Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-2081-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-2081-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization
Rebecca B. Latto
CORRESPONDING AUTHOR
School of Natural Sciences (Physics), University of Tasmania, Private Bag 37, Hobart, TAS 7001, Australia
Ross J. Turner
School of Natural Sciences (Physics), University of Tasmania, Private Bag 37, Hobart, TAS 7001, Australia
Anya M. Reading
School of Natural Sciences (Physics), University of Tasmania, Private Bag 37, Hobart, TAS 7001, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, 20 Castray Esplanade, Battery Point, TAS 7004, Australia
Bernd Kulessa
Glaciology Group, College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
J. Paul Winberry
Department of Geological Sciences, Central Washington University, Ellensburg, WA, USA
Related authors
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Short summary
The study of icequakes allows for investigation of many glacier processes that are unseen by typical reconnaissance methods. However, detection of such seismic signals is challenging due to low signal-to-noise levels and diverse source mechanisms. Here we present a novel algorithm that is optimized to detect signals from a glacier environment. We apply the algorithm to seismic data recorded in the 2010–2011 austral summer from the Whillans Ice Stream and evaluate the resulting event catalogue.
Neil Ross, Rebecca J. Sanderson, Bernd Kulessa, Martin Siegert, Guy J. G. Paxman, Keir A. Nichols, Matthew R. Siegfried, Stewart S. R. Jamieson, Michael J. Bentley, Tom A. Jordan, Christine L. Batchelor, David Small, Olaf Eisen, Kate Winter, Robert G. Bingham, S. Louise Callard, Rachel Carr, Christine F. Dow, Helen A. Fricker, Emily Hill, Benjamin H. Hills, Coen Hofstede, Hafeez Jeofry, Felipe Napoleoni, and Wilson Sauthoff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3625, https://doi.org/10.5194/egusphere-2025-3625, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We review previous research into a group of fast-flowing Antarctic ice streams, the Foundation-Patuxent-Academy System. Previously, we knew relatively little how these ice streams flow, how they interact with the ocean, what their geological history was, and how they might evolve in a warming world. By reviewing existing information on these ice streams, we identify the future research needed to determine how they function, and their potential contribution to global sea level rise.
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047, https://doi.org/10.5194/egusphere-2024-4047, 2025
Short summary
Short summary
Melting beneath Antarctica’s floating ice shelves is key to future sea-level rise. We compare several different ocean simulations with satellite measurements, and provide the first multi-model average estimate of melting and refreezing driven by both ocean temperature and currents beneath ice shelves. The multi-model average can provide a useful tool for better understanding the role of ice shelf melting in present-day and future ice-sheet changes and informing coastal adaptation efforts.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Short summary
The study of icequakes allows for investigation of many glacier processes that are unseen by typical reconnaissance methods. However, detection of such seismic signals is challenging due to low signal-to-noise levels and diverse source mechanisms. Here we present a novel algorithm that is optimized to detect signals from a glacier environment. We apply the algorithm to seismic data recorded in the 2010–2011 austral summer from the Whillans Ice Stream and evaluate the resulting event catalogue.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021, https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary
Short summary
Ice sheet and ice shelf models rely on data from experiments to accurately represent the way ice moves. Performing experiments at the temperatures and stresses that are generally present in nature takes a long time, and so there are few of these datasets. Here, we test the method of speeding up an experiment by running it initially at a higher temperature, before dropping to a lower target temperature to generate the relevant data. We show that this method can reduce experiment time by 55 %.
Mohammed Bello, David G. Cornwell, Nicholas Rawlinson, Anya M. Reading, and Othaniel K. Likkason
Solid Earth, 12, 463–481, https://doi.org/10.5194/se-12-463-2021, https://doi.org/10.5194/se-12-463-2021, 2021
Short summary
Short summary
In this study, ground motion caused by distant earthquakes recorded in southeast Australia is used to image the structure of the crust and underlying mantle. This part of the Australian continent was assembled over the last 500 million years, but it remains poorly understood. By studying variations in crustal properties and thickness, we find evidence for the presence of an old microcontinent that is embedded in the younger terrane and forms a connection between Victoria and Tasmania.
