3-642-17220-5_12, 2011.
Larsen, N. K., Knudsen, K. L., Krohn, C. F., Kronborg, C., Murray, A. S., and Nielsen, O. L. E. B.: Late Quaternary ice sheet, lake and sea history of southwest Scandinavia – a synthesis, Boreas, 38, 732–761, https://doi.org/10.1111/j.1502-3885.2009.00101.x, 2009.
Larson, G. J., Lawson, D. E., Evenson, E. B., Alley, R. B., Knudsen, Ó., Lachniet, M. S., and Goetz, S. L.: Glaciohydraulic supercooling in former ice sheets?, Geomorphology, 75, 20–32, https://doi.org/10.1016/j.geomorph.2004.12.009, 2006.
Lemke, W. and Kuijpers, A.: Late Pleistocene and early Holocene paleogeography of the Darss Sill area, southwestern Baltic, Quatern. Int., 27, 73–81, https://doi.org/10.1016/1040-6182(94)00063-B, 1995.
Livingstone, S. J., Ó Cofaigh, C., Stokes, C. R., Hillenbrand, C.-D., Vieli, A., and Jamieson, S. S. R.: Antarctic palaeo-ice streams, Earth-Sci. Rev., 111, 90–128, https://doi.org/10.1016/j.earscirev.2011.10.003, 2012.
Ljunger, E.: Isdelarstudier vid polcirkeln, Geol. För. Stock. För., 65, 198–210, 1943.
Madsen, V.: Om indelingen af de danske kvartærdannelser, Fören, 5, 1–22, 1898.
Margold, M., Jansson, K. N., Kleman, J., Stroeven, A. P., and Clague, J. J.: Retreat pattern of the Cordilleran Ice Sheet in central British Columbia at the end of the last glaciation reconstructed from glacial meltwater landforms, Boreas, 42, 830–847, https://doi.org/10.1111/bor.12007, 2013.
Margold, M., Stokes, C. R., and Clark, C. D.: Ice streams in the Laurentide Ice Sheet: Identification, characteristics and comparison to modern ice sheets, Earth-Sci. Rev., 143, 117–146, https://doi.org/10.1016/j.earscirev.2015.01.011, 2015.
Noormets, R. and Flodén, T.: Glacial deposits and Late Weichselian ice-sheet dynamics in the northeastern Baltic Sea, Boreas, 31, 36–56, https://doi.org/10.1111/j.1502-3885.2002.tb01054.x, 2002a.
Noormets, R. and Flodén, T.: Glacial deposits and ice-sheet dynamics in the north-central Baltic Sea during the last deglaciation, Boreas, 31, 362–377, https://doi.org/10.1111/j.1502-3885.2002.tb01080.x, 2002b.
Obst, K., Nachtweide, C., and Müller, U.: Late Saalian and Weichselian glaciations in the German Baltic Sea documented by Pleistocene successions at the southeastern margin of the Arkona Basin, Boreas, 46, 18–33, https://doi.org/10.1111/bor.12212, 2017.
Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., and Stroeven, A. P.: The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing, Quaternary Sci. Rev., 153, 97–121, https://doi.org/10.1016/j.quascirev.2016.10.009, 2016.
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L., Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.: Deglaciation of the Eurasian ice sheet complex, Quaternary Sci. Rev., 169, 148–172, https://doi.org/10.1016/j.quascirev.2017.05.019, 2017.
Payne, A. J.: Dynamics of the Siple Coast ice streams, west Antarctica: Results from a thermomechanical ice sheet model, Geophysical Research Letters, 25, 3173-3176, https://doi.org/10.1029/98GL52327, 1998.
Perini, L., Missiaen, T., Ori, G. G., and de Batist, M.: Seismic stratigraphy of Late Quaternary glacial to marine sediments offshore Bornholm, southern Baltic Sea, Sediment. Geol., 102, 3–21, https://doi.org/10.1016/0037-0738(95)00056-9, 1996.
Poprawa, P., Šliaupa, S., Stephenson, R., and Lazauskien, J.: Late Vendian–Early Palæozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis, Tectonophysics, 314, 219–239, https://doi.org/10.1016/S0040-1951(99)00245-0, 1999.
Punkari, M.: Glacial and glaciofluvial deposits in the interlobate areas of the Scandinavian ice sheet, Quaternary Sci. Rev., 16, 741–753, https://doi.org/10.1016/S0277-3791(97)00020-6, 1997.
Ringberg, B.: Late Weichselian geology of southernmost Sweden, Boreas, 17, 243–263, https://doi.org/10.1111/j.1502-3885.1988.tb00554.x, 1988.
Rosentau, A., Bennike, O., Uścinowicz, S., and Miotk-Szpiganowicz, G.: The Baltic Sea Basin, in: Submerged Landscapes of the European Continental Shelf, edited by: Flemming, N. C., Harff, J., Moura, D., Burgess, A., and Bailey, G. N., 103–133, https://doi.org/10.1002/9781118927823.ch5, 2017.
