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Abstract. Given the high number and diversity of events in a
typical cryoseismic dataset, in particular those recorded on
ice sheet margins, it is desirable to use a semi-automated
method of grouping similar events for reconnaissance and
ongoing analysis. We present a workflow for employing
semi-unsupervised cluster analysis to inform investigations
of the processes occurring in glaciers and ice sheets. In this
demonstration study, we make use of a seismic event cata-
logue previously compiled for the Whillans Ice Stream, for
the 2010-2011 austral summer (outlined in Part 1, Latto
et al., 2024). We address the challenges of seismic event
analysis for a complex wave field by clustering similar seis-
mic events into groups using characteristic temporal, spec-
tral, and polarization attributes of seismic time series with
the k-means++ algorithm. This provides the basis for a recon-
naissance analysis of a seismic wave field that contains local
events (from the ice stream) set in an ambient wave field that
itself contains a diversity of signals (mostly from the Ross
Ice Shelf). As one result, we find that two clusters include
stick-slip events that diverge in terms of length and initiation
locality (i.e., central sticky spot and/or the grounding line).
We also identify a swarm of high-frequency signals on 16—
17 January 2011 that are potentially associated with a sur-
face melt event from the Ross Ice Shelf. Used together with
the event detection presented in Part 1, the semi-automated
workflow could readily be generalized to other locations and,
as a possible benchmark procedure, could enable the moni-

toring of remote glaciers over time and comparisons between
locations.

1 Introduction

Cryoseismology is a field of glaciological research motivated
by the possibility of inferring aspects of glacier structure and
processes from seismic signals, based on a continuous record
of signals potentially from the entire volume of the glacier
and its surroundings (VanWormer and Berg, 1973; Podol-
skiy and Walter, 2016; Aster and Winberry, 2017). The field
has been enabled in recent decades by increased seismic de-
ployments to remote locations (Kanao, 2018, Chap. 8). Net-
works of cryoseismic instruments present the opportunity to
monitor the non-tectonic seismic waves that are generated
through a number of different mechanisms in response to
gravitational and thermal forcing, acting on bodies of ice. In-
vestigating glaciers with such passive seismic methods adds
to knowledge that might be generated based on data col-
lected using in situ and satellite methods (Wiens et al., 2008;
Podolskiy et al., 2018). Seismic approaches can also inform
the understanding of aseismic deformation through the de-
tection of fine differences between viscous and elastic rhe-
ologies (Podolskiy et al., 2019). The range of cryoseismic
event types represents the diversity of mechanisms acting
on and within a glacier. These include basal slip, meltwa-
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ter flow, and brittle failure (Nath and Vaughan, 2003). As a
glacier moves intermittently over the bedrock and sediments
beneath, it can experience basal stick-slip, resulting in signals
at low frequencies of 10~2 Hz lasting over 2030 min (Pratt
et al., 2014). Stick-slip is a cyclical process that first responds
to built-up elastic strain in sticky spots at the base and then
releases that strain when lubricated by meltwater (Winberry
et al., 2011). Sticky spots usually arise on frozen ground
where there is insufficient water to decouple the glacier from
the bed. Lubrication can come from englacial drainage path-
ways or regelation, which is defined as the melt response to
high contact pressures.

Meltwater flow can trigger a number of seismic responses
from a glacier; examples include water flow that results in
fluid-induced resonance (Benn et al., 2009; Hammer et al.,
2015) and changing water pressure resulting in crack open-
ing or propagation (see Table S3 in the Supplement; Colgan
et al., 2016). As examples of such diverse signal types, the
filling and draining of hydrological pathways (Fountain and
Walder, 1998) produce relatively long, monochromatic, and
harmonic seismic signals at frequencies between 1-10Hz
(Winberry et al., 2009a). In contrast, crevasse formation is
a quick surface process (occurring within seconds) and gen-
erates seismic waves with frequencies between 10-100 Hz
(Roosli et al., 2014). Surface fracturing can be triggered by
increasing water pressure (Carmichael et al., 2012), contrac-
tion of the ice in response to changing air temperatures (Lom-
bardi et al., 2019), tidal bending (Cole, 2020), or horizontal
stretching (Podolskiy et al., 2016; Minowa et al., 2019). Brit-
tle deformation can also occur through the body of a glacier
(Nath and Vaughan, 2003). Active processes at the down-
stream end of marine-terminating glaciers include basal out-
flow and iceberg calving, and other ocean—ice interactions
can also be studied using seismic events, although they are
not a focus of this study.

Glacier-focused seismic deployments typically make use
of arrays of multiple sensors; therefore, it can be a time-
consuming process to analyze the data recorded over many
months. Visual inspection by an experienced human ana-
lyst (manual event detection) is highly informative but not
suited to large data volumes. It can also result in some as-
pects of the resulting event catalogue being analyst depen-
dent. A semi-automated approach is therefore desirable. The
first step to automation, robust event detection, is addressed
in Latto et al. (2024), which describes an algorithm de-
signed for diverse, low-signal-to-noise microseismicity from
glaciers. The next step is event analysis, where data-driven
approaches present an appealing way forward (Bergen and
Beroza, 2019). We use the term “event” broadly to include
impulsive signals from glacier processes described above and
waveform changes (such as an amplitude increase or fre-
quency content change) with a less distinct onset that often
arise in the seismic wave field.

Machine learning is a general term for the application of
computer algorithms to data for the purposes of prediction
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and pattern detection. It can be termed “supervised” or “un-
supervised”, where supervision in this context refers to the
use of labeled data to train an algorithm (Marsland, 2015).
The choice of system parameterization and algorithm is de-
pendent on the presented problem and the questions of in-
terest. Supervised learning is often carried out using artifi-
cial neural networks to perform classification and to build
predictive models (Caruana and Niculescu-Mizil, 2006; Sibi
et al., 2013). Other types of supervised learning algorithms
for classification purposes include random forests and sup-
port vector machines (Cracknell and Reading, 2013). Unsu-
pervised learning algorithms are “inductive” as they develop
the classification, or other model types, from properties of the
data themselves, i.e., not by using a labeled training dataset.
Such approaches, ranging from minimally intensive to more
expensive, include k-means clustering, hierarchical methods,
and self-organizing maps (Jain, 2010).

The k-means clustering algorithm (k-means) is a rela-
tively straightforward unsupervised learning algorithm, use-
ful for partitioning datasets into groups of similar elements,
called clusters (Anderberg, 2014; George, 2013). The k-
means problem aims to converge on the minimized Euclidean
distance between each element to form the most well sepa-
rated clusters. Before solving, k-means requires the defini-
tion of two parameters: the number of clusters and the loca-
tions of the cluster centers, called “seeds”. One challenge is
that the number of clusters representative of a dataset is not
known a priori. Therefore, it is useful to compute the degree
of separation between clusters in order to determine how sim-
ilar the k-means solutions are for a preset number of clusters
(Meila, 2006; Zadeh and Ben-David, 2009). To determine
the most advantageous locations for the cluster seeds, the
k-means++ algorithm has been developed as a variation of
the standard algorithm, whereby cluster seeds are uniformly
dispersed at locations that are spread over the data such that
any two seed locations are not too near (Arthur and Vassilvit-
skii, 2006). Such a distribution improves k-means’ speed and
accuracy because the well-separated cluster seeds can better
predict well-separated clusters. The k-means++ initialization
procedure is more robust than a pseudo-random seeding and
less prone to user bias than a deliberate choice of seed loca-
tions.