Cited articles
Aggarwal, C. C., Hinneburg, A., and Keim, D. A.: On the surprising behavior of distance metrics in high dimensional space, in: Database Theory – ICDT 2001: 8th International Conference London, UK, 4–6 January 2001, Proceedings 8, 420–434, Springer, 2001. a
Aksoy, S. and Haralick, R. M.: Feature normalization and likelihood-based similarity measures for image retrieval, Pattern Recogn. Lett., 22, 563–582, 2001. a
Anderberg, M. R.: Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks, vol. 19, Academic press, 2014. a
Arthur, D. and Vassilvitskii, S.: k-means++: The advantages of careful seeding, Tech. rep., Stanford, 2006. a
Aster, R. and Winberry, J.: Glacial seismology, Reports on Progress in Physics, 80, 126801, https://doi.org/10.1088/1361-6633/aa8473, 2017. a
Beem, L., Tulaczyk, S., King, M., Bougamont, M., Fricker, H., and Christoffersen, P.: Variable deceleration of Whillans Ice Stream, West Antarctica, J. Geophys. Res.-Earth Surf., 119, 212–224, 2014. a
Benn, D., Gulley, J., Luckman, A., Adamek, A., and Glowacki, P. S.: Englacial drainage systems formed by hydrologically driven crevasse propagation, J. Glaciol., 55, 513–523, 2009. a
Bergen, K. J. and Beroza, G. C.: Earthquake fingerprints: Extracting waveform features for similarity-based earthquake detection, Pure Appl. Geophys., 176, 1037–1059, 2019. a
Bergen, K. J., Chen, T., and Li, Z.: Preface to the focus section on machine learning in seismology, Seismol. Res. Lett., 90, 477–480, 2019. a
Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U.: When is “nearest neighbor” meaningful?, in: Database Theory – ICDT'99: 7th International Conference Jerusalem, Israel, 10–12 January 1999, Proceedings 7, 217–235, Springer, 1999. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J.: ObsPy: A Python toolbox for seismology, Seismol. Res. Lett., 81, 530–533, 2010. a
Bhargavi, M. and Gowda, S. D.: A novel validity index with dynamic cut-off for determining true clusters, Pattern Recogn., 48, 3673–3687, 2015. a
Bindschadler, R., Vornberger, P. L., and Shabtaie, S.: The detailed net mass balance of the ice plain on Ice Stream B, Antarctica: a geographic information system approach, J. Glaciol., 39, 471–482, 1993. a
Bindschadler, R., Vornberger, P., and Gray, L.: Changes in the ice plain of Whillans Ice Stream, West Antarctica, J. Glaciol., 51, 620–636, 2005. a
Bougamont, M., Tulaczyk, S., and Joughin, I.: Numerical investigations of the slow-down of Whillans Ice Stream, West Antarctica: is it shutting down like Ice Stream C?, Ann. Glaciol., 37, 239–246, 2003. a
Bouveyron, C., Girard, S., and Schmid, C.: High-dimensional data clustering, Comput. Stat. Data An., 52, 502–519, 2007. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a
Burton-Johnson, A., Black, M., Fretwell, P. T., and Kaluza-Gilbert, J.: An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent, The Cryosphere, 10, 1665–1677, https://doi.org/10.5194/tc-10-1665-2016, 2016. a
Campbell, A. J., Hulbe, C. L., and Lee, C.-K.: Ice stream slowdown will drive long-term thinning of the Ross ice shelf, with or without ocean warming, Geophys. Res. Lett., 45, 201–206, 2018. a
Carmichael, J. D., Pettit, E. C., Hoffman, M., Fountain, A., and Hallet, B.: Seismic multiplet response triggered by melt at Blood Falls, Taylor Glacier, Antarctica, J. Geophys. Res.-Earth Surf., 117, F03004, https://doi.org/10.1029/2011JF002221, 2012. a
Caruana, R. and Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms, in: Proceedings of the 23rd international conference on Machine learning, 25–29 June 2006, Pittsburgh Pennsylvania USA, 161–168, 2006. a
Chamarczuk, M., Nishitsuji, Y., Malinowski, M., and Draganov, D.: Unsupervised learning used in automatic detection and classification of ambient-noise recordings from a large-N array, Seismol. Res. Lett., 91, 370–389, 2020. a