Schäfer, W., Hübscher, C., and Sopher, D.: Seismic stratigraphy of the Klints Bank east of Gotland (Baltic Sea): a giant drumlin sealing thermogenic hydrocarbons, Geo-Mar. Lett., 41, 9, https://doi.org/10.1007/s00367-020-00683-3, 2021.
Smith, M. J. and Clark, C. D.: Methods for the visualization of digital elevation models for landform mapping, Earth Surf. Proc. Land., 30, 885–900, https://doi.org/10.1002/esp.1210, 2005.
Stephan, H.-J.: The Young Baltic advance in the western Baltic depression, Geol. Q., 45, 359–363, 2001.
Still, H. and Hulbe, C.: Mechanics and dynamics of pinning points on the Shirase Coast, West Antarctica, The Cryosphere, 15, 2647–2665, https://doi.org/10.5194/tc-15-2647-2021, 2021.
Stokes, C. R.: Geomorphology under ice streams: Moving from form to process, Earth Surf. Proc. Land., 43, 85–123, https://doi.org/10.1002/esp.4259, 2018.
Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L., Caffee, M. W., Fink, D., Lundqvist, J., Rosqvist, G. C., Strömberg, B., and Jansson, K. N.: Deglaciation of Fennoscandia, Quaternary Sci. Rev., 147, 91–121, https://doi.org/10.1016/j.quascirev.2015.09.016, 2016.
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, Ó., Jakobsson, M., Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M. J., Spielhagen, R. F., and Stein, R.: Late Quaternary ice sheet history of northern Eurasia, Quaternary Sci. Rev., 23, 1229–1271, https://doi.org/10.1016/j.quascirev.2003.12.008, 2004.
Sviridov, N. I. and Emelyanov, E. M.: Lithofacial complexes of quaternary deposits in the central and southeastern baltic sea, Lithol. Miner. Resour., 35, 211–231, https://doi.org/10.1007/BF02821956, 2000.
Szuman, I., Kalita, J. Z., Ewertowski, M. W., Clark, C. D., and Livingstone, S. J.: Dynamics of the last Scandinavian Ice Sheet's southernmost sector revealed by the pattern of ice streams, Boreas, 50, 764–780, https://doi.org/10.1111/bor.12512, 2021.
Tomczak, A.: Geological Structure and Holocene Evolution of the Polish Coastal Zone, J. Coast. Res., 22, 15–31, 1995.
Tuuling, I. and Flodén, T.: The structure and relief of the bedrock sequence in the Gotland-Hiiumaa area, northern Baltic Sea, GFF, 123, 35–49, https://doi.org/10.1080/11035890101231035, 2001.
Tuuling, I. and Flodén, T. O. M.: Silurian reefs off Saaremaa and their extension towards Gotland, central Baltic Sea, Geolog. Mag., 150, 923–936, https://doi.org/10.1017/S0016756813000101, 2013.
Tuuling, I. and Flodén, T.: The Baltic Klint beneath the central Baltic Sea and its comparison with the North Estonian Klint, Geomorphology, 263, 1–18, https://doi.org/10.1016/j.geomorph.2016.03.030, 2016.
Tylmann, K. and Uścinowicz, S.: Timing of the last deglaciation phases in the southern Baltic area inferred from Bayesian age modeling, Quaternary Sci. Rev., 287, 107563, https://doi.org/10.1016/j.quascirev.2022.107563, 2022.
Uścinowicz, S.: Southern Baltic area during the last deglaciation Geol. Q., 43, 137–148, 1999.
Uścinowicz, S.: Relative sea level changes, glacio-isostatic rebound and shoreline displacement in the Southern Baltic, Polish Geological Institute Special Papers, 10, 1–79, 2003.
Uścinowicz, S.: A relative sea-level curve for the Polish Southern Baltic Sea, Quatern. Int., 145–146, 86–105, https://doi.org/10.1016/j.quaint.2005.07.007, 2006.
Woldstedt, P. and Duphorn, K.: Norddeutschland und angrenzende Gebiete im Eiszeitalter, Stuttgart, ISBN 3874251225, 1974.
Woźniak, P. P. and Czubla, P.: The Late Weichselian glacial record in northern Poland: A new look at debris transport routes by the Fennoscandian Ice Sheet, Quatern. Int., 386, 3–17, https://doi.org/10.1016/j.quaint.2015.01.014, 2015.
Zeise, O.: Beitrag zur Kenntnis der Ausbreitung, sowie besonders der Bewegungsrichtung des nordeuropäischen Inlandeises in diluvialer Zeit, Inaugural-Dissertation, Albertus-Universität, Königsberg, Preußen, 1889.
Short summary
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the record that has been speculated about by palaeoglaciologists for over a century. Here we used newly available bathymetric data and provide landform evidence of corridors of fast ice flow that we interpret as ice streams. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and Bothnian sources.
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the...