Distance-based clustering methods like k-means can have
the caveat of reduced utility in higher dimensions. The in-
direct relationship between dimension and utility is referred
to as the curse of dimensionality in the literature (Beyer
et al., 1999; Aggarwal et al., 2001); k-means is an exam-
ple of a hard clustering algorithm where each observation is
assigned to one cluster. Other clustering algorithms include
the Gaussian mixture model, which is a popular alternative
to k-means where each observation can belong to every clus-
ter by means of an expectation-maximization function that
produces probability distributions of cluster matches per ob-
servation (an example of soft clustering; Bouveyron et al.,
2007). The choice of which unsupervised learning algorithm
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to apply depends on the preferred solution by the user; for
this work we use k-means as a transparent algorithm for a
reconnaissance workflow and result.

Machine learning applied to earthquake seismology is ad-
vancing rapidly due to the need for automated analysis given
the wealth of available data (Bergen et al., 2019). Super-
vised learning approaches are able to draw on access to la-
beled data (e.g., 1.2 million labeled seismic signal record-
ings; Mousavi et al., 2019). Unsupervised learning also ben-
efits from labeled data in seismology because of the oppor-
tunity to validate and constrain results (Yoon et al., 2015;
Galvis et al., 2017). Machine learning algorithms applied
to seismic events often require as input the decomposition
of events into attributes, called “features”, that typically de-
scribe the temporal, spectral, polarization, and network char-
acteristics of a seismic time series (Riggelsen and Ohrn-
berger, 2014; Reynen and Audet, 2017). Discrimination be-
tween events is improved by careful selection of the features
used as input to the learning phase of algorithms (Mousavi
et al., 2016).

The application of machine learning to geotechnical and
environmental seismology is appealing because of the poten-
tial for the automated monitoring and classification of long,
continuous, and relatively recent records (Hibert et al., 2019).
Environmental seismology signals, as noted previously, can
be varied in character and difficult to distinguish from ambi-
ent (i.e., background) noise because of their weak amplitude.
Further, labeled datasets are less commonly developed in en-
vironmental studies. Therefore, unsupervised learning is a
compelling approach for reconnaissance analysis of geotech-
nical and environmental seismicity records (Johnson et al.,
2020). As examples, unsupervised learning has shown to be
successful for classifying types of mine seismicity (e.g., k-
means; Chamarczuk et al., 2020), discriminating between
volcano-tectonic and rockfall events (e.g., self-organizing
maps; Kohler et al., 2010), and clustering landslide seismic-
ity (e.g., deep convolutional neural networks; Seydoux et al.,
2020). Such machine learning applications to lower-energy
signals especially benefit from the decomposition of event
catalogues to datasets of features because traditional discrim-
ination between waveforms is difficult when all events are of
weak amplitude (Provost et al., 2017).

Applying machine learning to cryoseismology may en-
able discoveries regarding glacier dynamics and hydrologi-
cal processes. Many cryoseismic signals are difficult for the
human analyst or traditional methods to distinguish above
background noise (e.g., Pomeroy et al., 2013). Unsupervised
routines that can detect and classify events may distinguish
some of the underlying processes. In terms of event discrim-
ination, machine learning can be used to differentiate be-
tween icequakes and earthquakes without prior knowledge
of the structures of the cryoseismic signals (Jenkins et al.,
2021). Similar applications can also detect calving events
and avalanches in continuous seismic data (Kohler et al.,
2012, and Heck et al., 2018, respectively). Automated classi-
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fication of cryoseismicity can enable investigation into pro-
cesses which might otherwise be hidden from satellites or
other in situ observations. For example, the automated de-
tection and classification of seismic events has been used to
identify an ice shelf fracture process induced by tidal bend-
ing, followed by resonance as seawater presumably fills the
new fracture (Hammer et al., 2015). By studying the timing
of icequake rupture, englacial meltwater flow has been re-
lated to other processes, such as heating by solar radiation
and cooling induced by katabatic winds (Helmstetter et al.,
2015; Sawi et al., 2022).

The aforementioned studies demonstrate that as experi-
ence builds in applying machine learning to cryoseismology,
there is potential for different seasons and locations to be
compared. A repeatable approach will afford the possibil-
ity of making comparisons between years for a given glacier
environment and of comparing different localities. The two
companion papers presented as Latto et al. (2024) (Part 1)
and this work (Part 2), respectively, demonstrate a systematic
workflow in (1) building a catalogue and (2) using a simple
clustering method as a reconnaissance tool to better under-
stand glacier dynamic and hydrological processes.

We first review the seismic event catalogue compiled for
the Whillans Ice Stream austral summer 2010-2011 deploy-
ment. We then present and evaluate an unsupervised learn-
ing procedure, examining potential steps for constructing a
dataset of informative features that capture all aspects of each
seismic event while limiting biases. We implement the k-
means++ clustering algorithm for grouping seismic events
and explore k-means++ solutions supported by a manual
appraisal of the event catalogue, investigating how the k-
means++ solutions evolve and choosing the logical number
of clusters for the analysis. In Sect. 4, we interpret the clus-
ters in terms of probable glacier processes and noise genera-
tion mechanisms that give rise to some of the distinct groups
of Whillans Ice Stream seismicity.

2 Whillans Ice Stream seismic event catalogue

The Whillans Ice Stream (WIS; previously known as Ice
Stream B) is one of five major outlet glaciers of the Siple
Coast (Fig. 1a) that together discharge 40 % of the ice from
West Antarctica to the Ross Ice Shelf (Price et al., 2001). The
WIS is one of the fastest-flowing ice streams along the Siple
Coast, with velocities greater than 300ma~!, due to its well-
lubricated, deformable subglacial bed (Tulaczyk et al., 2000).
Negative mass balance (i.e., thinning of the ice column) is
observed downstream (Bindschadler et al., 2005; Campbell
et al., 2018). However, positive mass balance (i.e., thicken-
ing) is present in the upstream region of the WIS. This is
because, in the middle of the 19th century, the neighbor-
ing Kamb Ice Stream (KIS) stagnated from 120ma~! to a
current flow speed of 10 m a~! (Retzlaff and Bentley, 1993;
Joughin et al., 2002). The stagnated KIS, combined with
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thinning of the WIS, has resulted in a diversion of flow from
the KIS to the WIS (Price et al., 2001). The result is thicken-
ing in the accumulation area of the WIS, estimated at I m a!
(Bindschadler et al., 1993), which contributes to the deceler-
ation of the WIS at an estimated rate of 5.5ma 2 (Beem
et al., 2014). The deceleration, combined with bed strength-
ening that results from frozen ice at the glacier bed, is pro-
jected to cause a stoppage of ice flow in the next 40 years
(Bougamont et al., 2003).

As a result of the dynamics of fast flow, subglacial hy-
drology, and basal mechanics, the WIS experiences a wide
variety of cryoseismic events. The seismicity ranges from
low-frequency (1072 Hz) basal stick-slip (Winberry et al.,
2009b) to possible higher-frequency (10-50 Hz) icequakes
(Winberry et al., 2013). Glacier processes on the nearby Ross
Ice Shelf exhibit seismicity with frequencies from 1073 Hz
ocean gravity waves and swells (Chen et al., 2019) to elastic
waves greater than 5 Hz in the near surface from temperature
changes (Chaput et al., 2018). These processes from the Ross
Ice Shelf could provide indirect seismic sources that can be
detected in the external wave field at the WIS (Wiens et al.,
2016).