Chen, Z., Bromirski, P., Gerstoft, P., Stephen, R., Lee, W. S., Yun, S., Olinger, S., Aster, R., Wiens, D., and Nyblade, A.: Ross Ice Shelf icequakes associated with ocean gravity wave activity, Geophys. Res. Lett., 46, 8893–8902, 2019. a
Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., and Grigsby, S.: Glacier crevasses: Observations, models, and mass balance implications, Rev. Geophys., 54, 119–161, 2016. a
Cracknell, M. J. and Reading, A. M.: The upside of uncertainty: Identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines, Geophysics, 78, WB113–WB126, 2013. a
Demartines, P. and Hérault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, IEEE T. Neural Networ., 8, 148–154, 1997. a
Ekström, G., Nettles, M., and Abers, G. A.: Glacial earthquakes, Science, 302, 622–624, 2003. a
Erofeeva, L., Padman, L., and Howard, S. L.: Tide Model Driver (TMD) version 2.5, Toolbox for Matlab 2020, GitHub [code], https://www.github.com/EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5 (last access: 18 March 2024), 2020. a
Famili, A. F., Liu, G., and Liu, Z.: Evaluation and optimization of clustering in gene expression data analysis, Bioinformatics, 20, 1535–1545, 2004. a
Fountain, A. G. and Walder, J. S.: Water flow through temperate glaciers, Rev. Geophys., 36, 299–328, 1998. a
Galvis, I. S., Villa, Y., Duarte, C., Sierra, D., and Agudelo, W.: Seismic attribute selection and clustering to detect and classify surface waves in multicomponent seismic data by using k-means algorithm, The Leading Edge, 36, 239–248, 2017. a
George, A.: Efficient high dimension data clustering using constraint-partitioning k-means algorithm., Int. Arab J. Inf. Technol., 10, 467–476, 2013. a
Glynn, C. and Naylor, P.: GeoDataViz-Toolkit, GitHub [code], https://github.com/OrdnanceSurvey/GeoDataViz-Toolkit (last access: 18 March 2024), 2021. a
Hardy, A.: On the number of clusters, Comput. Stat. Data An., 23, 83–96, 1996. a
He, Z. and Yu, C.: Clustering stability-based evolutionary k-means, Soft Comput., 23, 305–321, 2019. a
Heck, M., Hammer, C., van Herwijnen, A., Schweizer, J., and Fäh, D.: Automatic detection of snow avalanches in continuous seismic data using hidden Markov models, Nat. Hazards Earth Syst. Sci., 18, 383–396, https://doi.org/10.5194/nhess-18-383-2018, 2018. a
Helmstetter, A., Moreau, L., Nicolas, B., Comon, P., and Gay, M.: Intermediate-depth icequakes and harmonic tremor in an Alpine glacier (Glacier d'Argentière, France): Evidence for hydraulic fracturing?, J. Geophys. Res.-Earth Surf., 120, 402–416, 2015. a
Hibert, C., Michéa, D., Provost, F., Malet, J., and Geertsema, M.: Exploration of continuous seismic recordings with a machine learning approach to document 20 yr of landslide activity in Alaska, Geophys. J. Int., 219, 1138–1147, 2019. a
Hotelling, H.: Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417, https://doi.org/10.1037/h0071325, 1933. a
Howard, S. L., Erofeeva, S., and Padman, L.: CATS2008: Circum-Antarctic Tidal Simulation version 2008, U.S. Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601235, 2019. a, b
Hudson, T. S., Brisbourne, A. M., White, R. S., Kendall, J.-M., Arthern, R., and Smith, A. M.: Breaking the ice: Identifying hydraulically forced crevassing, Geophys. Res. Lett., 47, e2020GL090597, https://doi.org/10.1029/2020GL090597, 2020. a
Jain, A. K. and Dubes, R. C.: Algorithms for clustering data, Prentice-Hall, Inc., 1988. a
Jenkins, W. F., Gerstoft, P., Bianco, M. J., and Bromirski, P. D.: Unsupervised deep clustering of seismic data: Monitoring the Ross Ice Shelf, Antarctica, J. Geophys. Res.-Sol. Ea., 126, e2021JB021716, https://doi.org/10.1029/2021JB021716, 2021. a, b
