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TraceFeatureDatasetWhillans.csv : Trace feature dataset for the Whillans Ice Stream

ReferenceFeatureDatasetWhillans.csv : Reference feature dataset for the Whillans Ice Stream

ReferenceClusterLabelsWhillans_k10.csv : Reference event catalogue with reference features and a column for the785

cluster label from k-means++ applied to data from the Whillans Ice Stream, for k=10
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Table S1: Overview of features and transformations. Provided are the method of computation for each reference feature, in terms of log or linear
scaling applied to the feature derived from the top three seismometers or similar (middle column) and traces used in feature calculation (right
column). First, the energy of each trace is calculated as an integral of the trace. Then, each reference feature per event is calculated from the three
seismometers with the highest energy detections of the event that detected that event such that the reference feature best characterizes the event’s
corresponding waveform.

Feature description [tag] Log or linear Trace(s) used in feature calculation

Number of stations that detect an event [0] Linear All

Duration [1] Log Reference event catalogue (handles travel time)

Ratio of the mean over the maximum of the envelop signal [2] Linear Median of the 3 most energetic traces

Ratio of the median over the maximum of the envelop signal [3] Linear Median of the 3 most energetic traces

Ratio between ascending and descending time [4] Log Median of the 3 most energetic traces

Kurtosis of the raw signal (peakness of the signal) [5] Log Median of the 3 most energetic traces

Kurtosis of the envelop [6] Log Median of the 3 most energetic traces

Skewness of the raw signal [7] Log Median of the 3 most energetic traces

Skewness of the envelop [8] Log Median of the 3 most energetic traces

Energy in the first third part of the autocorrelation function [10] Log Median of the 3 most energetic traces

Energy in the remaining part of the autocorrelation function [11] Log Median of the 3 most energetic traces

Energy of the signal filtered in 0.001 - 0.03 Hz [13] Log 2nd most energetic trace in this frequency band

Energy of the signal filtered in 0.01 - 0.3 Hz [14] Log 2nd most energetic trace in this frequency band

Energy of the signal filtered in 0.1 - 3 Hz [15] Log 2nd most energetic trace in this frequency band

Energy of the signal filtered in 1 - 30 Hz [16] Log 2nd most energetic trace in this frequency band

Energy of the signal filtered in 10 - 100 Hz [17] Log 2nd most energetic trace in this frequency band

Kurtosis of the signal filtered in above 5 frequency bands [18–22] Log Median of 3 most energetic traces computed for

each frequency band

Mean of the discrete Fourier transform [24] Log Median of the 3 most energetic traces

Max of the discrete Fourier transform [25] Log Median of the 3 most energetic traces

Central frequency of the 1st quartile [27] Linear Median of the 3 most energetic traces

Central frequency of the 2nd quartile [28] Linear Median of the 3 most energetic traces

Median of the normalized discrete Fourier transform [29] Linear Median of the 3 most energetic traces

Variance of the normalized discrete Fourier transform [30] Log Median of the 3 most energetic traces



Energy in [0, 1/4] Nyquist frequency [34] Log 2nd most energetic trace across spectrum

Energy in [1/4,1/2] Nyquist frequency [35] Log 2nd most energetic trace across spectrum

Energy in [1/2, 3/4] Nyquist frequency [36] Log 2nd most energetic trace across spectrum

Energy in [3/4, 1] Nyquist frequency [37] Log 2nd most energetic trace across spectrum

Spectral centroid [38] Linear Median of the 3 most energetic traces

Gyration radius [39] Linear Median of the 3 most energetic traces

Spectral centroid width [40] Linear Median of the 3 most energetic traces

Rectilinearity [68] Linear Median of the 3 most energetic traces

Dip [70] Linear Median of the 3 most energetic traces

Planarity [71] Linear Median of the 3 most energetic traces
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Figure S1. Distribution of each feature in the feature dataset after log or linear scaling and normalization. The feature tags and color
attributions (top to bottom: pink, green, blue, and purple) correspond to the numerical tag per feature and feature type provided in Table S1.
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Table S2: Descriptions of feature pairs where the correlation r⩾0.95, as well as which feature is eliminated from the cluster analysis implemented
here and the reasoning.