Continuous seismic recordings of the WIS were made be-
tween 14 December 2010 and 31 January 2011 inclusive
(Winberry et al., 2010). Between the 35 stations deployed,
two seismic sensor types were used: the Giiralp CMG-40T-1
and Trillium 120 broadband sensors. We use data sampled at
200 Hz from the sites with a Trillium 120 broadband sensor:
17 stations with names of format BBXX (Fig. 1b; triangles).
Excluded are stations BB02, BB05, and BB09 due to missing
components and/or incomplete data for a significant propor-
tion of the deployment, resulting in 14 seismometers being
used for this study.

Cryoseismic events occurring during the 2010-11 instru-
ment deployment on the WIS were identified (Latto et al.,
2024) using an implementation of the multi-STA/LTA algo-
rithm (Turner et al., 2021). Two catalogues are produced, a
reference event catalogue and a trace catalogue, which list
event information per seismometer. The reference event cat-
alogue (1856 events) summarizes (e.g., averages) event in-
formation over the entire seismometer array and therefore
summarizes the individual trace catalogue (8696 entries).
The reference event arrival time can precede an individual
seismometer’s detected trace arrival time by half the net-
work time for the three closest seismometers that detect an
event. The reference event catalogue therefore maintains the
complete duration of an event across the network. Seismic
events are preferentially detected across stations (Fig. 1b).
For example, station BBO7, which is located near to where
the highest-power seismic events nucleate during periods of
local high tide, detected 1113 events, whereas station BB04,
located further from the grounding line and tide-related pro-
cesses, detected 285 events. The unsupervised learning ap-
plication described herein makes use of both the reference
event and the trace catalogues.
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3 Unsupervised learning to identify glacier processes

We use an unsupervised learning approach applied to the pre-
viously generated catalogue of events (Latto et al., 2024).
The machine learning workflow comprises the following
steps: (1) construct a dataset of features (temporal, spectral,
and polarization attributes of seismic time series) by process-
ing the seismic records, guided by the pre-existing event cata-
logue; (2) group the events into clusters using the k-means++
algorithm according to the similarity between features iden-
tified; (3) carry out exploratory data analysis to review and
optimize the clusters; (4) identify probable glacier processes
from the mechanisms that cause the more consistent clusters
through an appraisal of other recorded signals; and (5) inter-
pret the origin of the seismic energy identified in the previous
step.

3.1 Constructing a dataset of features

The representation of a seismic event by multiple features
exploits all aspects of a waveform by the learning algorithm.
We utilize a subset of features applied previously to a land-
slide seismic record (Provost et al., 2017) and refined for our
application to glacier processes (Table S1). We first construct
a dataset of features from the waveform data, guided by the
metadata in the trace catalogue (included as TraceFeature-
DatasetWhillans.csv at https://github.com/beccalatto/multi_
sta_lta/, last access: 18 March 2024). Then, we use the trace
dataset of features to compute a reference dataset of fea-
tures that correspond to the reference catalogue (included as
ReferenceFeatureDatasetWhillans.csv at https://github.com/
beccalatto/multi_sta_lIta/, last access: 18 March 2024). Each
of the 1856 reference events is thus characterized by a sin-
gle feature set (as an appropriate average or median) that is
representative of the recording stations. For a given event,
we compute and sort trace catalogue seismometer records in
order from the most energetic (i.e., largest maximum peak
amplitude of a record) to the least. For that event, feature
values are chosen as the median — or second highest — from
the top three most energetic records. Feature-specific com-
putation details are given in Table S1. The feature-specific
computations are further described in Part 1 and correspond-
ing software documentation — Latto et al. (2024) and Turner
et al. (2021), respectively. From this point onward, when re-
ferring to event features we are describing those pertaining
to the reference feature dataset.

The set of features for each event is transformed prior to
clustering to reduce potential biases. In this context, bias
refers to an inconsistent weighting of the importance of a
given feature based on numerically large ranges that can un-
duly influence clustering results because k-means relies on
geometric (Euclidean) distances (Aksoy and Haralick, 2001;
Mohamad and Usman, 2013). First, we review the distribu-
tion of each feature to determine a scaling (Table S1). For
example, features that quantify energy typically fit exponen-
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Figure 1. WIS dynamics and seismic environment. (a) Location of the WIS in the context of the Ross Ice Shelf (BBO1: 84°17/43.8066” S,
158°9/47.1636" W) with overlaid ice flow speed (Rignot et al., 2011), grounding line (grey line; Rignot et al., 2013; Mouginot et al., 2017),
and rock outcrops (Burton-Johnson et al., 2016). (b) The WIS temporary broadband stations deployed in austral summer 2010 and 2011. The
broadband stations in this study are colored according to the number of events detected per station, retrieved from the trace catalogue of Latto
et al. (2024). The blue cross is approximately at the center of the stick-slip region, where the highest-power seismic events nucleate during
periods of local high tide (84.4° S, 157° W; Pratt et al., 2014; Barcheck et al., 2018). The pink cross is at approximately the grounding line,
where the highest-power stick-slip events nucleate during periods of local low tide (84.55°S, 163° W). The two pale-blue circles indicate
subglacial lakes (Wright and Siegert, 2012). Map generated by the “agrid” Python module (Stil and Reading, 2020).

tial distributions and so can be set on a logarithmic scale.
Other features that have very narrow ranges (e.g., the recti-
linearity range is 1) can incorrectly skew towards values near
their minimum when set on a logarithmic scale and so are
kept on a linear scale. We carry out a standardization pro-
cedure to constrain the features to the same range, centered
at zero, by scaling by a feature’s standard deviation. After
these transformations, the features retain their diverse distri-
butions but are now on comparable scales, which is important
for distance-based clustering algorithms (histograms shown
in Fig. 2; box-and-whisker plots shown in Fig. S1).

3.1.1 Selection

The next step in our workflow is feature selection, which is
applied because the inclusion of too many correlated features
in a clustering procedure can yield an artificial weighting.
We compute a comparison of each feature pair, quantifying
similarity by r, the Pearson correlation coefficient (Fig. 3).
The maximum anti-correlation is » = —0.75, and the maxi-
mum (non-diagonal) correlation is r = 0.99. We define sim-
ilar features at r > 0.95, after a careful review of the vari-
ance observed in feature relationships below that threshold
(e.g., Fig. 3, scatterplot between feature 2 and feature 5 with
r = —0.75). Within each highly correlated set of features,
we choose which feature is most useful to keep for analysis
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(scatterplots shown in Fig. S2; reasoning for feature choice
provided in Table S2). After removal of a total of 7 features,
the input to clustering (our “standard” dataset) contains 30
remaining features to characterize each event.

3.2 Grouping the events into clusters

The dataset of selected features is used to find clusters of sim-
ilar WIS events, by means of the k-means++ algorithm (Jain,
2010), which employs a standard initialization approach,
with the default parameters for improving convergence as de-
fined by the widely used Python implementation (Pedregosa
et al., 2011, sklearn.cluster. KMeans). The data matrix used
as input to k-means++ is defined as follows: X = x;;, where
i=1,....mand j=1,...,N, with m waveforms described
by N features. The algorithm takes the following steps.