Johnson, C. W., Ben-Zion, Y., Meng, H., and Vernon, F.: Identifying different classes of seismic noise signals using unsupervised learning, Geophys. Res. Lett., 47, e2020GL088353, https://doi.org/10.1029/2020GL088353, 2020. a
Joughin, I., Tulaczyk, S., Bindschadler, R., and Price, S. F.: Changes in West Antarctic ice stream velocities: observation and analysis, J. Geophys. Res.-Sol. Ea., 107, EPM–3, https://doi.org/10.1029/2001JB001029, 2002. a
Kanao, M.: A New Trend in Cryoseismology: A Proxy for Detecting the Polar Surface Environment, Polar Seismology: Advances and Impact, p. 75, 2018. a
Köhler, A., Ohrnberger, M., and Scherbaum, F.: Unsupervised pattern recognition in continuous seismic wavefield records using self-organizing maps, Geophys. J. Int., 182, 1619–1630, 2010. a
Köhler, A., Chapuis, A., Nuth, C., Kohler, J., and Weidle, C.: Autonomous detection of calving-related seismicity at Kronebreen, Svalbard, The Cryosphere, 6, 393–406, https://doi.org/10.5194/tc-6-393-2012, 2012. a
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., and Wassermann, J.: ObsPy: A bridge for seismology into the scientific Python ecosystem, Comput. Sci. Discov., 8, 014003, https://doi.org/10.1088/1749-4699/8/1/014003, 2015. a
Latto, B.: beccalatto/multi_sta_lta: Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.11062070, 2024. a
Latto, R. B., Turner, R. J., Reading, A. M., and Winberry, J. P.: Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology, The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, 2024. a, b, c, d, e, f, g, h, i, j, k
Legany, C., Juhasz, S., and Babos, A.: Cluster validity measurement techniques, in: Proceedings of the 5th WSEAS international conference on artificial intelligence, knowledge engineering and data bases, 388–393, World Scientific and Engineering Academy and Society (WSEAS) Stevens Point, 15–17 February 2006, Madrid Spain, edited by: Lopez Espi, P. L., Giron-Sierra, J. M., Drigas, A. S., World Scientific and Engineering Academy and Society (WSEAS) Stevens Point, Wisconsin, United States, ISBN 1112222339, 2006. a
Lombardi, D., Gorodetskaya, I., Barruol, G., and Camelbeeck, T.: Thermally induced icequakes detected on blue ice areas of the East Antarctic ice sheet, Ann. Glaciol., 60, 45–56, 2019. a
MacAyeal, D. R., Banwell, A. F., Okal, E. A., Lin, J., Willis, I. C., Goodsell, B., and MacDonald, G. J.: Diurnal seismicity cycle linked to subsurface melting on an ice shelf, Ann. Glaciol., 60, 137–157, 2019. a
Marsland, S.: Machine learning: an algorithmic perspective, CRC press, Chapman and Hall/CRC, https://doi.org/10.1201/9781420067194, 2015. a
McInnes, L., Healy, J., and Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction, arXiv [preprint], arXiv:1802.03426, 2018. a
Megies, T., Beyreuther, M., Barsch, R., Krischer, L., and Wassermann, J.: ObsPy – What can it do for data centers and observatories?, Ann. Geophys., 54, 47–58, 2011. a
Meilă, M.: The uniqueness of a good optimum for k-means, in: Proceedings of the 23rd international conference on Machine learning, 25–29 June 2006, Pittsburgh, Pennsylvania, USA, ISBN 978-1-59593-383-6, 625–632, 2006. a
Minowa, M., Podolskiy, E. A., and Sugiyama, S.: Tide-modulated ice motion and seismicity of a floating glacier tongue in East Antarctica, Ann. Glaciol., 60, 57–67, https://doi.org/10.1017/aog.2019.25, 2019. a
Mouginot, J., Rignot, E., , and Scheuchl, B.: MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2, Boulder, Colorado, USA, https://doi.org/10.5067/AXE4121732AD, 2017. a
Mousavi, S. M., Horton, S. P., Langston, C. A., and Samei, B.: Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression, Geophys. J. Int., 207, 29–46, 2016. a
Mousavi, S. M., Sheng, Y., Zhu, W., and Beroza, G. C.: STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI, IEEE Access, 7, 179464–179476, 2019. a