Feature tag Correlated feature tag (> 0.95) Feature to keep Reasoning

2 3 3 Median more robust metric than mean

5 6 5 Prefer metric for raw waveform than envelope

5 7 5 Get rid of skewness (kurtosis essentially equivalent)

5 8 5 Get rid of skewness (kurtosis essentially equivalent)

6 7 Neither Reasons above

6 8 Neither Reasons above

7 8 Neither Reasons above

10 11 10 More reasonable to keep first 1/3 of the autocorrelation function

than that remaining part

25 34 34 25 reports same finding as 34 and for consistency,

want to keep all of the same set of features 34 to 37

35 36 Both Though highly correlated, reasonable variance in the relationship

35 37 Both Though highly correlated, reasonable variance in the relationship

36 37 Both Though highly correlated, reasonable variance in the relationship

38 40 38 More meaningful to keep spectral centroid value than width



Figure S2. Relationships between each feature pair where the correlation is greater or equal to r ⩾ 0.95. Scatter plot depiction contributes
to discussion of the similarities or variance between two features’ distributions, used to determine which features to remove or keep in the
clustering analysis.
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S3.3 Quantitative approaches to the number of clusters

The following supplemental section is provided to further the discussion in the main text in Sect. 3.3 on how the number of

clusters (k) are prescribed in our k-means++ semi-automated implementation. Below, we explore potential optimized choices

of k based on quantitative metrics.790

We first consider the Silhouette test, which is a commonly used assessment of cluster separation (Rousseeuw, 1987). For

each k from 2 to 29, using an extension of the cluster solutions shown previously up to k=14 (main text, Fig. 5), we show

the Silhouette scores weighted by k (Fig. S3a). For our implementation of k-means++, k=14 is a realistic maximum for the

WIS; however, here we provide the results up to k=29 for a more extensive quantitative analysis. To interpret the weighted

silhouette scores: scores near zero indicate that clusters may be overlapping (i.e. not well-separated) or points have been795

added to the wrong cluster. Higher scores indicate that the clusters are well-separated. At k=10, we note a moderate local

maximum in the weighted silhouette score. Though useful, the Silhouette scores have interpretative limitations since we cannot

gain insight into how cluster separation scores vary across the high-dimensional feature set. The evolution of clusters as

determined by other estimators, such as Davies-Bouldin score, Elbow score, Calinski-Harabasz index, and Dunn index (Maulik

and Bandyopadhyay, 2002), could be a future avenue of investigation.800

Therefore, we are motivated to develop a more informative quantitative approach to guide the choice of k. We calculate the

similarity of two clusters at a given k, based on the overlap of features within each cluster. We define a ‘Similarity Index’ akin

to that used in the main text, Sect. 3.1.1. However, instead of computing correlation coefficients for each feature pairwise, we

quantify the summation of the intersection between each feature distribution of each pair of clusters (referred to as ‘histogram

overlap’; Smith, 1997). Given clusters A and B, the Similarity Index (U ) is defined here as:805

U (A,B) =
1

N

N∑
j=1

n∑
l=1

min

(
Ajl

[count of events in A]
,

Bjl

[count of events in B]

)
, (S1)

where n= 100 is the number of bins, N is the number of features in this analysis (= 30), and the notation Ajl and Bjl

signifies the count of events in cluster A for feature j and bin l. The Similarity Index is scaled by N and the count number

of events in each cluster. Therefore, the maximum Similarity Index is 1 when two clusters are entirely similar (i.e. the 30

features are distributed in the same way between a pair of clusters). The minimum Similarity Index is 0 when two clusters are810

well-separated (i.e. the 30 features are distributed distinctively between a pair of clusters). In order to produce clusters that are

well-separated and thus provide unique information, we are looking for a Similarity Index closest to zero.

We apply this metric to the problem of choosing the number of clusters. For each k from 2 to 29, we compute the Similarity

Index for all pairs of clusters (Fig. S3b). The number of values comprising the Similarity Index per k equals k− 1: one pair of

clusters to compare for k=2 and two pairs for k=3 and so on. At k=10, we also find a local minimum, in terms of the minimum815

(bottom ‘whisker’), median (white horizontal line), and maximum (top ‘whisker’) of the range of U . We note two outliers at

U=0.7 and U=0.8, which signify two pairs of clusters that are more similar than the other pairs of clusters.
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Figure S3. Similarity-based metrics for determining an optimized value of k. We provide results for the: (a) Silhouette test for the k-means++
application on the reference feature dataset, for k = 2 to k = 29. The Silhouette score is computed as: average distance between each point
within a cluster subtracted from the average distance between all clusters, divided by the maximum of the two averages. Reported here is the
mean Silhouette score per k, weighted by k. (b) Cluster similarity ranges given by the Similarity Index (U ) from k=2 to k=29. The range
of U is defined as the similarity of event features in each cluster pair permutation per k (defined mathematically in Eq. S1). The symbols
on this figure correspond to: orange ellipse, mean; white horizontal bar, median; bottom of rectangle, lower quartile; top of rectangle, upper
quartile; bottom whisker, minimum; top whisker, maximum; diamond, outlier. We proceed to perform k-means++ with 10 clusters (k=10).
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Teleseismic