1. Initialize k clusters, where each cluster g is assigned a
seed (centroid) [T from g =1,...,k; i.e., each g is de-
fined by R = [g1, gy ooy thgjseey hgN]

2. Assign waveforms x;; to a cluster by minimizing Eu-
clidean distances between all the features of a wave-
form and a centroid p. The argmin function finds
the value of g which minimizes the Euclidean distance.
Each waveform i is assigned to a cluster number g as

The Cryosphere, 18, 2081-2101, 2024
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Figure 2. Distribution of each feature in the feature dataset after log or linear scaling and standardization. The feature tags (top-left corner of
each plot) and color attributions (top to bottom: pink, green, blue, and purple) correspond to the numerical tag per feature and feature types
provided in Table S1. Other qualities of each feature, such as the median, minimum, and maximum of each distribution, are provided in a

box-and-whisker plot with the same number and color (Fig. S1).

represented by the following expression:

N
¢ = argming<2(xij — ng)2>~

J

3. Recompute the centroid of each cluster based on the
mean of the waveform features assigned to each clus-
ter. Each cluster g is assigned a centroid p, defined by

Yo 8(ci, r)xij

Hri = o5m ey

where § is the Kronecker delta function.

4. Iterate Steps 2 and 3 until a threshold indicating conver-
gence is reached, i.e., when the centroids are no longer
significantly updated.

The Cryosphere, 18, 2081-2101, 2024

3.3 Exploratory data analysis for optimization

Our implementation of k-means++ requires the number of
clusters (k) to be prescribed a priori. Many studies have at-
tempted to appraise the value for k via statistical techniques
(e.g., Legany et al., 2006; Bhargavi and Gowda, 2015). For
our application, we show the results of the silhouette test, a
widely used estimator that quantifies the tightness of a cluster
by computing the Euclidean distance of each n-dimensional
data point to each centroid (Rousseeuw, 1987), in Fig. S3a.
This test is, however, less informative when applied to real,
noisy data whose clusters are not necessarily well-separated
(see Sect. S3.3 for further discussion; Famili et al., 2004; He
and Yu, 2019). Therefore, a recommended approach com-
bines user-domain knowledge, which qualifies the usefulness
of a clustering result, with statistical metrics, which quan-
tify how well-separated a clustering result is (Zu Eissen and
WiBbrock, 2003). We employ a semi-automated methodol-
ogy that complements the unsupervised k-means++ algo-
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is removed from analysis. The scatter diagrams of other features with high r values are provided with details on feature choices (Fig. S2;

Table S2).

rithm with an initial manual appraisal of the seismic event
database and thorough review of parameter options. We aim
to optimize the parameter choice of k for this application
to find clusters of cryoseismic events that can be reasonably
matched to known glacier dynamic processes and/or used to
investigate new or previously unidentified glacier signals.

3.3.1 Evaluating the WIS event catalogue by human
analyst

The manual appraisal comprises a thorough search and eval-
uation of the WIS catalogue by an analyst using a GUI tool
designed for this application (Fig. S4). The tool provides
fields for recording visually discernible features of an event,
such as spectral description and maximum characteristic fre-
quency, emergent behavior, and envelope description. The
tool also provides a field to assign each event a probable
cluster type, thereby producing an ad hoc labeled dataset of
cryoseismic events for the WIS. The labels assigned during
the manual search include processes such as “stick-slip” and
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“teleseismic” and broader potential attributions to “Other”
which is a catch-all category of noise-type events potentially
generated from the surrounding Ross Ice Shelf and Ross Sea.

While the manual appraisal is conducted on all events,
we have previously assigned low- and high-confidence la-
bels to each event in order to assess relative uncertainty in
the dataset (Latto et al., 2024), with 35 % of events being as-
signed a high-confidence rating. The following cluster anal-
ysis and discussion use all events, justified by the low- and
high-confidence events presenting with logical patterns in the
feature spaces and spatio-temporal domains (see Fig. 4). Fig-
ures including “high-confidence events only” are included in
the Supplement for a subset of figures (Figs. 4, 5, 6, 7, and 8
with corresponding Figs. S5, S6, S9, S10, and S11).

We verify the manually appraised labels for events where
the data are available. First, by comparing the Pratt et al.
(2014, Table S4) stick-slip catalogue with the manual-
appraisal-labeled stick-slip events, we find 136 of our iden-
tified stick-slip events are identified as such by Pratt et al.
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(2014) and 4 are newly identified. None of the Pratt et al.
(2014) stick-slip events are missed by our method. In this
case, by the word “event” we are referring to any segment of
stick-slip rupture where the expected WIS stick-slip episode
has two to three ruptures in a 30 min span. In later dis-
cussions, we refer to the 136 verified stick-slip events as
PRA14 (i.e., Pratt et al., 2014) and the 4 additional events as
PRA14 additional. The global seismic catalogue (U.S. Ge-
ological Survey, 2022) is also used as a cross-reference list
with manually appraised teleseisms and other events not nec-
essarily identifiable by eye as teleseisms. We find 68 events
are potential teleseisms, which we label in subdivisions as
Teleseism I (> 3.5 log a.u. peak amplitude, 32 events; a.u. de-
notes arbitrary units) and Teleseism II (< 3.5 peak amplitude,
36 events).

We summarize the results of the manual appraisal for
the event catalogue in the bivariate feature relationships
of duration, peak amplitude, and characteristic frequency
with analyst-appraised labels (Fig. 4). The representation of
events in this two-dimensional framework illustrates how
clusters are inherently formed by feature relationships. For
example, the finding that all events labeled as stick-slip
motion have similar durations (10°-10%s), characteristic
frequencies (1072-107" Hz), and peak amplitudes (10%-
10° a.u.) lends credibility to the potentially mechanistic sig-
nificance of clustering results. Variations within the features
with assigned cluster labels suggest where a different number
of clusters and corresponding labels might better suit the fea-
ture dataset. Figure S5 (with high-confidence events only) in
comparison to Fig. 4 shows that high-confidence events are
typically the longer and stronger events. The overall patterns
inherent in the clusters, particularly for the stick-slip events,
largely remain the same. We highlight that subsequent com-
parisons of features in the k-means methodology refer to
standardized values where appropriate, which can lead to in-
formation loss.

We aim to evaluate the labels assigned to the cryoseismic
event types we expect from the WIS using overviews such as
Ekstrom et al. (2003) and Podolskiy and Walter (2016) that
document the common feature ranges of cryoseismic events
(Table S3). In doing so, we can improve the manual appraisal
by, for example, considering distinct labels for some of the
broad “Other” events, such as “ocean primary and secondary
microseisms”’, for durations between 1-10s and characteris-
tic frequencies of 10~ to 1 Hz.

3.3.2 Investigating cluster evolution

By definition, the points in the clusters yielded by k-means++
with cluster parameter k will be rearranged when the cluster
parameter is increased to k41 or decreased to k — 1, indepen-
dently of k. We are motivated to understand how the seismic
events in a cluster split or group as k changes in order to most
reasonably determine the choice of k, the number of clusters.
Typically, studying cluster evolution is challenging due to the
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built-in pseudo-randomness of k-means, which assigns clus-
ters a potentially different nondescript numerical label each
time the k-means problem is solved. Therefore, to more eas-
ily identify the clusters as they appear and change for each
k value, rather than rely on the automated k-means label, we
discern clusters by percentage makeups that are recognizable
as k changes, i.e., types of events from manual appraisal in
combination with the number of seismic events assigned to
each cluster.