Nath, P. and Vaughan, D.: Subsurface crevasse formation in glaciers and ice sheets, J. Geophys. Res.-Sol. Ea., 108, ECV–7, https://doi.org/10.1029/2001JB000453, 2003. a, b
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Pérez-Campos, X., Singh, S. K., and Beroza, G. C.: Reconciling teleseismic and regional estimates of seismic energy, B. Seismol. Soc. Am., 93, 2123–2130, 2003. a
Podolskiy, E. A., Sugiyama, S., Funk, M., Walter, F., Genco, R., Tsutaki, S., Minowa, M., and Ripepe, M.: Tide-modulated ice flow variations drive seismicity near the calving front of Bowdoin Glacier, Greenland, Geophys. Res. Lett., 43, 2036–2044, https://doi.org/10.1002/2016GL067743, 2016. a
Podolskiy, E. A., Fujita, K., Sunako, S., Tsushima, A., and Kayastha, R. B.: Nocturnal thermal fracturing of a Himalayan debris-covered glacier revealed by ambient seismic noise, Geophys. Res. Lett., 45, 9699–9709, 2018. a
Podolskiy, E. A., Fujita, K., Sunako, S., and Sato, Y.: Viscoelastic Modeling of Nocturnal Thermal Fracturing in a Himalayan Debris-Covered Glacier, J. Geophys. Res.-Earth Surf., 124, 1485–1515, https://doi.org/10.1029/2018JF004848, 2019. a
Pomeroy, J., Brisbourne, A., Evans, J., and Graham, D.: The search for seismic signatures of movement at the glacier bed in a polythermal valley glacier, Ann. Glaciol., 54, 149–156, 2013. a
Pratt, M. J., Winberry, J. P., Wiens, D. A., Anandakrishnan, S., and Alley, R. B.: Seismic and geodetic evidence for grounding-line control of Whillans Ice Stream stick-slip events, J. Geophys. Res.-Earth Surf., 119, 333–348, https://doi.org/10.1002/2013JF002842, 2014. a, b, c, d, e, f, g, h, i, j, k, l
Retzlaff, R. and Bentley, C. R.: Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses, J. Glaciol., 39, 553–561, 1993. a
Reynen, A. and Audet, P.: Supervised machine learning on a network scale: Application to seismic event classification and detection, Geophys. J. Int., 210, 1394–1409, 2017. a
Riggelsen, C. and Ohrnberger, M.: A machine learning approach for improving the detection capabilities at 3C seismic stations, Pure Appl. Geophys., 171, 395–411, 2014. a
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011. a
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting around Antarctica, Science, 341, 266–270, 2013. a
Röösli, C., Walter, F., Husen, S., Andrews, L. C., Lüthi, M. P., Catania, G. A., and Kissling, E.: Sustained seismic tremors and icequakes detected in the ablation zone of the Greenland ice sheet, J. Glaciol., 60, 563–575, 2014. a
Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53–65, 1987. a
Sawi, T., Holtzman, B., Walter, F., and Paisley, J.: An Unsupervised Machine-Learning Approach to Understanding Seismicity at an Alpine Glacier, J. Geophys. Res.-Earth Surf., 127, e2022JF006909, https://doi.org/10.1029/2022JF006909, 2022. a
Seydoux, L., Balestriero, R., Poli, P., De Hoop, M., Campillo, M., and Baraniuk, R.: Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning, Nat. Commun., 11, 1–12, 2020. a
Sibi, P., Jones, S. A., and Siddarth, P.: Analysis of different activation functions using back propagation neural networks, J. Theor. Appl. Inf. Technol., 47, 1264–1268, 2013. a
Stål, T. and Reading, A. M.: A grid for multidimensional and multivariate spatial representation and data processing, J. Open Res. Softw., 8, 1–10, https://doi.org/10.5334/JORS.287, 2020. a, b
Trebuňa, P., Halčinová, J., Fil'o, M., and Markovič, J.: The importance of normalization and standardization in the process of clustering, in: 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 381–385, IEEE, 2014. a
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of ice stream B, West Antarctica: 1. Till mechanics, J. Geophys. Res.-Sol. Ea., 105, 463–481, 2000. a