We can then apply the k-means++ algorithm to the stan-
dard feature dataset (Sect. 3.1.1) for the number of clusters
k = 2 (the minimum possible) up to k = 14 (a realistic max-
imum), and evaluate the corresponding solution as it evolves
(Fig. 5). The illustration of how clusters merge and split as
k is increased offers two main conclusions. Firstly, as k in-
creases, typically only one of a set of clusters will split into
two clusters, as depicted by the single assigned arrow per row
that illustrates where a portion of the seismic events of a clus-
ter will form a separate group. This indicates that if a single
cluster appears to represent two distinct types of events, that
cluster could be pushed to split when clustering is forced to a
solution at k + 1. Secondly, once a larger cluster splits into a
new cluster, that new cluster will generally retain its compo-
sition as k increases. For example, the cluster in the second
column from the right (i.e., first composed of 7.38 % of the
total events) appears to contain approximately the same num-
ber and composition of Teleseism I events as k is increased
(Fig. 5). An exception to both findings is shown in the third
column from the left (i.e., first composed of 13.63 % of the
total events), which is formed by the split part of two clus-
ters, that immediately to the left and the furthest column to
the right. This third column cluster splits at k = 9. In rou-
tine use of unsupervised learning, detailed investigation of
the cluster splits for sequential values of the k-means++ al-
gorithm would not be expected; however, in this contribution
we show cluster evolution to better inform the choice of k.

In Sect. S3 in the Supplement, we describe the quantita-
tive approaches used to recommend an optimized choice of
k = 10 (Fig. S3). After contextualizing that choice with the
previous appraisal of the catalogue and included discussion
on cluster evolution, we choose to proceed with k£ = 10.

3.4 Event clusters and glacier processes

We evaluate the clustering solution for k = 10 in order to
infer the glacier processes potentially represented for each
cluster (Table 1). For ease of reference, the clusters yielded
from k =10 are numbered (1-10 in the order shown in
Fig. 5). For each cluster, we first make use of the manual
appraisal to compute the percentage of events that are at-
tributed to stick-slip processes and teleseismic earthquakes.
Cluster 1 and Cluster 2 are assigned the majority of stick-slip
events, Cluster 2 is also assigned a minority of Teleseism I
events, and Cluster 9 is assigned the majority of Teleseism I
and Teleseism II events, all designations that suggest the at-
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Figure 4. Manual appraisal of the reference event catalogue. The features measuring duration (log, seconds) and peak amplitude (log, a.u.) are
retrieved from the reference event catalogue, and characteristic frequency (log, Hz) is determined from the spectrograms of each event in the
manual appraisal. Event types that are identified from the manual appraisal and further validated in subsequent investigation show the natural
groupings, or clusters, of events in each bivariate feature pair: (a) duration and characteristic frequency, (b) duration and peak amplitude, and
(¢) characteristic frequency and peak amplitude. The manual appraisal of the reference event catalogue showing high-confidence events only

is included in Fig. S5.

tributed mechanisms for the clusters. Cluster 2 also contains
the four stick-slips indicated as additional to the Pratt et al.
(2014) catalogue. Clusters 3, 4, 5, 6,7, 8, and 10 also contain
small (i.e., < 5 %) numbers of teleseismic events. Supporting
information regarding the distribution of features per cluster
and the features that most differentiate each cluster is pro-
vided (Fig. S7).

To further illuminate the underlying physical processes,
we analyze the WIS clusters with respect to tidal heights
computed at a downstream location (84°20'20.3994”S,
166°0'0” W). This shows that Clusters 1 and 2 also vary with
regard to occurrence at high and low tides, with Cluster 1
showing a slight tendency towards high tide and Cluster 2
showing a more even split. This result is substantiated by
previous studies on distinct modes of stick-slip (stick-slip

https://doi.org/10.5194/tc-18-2081-2024

variation in event length is dependent on initiation location,
i.e., central or near the grounding line, and tide height; Pratt
et al., 2014). Cluster 5 events indicate the strongest tidal as-
sociation with 75.1 % of events occurring at high tides, while
Cluster 9 events show a slight tendency towards high tides.
We now explore the spatial and temporal distribution of
events that are attributed to clusters (Fig. 6; spatial synthe-
sis in Table S4; temporal synthesis in Fig. S8). From the
spatial analysis, we observe that the seismometers detecting
the most stick-slip events from Clusters 1 and 2 are located
within a previously identified sticky spot (Fig. 6a, called the
“central sticky spot”; Winberry et al., 2014; Barcheck et al.,
2018) and a lower proportion of events are detected near the
grounding line, at seismometers downstream of a subglacial
lake (Lake Engelhardt) located at 83.6°S, 159°W (Fig. 6a,
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Table 1. Characterization of clusters for k = 10 by various measures: the percentage of events that are stick-slip events from the Pratt
et al. (2014) catalogue (PRA14) and those additional to the catalogue (PRA14a); the percentage of events that are teleseismic events with
amplitudes > 3.5 (log, a.u.; TI) and those with amplitudes < 3.5 (log, a.u.; TII); the features that are most discriminant (most positive, 4, or
most negative, —) and therefore most defining for a given cluster are listed in Table S5; the percent at which a cluster’s events occur at high
tide (the tidal heights used to gather the percent values are determined for a downstream location (84°20'20.3994” S, 166°0'0” W) from the
CATS tidal model; Padman et al., 2002; Howard et al., 2019); the four seismometers that detect the majority of events per cluster, in order
from most to least (Table S4); the days on which the most events per cluster are detected (Fig. S8 left column); and the hours at which the
most events per cluster are detected (Fig. S8 right column).

Cluster Events, % Stick-slip  Teleseismic ~ Most discriminant ~ Positive ~ Spatial ~ Daily Hourly
events, % events, % features in rank  tidal, %
(PRA14, PRA14a) (TL, TI) order (4+/—)
1 7.49 84.2,0.72 1.44,0 20 (+), 14 (+), 62.6 BB04, Intermittent 07:00-18:00,
68 (+), 24 (+), BB14, 19:00-03:00
34 (+), 16 (+) BB03,
BB06
2 4.58 15.3,3.53 8.24,0 34 (+), 30 (+), 50.6 BBO06, Intermittent 00:00, 04:00
19 (), 10 (++), BB17,
18 (), 1 () BB11,
BB14
3 9.16 1.18,0 1.18, 1.76 1(4), 21 (+), 482 BB17, 7,15,18 23:00-05:00
71 (=), 10 (++), BBI10,
15 (+), 37 (+) BBOS,
BB13
4 6.41 1.68,0 0,0.84 4 (+), 19 (+), 54.6 BBI15, 2-5,7 00:00-04:00,
20 (), 22 (+), BBO06, 14:00-16:00
10 (+), 21 (+) BBO1,
BBO07
5 12.3 0,0 1.75,0 27 (=), 29 (+), 75.1 BBIl6, 33-34 01:00-12:00,
17 (=), 30 (), BBI15, 13:00-16:00
21 (4),24 (+) BBI12,
BBO1
6 9.38 0,0 0,3.45 22 (=), 28 (+), 63.8 BBI12, 5-6,33-35 09:00-19:00
71 (=), 38 (+), BB13,
29 (+), 27 (+) BBO07,
BB10
7 10.6 0,0 1.53,2.04 36 (—), 13 (—), 56.1 BBI3, Intermittent 00:00-05:00,
37 (=), 35(—), BBO1, 12:00-17:00
68 (+),3 (+) BB07,
BB10
8 5.71 0,0 0,3.77 13 (=), 4 (), 68.9 BBI12, Intermittent 01:00-05:00,
36 (—), 35 (—), BBI13, 11:00-16:00
14 (-), 34 (—) BBO07,
BB10
9 7.17 0,0 10.5,5.26 70 (=), 16 (+), 64.7 BBO04, 7,11,19,30,35 13:00-22:00
3(4), 14 (+), BB17,
38(—),5(—) BBO3,
BBI11
10 27.2 0.40,0 0,2.18 71 (=), 39 (—), 59.0 BBI3, Intermittent 00:00-04:00,
17 (=), 37 (—), BBOS, 14:00-16:00
16 (—),35(—) BBO07,
BB12
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Figure 5. Illustration of how clusters (depicted as circles) evolve in composition from k = 2 (top row) to k£ = 14 (bottom row). As k increases
(top to bottom), each column tracks an individual cluster and arrows indicate when a cluster splits or merges. The heavy grey line at k = 10
indicates the preferred value of k; along this row, cluster numbers are counted from left to right (1 to 10) and match those in Table 1 and
Figs. 6 and 7. The number above each cluster is the percentage of total events; thereby the numbers across a row sum to 100 %. Pie chart
segments represent the percentage of events within a cluster, as labeled with an event type during the manual appraisal. Clusters 3, 4, 6, 7, 8,
and 10 contain events best characterized as noise types based on the majority labeled as “Other” and their features (Sect. 3). Clusters 1, 2, 5,
and 9 contain labeled events and/or noise that appears related to processes by further analysis. Event types as identified by manual appraisal
are shown in the legend; further event types identified by unsupervised learning (Fig. 6) occur in Cluster 5 (events from an icequake swarm,
lasting 2 d). An illustration of how clusters evolve in composition from k£ = 2 to k = 14 showing high-confidence events only is included in
Fig. S6.

Pratt et al., 2014). The temporal analysis highlights a unique
type of event occurring on 16 January and 17 January 2011,
as all of Cluster 5 can be traced to these dates (Fig. 6b). Clus-
ter 9 containing teleseismic events (about 16 %) also contains
events manually appraised as “Other” that have similar high-
energy signatures to the high-amplitude teleseisms (Fig. S7).
In the spatio-temporal attribution, we find that these events

https://doi.org/10.5194/tc-18-2081-2024

appear grouped in the time interval between 14 and 21 h after
00:00 UTC. Preceding solar noon (22:00 to 23:00 UTC), this
diurnal pattern could indicate a partial control due to changes
in surface ice temperature (Fig. 6b).
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the numerical cluster assignments provided in the key. The temporal attribution is provided as a daily occurrence for days after 14 Decem-
ber 2010, with annotated reference dates 1, 16, and 30 January and an hourly occurrence for hours after 00:00 UTC, where solar noon falls in
the time zone of 22:00 UTC. In conjunction, both attributions are used to better characterize the clusters for k = 10. The results of the spatio-
temporal analysis are synthesized in Table 1. A breakdown for the spatial attribution and temporal attribution is provided in the Supplement
(Table S4 and Fig. S8, respectively). Colors were chosen for clarity between separate classes (Glynn and Naylor, 2021, Ordnance Survey).

A spatial and temporal attribution of clusters for k =

10 showing high-confidence events only is included in Fig. S9.

4 Limitations and discussion

We have demonstrated a step-by-step methodology for ap-
plying cluster analysis to a catalogue of seismic events
recorded on a soft-bedded Antarctic ice stream. In this sec-
tion we describe the limitations of this analysis with a view
to informing further studies. We then outline the improved
understanding of dynamic and hydrological processes at the
WIS and in the surrounding region that this study has en-
abled together with the wider applicability of the methods
and workflows.

The Cryosphere, 18, 2081-2101, 2024

4.1 Algorithm limitations

The choice of k-means++ was made based on the require-
ment to use a simple and transparent approach such that the
clustering of events and event-like noise as an aid to event
catalogue reconnaissance could be investigated and under-
stood. While the results of the event clustering are apparently
robust and yield useful insights (discussed below), we here
outline some of the potential shortcomings of this algorithm
choice and note other options that could be considered in fu-
ture studies.

Care should be taken when using k-means, which seeks
to optimize similarity (i.e., minimize distances) within each
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R. B. Latto et al.: Reconnaissance of seismic signals — Part 2

cluster and favors a smaller parameter space; as the number
of features increase, similarity can become a less meaningful
metric because of the greater likelihood of overlapping clus-
ters (i.e., “curse of dimensionality”). However, more features
introduce potentially useful information into the clustering
algorithm. We consider methods of dimensionality reduction
for k-means in Sect. 4.2. We also recognize that while the
clusters identified in this study are reasonably robust, they are
not especially well separated, and other algorithms could be
considered instead. Though beyond the scope and purpose of
this paper, the Gaussian mixture model could be investigated
in future research as a soft clustering alternative to k-means.

4.2 Feature transformation: representation, extraction,
and selection

Transformation of raw data into a feature set prior to cluster-
ing needs to balance preserving information with reducing
dimensions. In our application, the first step in this process is
feature normalization, in which the raw data fields are each
standardized by converting them into the same range of val-
ues using standard deviation. This step is considered essen-
tial for most clustering algorithms to remove potential biases
(Mohamad and Usman, 2013; Trebuna et al., 2014). How-
ever, the homogenization of a feature set can also sacrifice
information that a clustering algorithm could use to improve
the separation of clusters. Other feature representations can
be considered in future studies, such as a non-normalized
feature set or a feature set standardized by a different ap-
proach that retains more information (e.g., quantile transfor-
mations).

As a next step in our application, feature selection, or the
elimination of highly correlated and/or inconsequential fea-
tures prior to clustering, is an important step to reduce input
bias and dimensions. In a supervised learning application,
such as Provost et al. (2017), feature selection can be guided
by the quantified error in clustering output based on a la-
beled, expected result (Breiman, 2001). In the current study,
we carried out an evaluation to determine which features are
most discriminant using a correlation analysis (Sect. 3.1.1).
Further, it can be informative to examine how the clusters
change if shown a similar, alternative feature set.

We compare the stability of the clusters that result with
k =10 by clustering events using (a) our standard feature
set, (b) all of the features from Table S1 (no selection and
elimination), and (c) a halved feature set (Fig. 7). This re-
sult shows that the no-elimination option results in about half
of the clusters becoming less defined in comparison to the
standard feature set. The halved feature set comprises 17 of
the less correlated feature pairs from Fig. 3; i.e., a maximum
number of features are eliminated, in comparison to the stan-
dard set where a minimum number (i.e., only the most cor-
related) are eliminated. The percent composition of events in
the halved set is comparable to the standard, but again, some
redistribution of events occurs, significantly impacting about
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half the clusters. The distribution in clusters of the positively
identified glacier processes remains stable in the halved fea-
ture set, so it appears to be more useful to eliminate too many
features rather than too few.

We also evaluate the stability shown in Fig. 7 with the
high-confidence events only (Fig. S10). This result is used
as an additional way to discuss the robustness of each clus-
ter. We find that Clusters 1, 2, 3, 5, 6, and 9 all appear well-
defined (i.e., more robust) across the other feature set sce-
narios. The other clusters (4, 7, 8, and 10) indicate higher
instabilities (i.e., less robust) in how the contained events are
partitioned. Such a result provides insight into other dimen-
sions of similarity across the noise-type events that conflict
with the current feature domain boundaries.

An alternative approach to reducing the number of fea-
tures that could be considered in other studies is to re-
duce the dimensionality of the feature space. A common
and simplistic approach to dimensionality reduction is princi-
pal component analysis, which transforms high-dimensional
data into fewer dimensions (called the principal components)
by linear decomposition (Hotelling, 1933). Some competi-
tive methods that instead apply nonlinear mapping can of-
ten better retain the structure of features in fewer dimensions
and include curvilinear component analysis (Demartines and
Hérault, 1997), t-SNE (Van der Maaten and Hinton, 2008),
and UMAP (Mclnnes et al., 2018). Other studies would need
to investigate the advantages of dimensionality reduction
methods as applied to seismic features for clustering anal-
ysis.