Turner, R. J., Latto, R. B., and Reading, A. M.: An ObsPy library for event detection and seismic attribute calculation: preparing waveforms for automated analysis, J. Open Res. Softw., 9, 29, https://doi.org/10.5334/jors.365, 2021 (code available at: https://github.com/rossjturner/seismic_attributes, last access: 18 March 2024). a, b
Turner, R. J., Latto, R. B., and Reading, A. M.: An ObsPy library for event detection and seismic attribute calculation: preparing waveforms for automated analysis (v1.0.3.post1), Zenodo [code], https://doi.org/10.5281/zenodo.5499909, 2021. a
U.S. Geological Survey, E. H. P.: Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products, https://doi.org/10.5066/F7MS3QZH, 2022. a
Van der Maaten, L. and Hinton, G.: Visualizing data using t-SNE, J. Mach. Learn. Res., 9, 2579–2605, 2008. a
VanWormer, D. and Berg, E.: Seismic Evidence for Glacier Motion, J. Glaciol., 12, 259–265, https://doi.org/10.3189/S002214300003207X, 1973. a
Wiens, D., Pratt, M., Aster, R., Nyblade, A., Bromirski, P., Stephen, R., and Gerstoft, P.: Longitudinal seismic waves in the Ross Ice Shelf excited by Whillans Ice Stream stick-slip events, Geoscience, 7, 677–681, 2016. a
Wiens, D. A., Anandakrishnan, S., Winberry, J. P., and King, M. A.: Simultaneous teleseismic and geodetic observations of the stick–slip motion of an Antarctic ice stream, Nature, 453, 770–774, https://doi.org/10.1038/nature06990, 2008. a
Winberry, J. P., Anandakrishnan, S., and Alley, R. B.: Seismic observations of transient subglacial water-flow beneath MacAyeal Ice Stream, West Antarctica, Geophys. Res. Lett., 36, L11502, https://doi.org/10.1029/2009GL037730, 2009a. a
Winberry, J. P., Anandakrishnan, S., Alley, R. B., Bindschadler, R. A., and King, M. A.: Basal mechanics of ice streams: Insights from the stick-slip motion of Whillans Ice Stream, West Antarctica, J. Geophys. Res.-Earth Surf., 114, F01016, https://doi.org/10.1029/2008JF001035, 2009b. a
Winberry, J. P., Anandakrishnan, S., and Wiens, D.: Geophysical Study of Ice Stream Stick-slip dynamics, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/2C_2010, 2010. a, b
Winberry, J. P., Anandakrishnan, S., Wiens, D. A., Alley, R. B., and Christianson, K.: Dynamics of stick–slip motion, Whillans Ice Stream, Antarctica, Earth Planet. Sc. Lett., 305, 283–289, 2011. a
Winberry, J. P., Anandakrishnan, S., Wiens, D. A., and Alley, R. B.: Nucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica, Geophys. Res. Lett., 40, 312–315, https://doi.org/10.1002/grl.50130, 2013. a
Wright, A. and Siegert, M.: A fourth inventory of Antarctic subglacial lakes, Antarct. Sci., 24, 659–664, 2012. a
Yoon, C. E., O'Reilly, O., Bergen, K. J., and Beroza, G. C.: Earthquake detection through computationally efficient similarity search, Sci. Adv., 1, e1501057, https://doi.org/10.1126/sciadv.1501057, 2015. a
Zadeh, R. B. and Ben-David, S.: A Uniqueness Theorem for Clustering, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI '09, 639–646, AUAI Press, Arlington, Virginia, USA, ISBN 9780974903958, 2009. a
Zu Eissen, B. and Wißbrock, F.: On cluster validity and the information need of users, ACTA Press, 216–221, 2003. a
Short summary
Seismic catalogues are potentially rich sources of information on glacier processes. In a companion study, we constructed an event catalogue for seismic data from the Whillans Ice Stream. Here, we provide a semi-automated workflow for consistent catalogue analysis using an unsupervised cluster analysis. We discuss the defining characteristics of identified signal types found in this catalogue and possible mechanisms for the underlying glacier processes and noise sources.
Seismic catalogues are potentially rich sources of information on glacier processes. In a...