4.3 Cluster number and assignment of process

The choice of the number of clusters is understood as a sig-
nificant challenge in the application of k-means++ because
it is difficult to fix a number that captures all the levels of
variability in a dataset (Hardy, 1996). While many studies
have explored a plethora of approaches, ultimately, the deci-
sion requires knowledge of the user domain and is therefore
problem-dependent (Jain and Dubes, 1988). We recommend
that future studies make use of the methodology, assessing
how clusters split or remain stable (Sect. 3.3) to best under-
stand the groups of events represented in each cluster. Such a
framework provides a way to ascertain that clusters, or parts
thereof, capture distinguishable, physical mechanisms of ice
stream dynamics and hydrological processes.

The semi-automated approach combines the power of un-
supervised learning with information from prior or indepen-
dent manual analysis to inform the interpretation of clusters.
For example, the tidal influence on stick-slip events is a pre-
viously identified relationship between seismicity and tem-
poral cycles (Winberry et al., 2014), and this study extends
that understanding. We infer that these events exhibit two dif-
ferent characteristic lengths and occur at the central sticky
spot and the grounding line (Fig. 6). This thus enables us
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Figure 7. Stability of cluster results compared with the standard procedure. From columns left to right, we show (a) the standard set of
features after removal of selected members of the feature pairs with r > 0.95, (b) the results of clustering with no features eliminated, and
(c) the results with a halved feature set. The top row shows the percentage composition of each cluster, Clusters 1-10, as determined from
the manual appraisal. The bottom row provides the number and percentage of events that are grouped in each cluster. The order and labeling
of the clusters in the (b) and (¢) columns are manually decided by a comparative method that matches clusters approximately 1-to-1 for each
application, when possible, noting as a caveat to comparison the pseudo-randomness of k-means. The colors within each cluster in the bottom
row signify where the contents of the clusters resulting from applying the algorithm to the standard feature are placed in the two comparison
applications of the algorithm. The stability of cluster results compared with the standard procedure showing high-confidence events only is

included in Fig. S10.

to investigate how the spatio-temporal association of these
events can relate to tidal influences.

The heuristic technique that we have used in this study has
enabled the pre-existing understanding of glacier processes
active on the WIS to be extended and has also newly enabled
the discovery of other active processes in the WIS dataset that
match mechanisms reported elsewhere. These results con-
firm the value of using an unsupervised learning approach.

4.4 Identified glacier processes and other signals

In our demonstration study, 136 stick-slip events were iden-
tified previously in the WIS dataset (Pratt et al., 2014) and
4 have been found in addition by the event detection and
semi-supervised learning workflow. High-energy stick-slip
events that are mainly initiated from the central sticky spot
during high tide, on a diurnal cycle, are contained in Clus-
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ter 1 (Fig. 5). A lower proportion of these events are initi-
ated closer to the grounding line and occur during low tide.
The Cluster 1 events correspond to both first and the sec-
ond ruptures of stick-slip, a result consistent with the ini-
tiation locations expected for first ruptures (central sticky
spot or grounding line depending on high and low tides, re-
spectively) and second ruptures (near grounding line). Stick-
slip events contained in Cluster 2 are of higher energies and
mostly span both the first and second ruptures (i.e., are longer
in total duration). These events are associated with both high
and low tides and are detected evenly across the central sticky
spot and grounding line, likely because of the even influence
of tidal control. The Cluster 2 type of stick-slip events is
grouped in the same cluster as comparatively long and en-
ergetic teleseismic events (of type Teleseism I).

Further newly identified events occur in the hours preced-
ing solar noon with an irregular periodicity of 4-11d. These
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high-energy events (detected as low strength) propagate hori-
zontally from the far field and group with events (16 %) man-
ually identified as teleseismic events in Cluster 9 (Fig. 5).
From the feature-based analysis, we suggest that these sig-
nals could be generated externally to the WIS, potentially
from the Ross Ice Shelf. Although the signals that we ob-
serve have longer frequencies, the mechanism could be re-
lated to contraction due to cooling or to cracking triggered
by stress from local melt (Hudson et al., 2020). The Cluster
9 non-seismic events therefore suggest mixed diurnal influ-
ences (MacAyeal et al., 2019).

We detected a swarm of low-energy, high-frequency
events that are unique to 2d of the deployment: 16 and
17 January 2011. This event swarm is contained in Cluster 5
(Fig. 5) and shows a spatial pattern consistent with the events
occurring near the grounding line (Fig. 6) and a temporal pat-
tern linked to high tide (75.1 % occurring at a positive tidal
anomaly; Table 1). The lower energies of these events and the
relative high frequencies (Fig. S7; Table S5) could indicate
that these events originated externally to the WIS, and so the
energy was relatively attenuated by the time of arrival (Pérez-
Campos et al., 2003). The association with the grounding
line and tidal cycles could indicate that these events origi-
nated on the Ross Ice Shelf, where tidally induced seismicity
has recently been recorded near the ice shelf grounding line
(Cole, 2020) and high-frequency ambient resonance during
a several-day period can be caused by a surface melt event
(Chaput et al., 2018; Jenkins et al., 2021). Process swarms
of this nature require a detection mechanism with a high
temporal resolution and show the advantage of using seis-
mic methods as part of the toolbox for understanding glacier
processes.

A minority of detected events are related to the dynamic
glacier processes; the rest are related to the noise field exter-
nal to the glacier (Fig. 5). The diversity in the noise events
is of significant interest as this informs the understanding
of cryoseismic and ambient seismic processes in the wider
Ross Ice Shelf region. Understanding the diversity of signals
is also of utility in understanding the output of the multi-
STA/LTA algorithm (used to generate the underlying event
catalogue) in terms of identifying events as local to the ice
stream or external to the ice stream. Events characterized by
long durations, high energies, and tremor-like behavior that
occur mainly on several days at the beginning of the deploy-
ment period in December 2010 make up Cluster 3. Cluster 4
events have similar temporal structure and high energies but
slower emergence, preceding the tremor-like behavior, and
overall shorter durations. Short, energetic signals that appear
mostly between 16—18 January, concurrent with the Clus-
ter 5 icequake swarm, are represented in Cluster 6. Noise-
type events that have similar spatio-temporal occurrences
are grouped into Clusters 7 and 8, with the lower-energy
events contained in Cluster 8. Cluster 10 contains events with
low energies across all frequency bands, spatial associations
with the grounding line, and diurnal patterns intermittently

https://doi.org/10.5194/tc-18-2081-2024

2095

through the deployment. Collectively, the noise-type ambient
signals in these clusters, likely related to processes from the
nearby Ross Ice Shelf and Ross Sea, are heterogeneous but
cluster in a range of frequencies (10~! to 1 Hz, Fig. 4). This
result is useful for guiding future monitoring applications.
As a final comparative summary, the domain of each clus-
ter in the duration—frequency space is shown in Fig. 8 as a
snapshot of the Whillans Ice Stream seismicity, in terms of
labeled event types (e.g., stick-slip and teleseism) and the
other process- and noise-related events made possible by un-
supervised learning. An overview of each cluster, its most
likely source mechanism, and other comments are provided
in the Supplement (Table S6). The manual appraisal has pro-
vided a foundation for identifying further event types and
their domain boundaries in duration—frequency space. Fig-
ure S11, showing high-confidence events only of Fig. 8, of-
fers further insight into the groupings of duration—frequency
domains. For example, high-confidence Cluster 9 events
not labeled as teleseisms primarily occupy an intermediary
duration—frequency domain of 20-120s and 0.5-0.1 Hz.

4.5 Applicability of approaches

The workflow presented enables a cryoseismic event cata-
logue, previously built using a straightforward, systematic
detection algorithm (Latto et al., 2024), to be analyzed using
a similarly transparent approach to a data-driven investiga-
tion, i.e., using k-means++ and analysis of clusters. While
the workflow has been demonstrated for the Whillans Ice
Stream, this is a widely applicable approach, which could
be used as a benchmark procedure for glacier investigations
and monitoring and many other environmental seismology
applications. The procedure is well-suited to cases where the
recorded seismicity consists of varied event types in a sim-
ilarly varied ambient wave field. The workflow requires a
manual appraisal of events, resulting in plots (Fig. 4) that
show an overview of the event populations that are present
and reveal useful domains of the feature space. This infor-
mation is used, as has been demonstrated (Fig. 5; Table 1), in
tandem with the unsupervised clustering to understand how
the events due to glacier processes are held within the auto-
matically identified clusters.

As one application of the method, comparisons could be
made for one glacier from year to year, making use of the
very fine temporal resolution and ability to detect hidden
processes that comprise the advantage of cryoseismic ap-
proaches. After the semi-automated reconnaissance of the
first year (manual and unsupervised approaches being used
together), this work can be used in subsequent years to
streamline unsupervised learning with a greater proportion
of automation. Thus it would be possible to undertake a se-
quence of studies in time, year after year, to detect changes
in the spatial and temporal distribution of known processes
and to identify new, potentially hidden processes.
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Figure 8. Synthesis of the Whillans Ice Stream duration and frequency relationships by manually identified event types and unsupervised
learning clusters. The manually identified events are designated by filled circles. The clusters are shown in the two plots as (a) clusters
informed by manual appraisal and other reconnaissance, including Cluster 1 (stick-slip), Cluster 2 (stick-slip), Cluster 5 (potentially melt
pulse swarm), and Cluster 9 (teleseismic and potentially external fracture-related), and (b) clusters likely pertaining to noise-type events,
including Clusters 3, 4, 6, 7, and 8. Some event types can be concealed by other symbols; the events of type “Other” and other manually
identified events are arranged in the background such that the unsupervised learning result is in the foreground. A synthesis of the Whillans
Ice Stream duration and frequency relationships in Fig. S11 shows only high-confidence events.

The standardization of the method also enables robust
comparisons between locations, with bivariate feature plots
(Fig. 4) forming a basis for such investigations. Compara-
tive analyses could inform the similarities and differences be-
tween event populations in each location and could be further
developed using the framework for semi-automated analysis
used herein. The clustering of events recorded on the WIS,
including event mechanisms that are local to the glacier and
also those that are part of the surrounding seismic ambient
noise wave field, could be used as a guide to what might be
expected at other localities and/or from other deployments.
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5 Conclusions

Motivated by the potential for data-driven approaches to
characterize the diverse signals recorded from glacier envi-
ronments on the margins of ice sheets, including both lo-
cal events and ambient noise signals, we have presented a
workflow that makes use of semi-automated learning. As
a demonstration example, we have shown how glacier pro-
cesses may be investigated using seismic events recorded on
the Whillans Ice Stream. We use a near-comprehensive event
catalogue of the 2010-2011 austral summer (Part 1, Latto
et al., 2024), from which we form a dataset that represents
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each event by a selected set of 30 seismic time series fea-
tures (attributes). Application of an unsupervised learning
algorithm, k-means++, to the feature dataset produced 10
best-separated clusters (groups with similar characteristics)
of seismic events. These were analyzed with the benefit of a
manual appraisal of the catalogue. Although the clusters are
only moderately separated, they nevertheless enable valuable
reconnaissance analysis.

We identified the following glacier processes: high-energy
stick-slip events that are mainly initiated from the central
sticky spot, longer and higher-energy stick-slip events ini-
tiating near both the central sticky spot and the grounding
line, high-energy events that propagate horizontally from the
far field generated as part of the external wave field with a
diurnal pattern. The latter group of signals could be caused
by processes on the Ross Ice Shelf such as contraction due
to cooling or to cracking triggered by stress from local melt.
We found a swarm of high-frequency events that are unique
to 2d of the deployment: 16 and 17 January 2011, and sug-
gest a relationship to a Ross Ice Shelf melt pulse. The mod-
erate tidal control on the overall event catalogue is seen in
the stick-slip events (as previously identified by Pratt et al.,
2014) and also the swarm pattern and is also evident to some
extent throughout the large number of noise-like events in the
catalogue (Latto et al., 2024).

The majority of detected cryoseismic processes are likely
related to the complex noise field external to the glacier. By
means of clustering, a reconnaissance analysis is enabled,
showing signals with a diversity of durations, energies, and
behavior (e.g., tremor-like). The variability we find in the
ambient noise illustrates an additional challenge for cryo-
seismic analysis. It is necessary to separate the multiple dif-
ferent local glacier processes listed above from the diverse
signals and changing amplitude levels of the seismic ambi-
ent wave field. For the Whillans Ice Stream, noise signals
cluster within a range of frequencies separated from the do-
main occupied by some of the process-related events, be-
tween 10~! and 1 Hz. Clustering approaches will enable au-
tomated methods to be used with a much smaller component
of human analyst review in future monitoring of the Whillans
Ice Stream using seismic methods.

The demonstration workflow enables a transparent ap-
proach to data-driven investigation of glacier processes with
seismic signals. The potential for applying unsupervised
learning algorithms to cryoseismic signals is vastly improved
by a methodical assessment of cluster attribution. That is, fu-
ture investigations can take better advantage of unsupervised
learning methods, following such an initial semi-automated
appraisal that includes a manual component, so the semi-
automated methodology can continue to identify new event
types on a glacier from year to year. An extended investiga-
tion into the diversity of local events and ambient noise from
a given glacier seismic deployment would enable glacier
monitoring, using seismology, for that key location. Fu-
ture investigations could take advantage of the new methods

https://doi.org/10.5194/tc-18-2081-2024

2097

and workflows that we have presented, which should prove
widely applicable to identifying changes in glacier environ-
ments and comparing locations as they respond to the chang-
ing global climate.

Code and data availability. The trace and reference seis-
mic event catalogues (Sect. 2) and the trace and refer-
ence feature datasets (Sect. 3.1) are made available via
https://doi.org/10.5281/zenodo.11062069 (Latto, 2024). Both
are produced by extensions to ObsPy software made avail-
able (https://doi.org/10.5281/zen0do0.5499909 (Turner et al.,
2021). The results of the k-means analysis (Sect. 3.2) are also
provided in https:/github.com/beccalatto/multi_sta_Ita/ (last
access: 18 March 2024) by a merged reference catalogue with
selected features and cluster labels. Related data for analysis
are publicly available: the Whillans Ice Stream seismic dataset
is accessible from The IRIS Data Management Center (IRIS-
DMC) (http://ds.iris.edu/mda/2C/?starttime=2010-01-01T00:00:
00&endtime=2011-12-31T23:59:59, last access: 18 March 2024)
(https://doi.org/10.7914/SN/2C_2010; Winberry et al.,, 2010).
The Tide Model Driver (TMD) toolbox (https://github.com/
EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5, Ero-
feeva et al., 2020) allowed for appropriate use of the Circum-
Antarctic Tidal Simulation (CATS) (https://www.esr.org/research/
polar-tide-models/list-of-polar-tide-models/cats2008/, last access:
18 March 2024, and https://doi.org/10.15784/601235, Padman
et al., 2002; Howard et al., 2019) to compute tidal heights at the
Whillans Ice Stream.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-18-2081-2024-supplement.
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