Figure S4. Screenshot of the manual appraisal GUI built and operated through MATLAB. The GUI is used to review the catalogue in terms
of the waveform representation and the spectral representation. All fields are required for inputting detail on emergent behavior, envelope
shape, frequency description, maximum frequency, and a manual identification of the type of event. Shown as an example is an impulsive
event that decays after initial arrival and is oscillatory. The frequency is polychromatic and is at a maximum at 3 Hz. This event is grouped
under the cluster of similar fracture-related events. The manual appraisal records user input to a spreadsheet.
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Figure S5. Manual appraisal of the reference event catalogue showing high confidence events only. The features measuring duration (log,
seconds) and peak amplitude (log, a.u.) are retrieved from the reference event catalogue and characteristic frequency (log, Hz) is determined
from the spectrograms of each event in the manual appraisal. Event types that are identified from the manual appraisal and further validated
in subsequent investigation show the natural groupings, or clusters, of events in each bivariate feature pair: (a) duration and characteristic
frequency, (b) duration and peak amplitude, and (c) characteristic frequency and peak amplitude.
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Table S3: Summary of signal types expected from a cryoseismic deployment. Characteristic frequency, period, and duration are copied from the
available literature, reported accurately within the expected orders of magnitude. Comments on waveform structures and expected sources taken
from literature as well. ‘Potential’ refers to a potential for occurrence on the Whillans Ice Stream, i.e. the likelihood of each signal type to be
observed from the Whillans Ice Stream deployment discussed in the text (Winberry et al., 2010), including three options: Unlikely, Possible, and
Probable. Framework and sources reproduced from Podolskiy and Walter (2016).

Signal type Freq. (Hz) Period (s) Duration Comment (based on the literature) Potential

Basal icequakes 100 0.01 0.1s Impulsive first arrivals. (Helmstetter et al.,

2015b)

Probable

Snowquakes >50 0.02 < 1 s Emerges with a sharp amplitude then

exponential decay. Signals that show

fracture in the uppermost snow cover due

to thermal stress. (Nishio et al., 1983)

Possible

Hydrofracture 10 – 100 Hz 0.01 – 0.1 1 – 5 s Impulsive. (Hudson et al., 2020) Probable

Surface crevassing 10 – 50 0.1 – 0.02 < 1 s Characterized by a dominant Rayleigh

wave and few or no visible P- and S-phase

arrivals. (Röösli et al., 2014)

Probable

Ice / serac falls 20 0.05 10 – 100 s Complex frequency content that is

characterized by various sub-events.

(Roux et al., 2008)

Unlikely

Subglacial cavity cracking 1 – 100 0.01 – 0.1 1 – 10 s Impulsive. (Walter et al., 2008) Unlikely

Crack propagation 12 – 15 0.06 – 0.08 < 1 s Impulsive arrivals, repeating in multiplets,

with rapid decay. (Carmichael et al., 2012)

Possible

Moulin tremor 3 – 11 0.09 – 0.33 6 hours Cigar-shaped envelope with no clear

onsets or phase arrivals. (Röösli et al.,

2014)

Possible



Fluid-induced resonance 1 – 10 0.1 – 1 600 s Long, monochromatic, and harmonic

seismic signals related to subglacial lake

drainage. (Winberry et al., 2009a)

Possible

Firnquakes 1 – 10 0.1 – 1 < 1 s Rapid emergence then exponential decay

in amplitude. (Lough et al., 2015)

Unlikely

Fracture (thermal bending) 10 – 15 0.06 – 0.1 1 – 5 s Short, impulsive in the evening.

(Lombardi et al., 2019)

Probable

Calving 1 – 3 0.33 – 1 25 – 600 s Characterized by emergent wave onsets

and low frequencies. Range of duration

depending on a trigger of rapid succession

calving. (Qamar, 1988)

Unlikely

Iceberg resonance 0.5 2 60 – 3600 s Iceberg harmonic tremor is described as a

complex, evolving signal. (MacAyeal

et al., 2008)

Unlikely

Local, regional swell 10−1 10 60 – 1200 s Frequency dependence of arrival times at

measurement seismometer based on

distance and time from generation. (Hell

et al., 2019)

Unlikely

Secondary microseisms 10−1 – 100 5 – 10 1–10 s Higher amplitude than primary

microseisms. Can have a period less than

5 seconds when caused by wind. Cigar

shaped. (Cannata et al., 2019)

Possible

Micro-tsunamis 10−1 10 – 30 60 – 1800 s Impulsive source mechanisms and short

durations. (e.g. from iceberg collision;

MacAyeal et al., 2009)

Unlikely

Primary microseisms 10−1 10 – 25 10 s Spectral content equal to the ocean wave

frequency. (Cannata et al., 2019; Anthony

et al., 2015)

Possible



Glacier basal stick-slip 10−2 30 – 100 < 1200 s Abrupt, initial rupture, typically composed

of 3 phases over 20 – 30 minutes. (Pratt

et al., 2014)

Likely

Teleseismic glacial quakes 10−2 35 – 100 10 – 100 s Characteristic weak high-frequency

excitation at the source and long

propagation distances. (Nettles and

Ekström, 2010)

Unlikely

Infragravity waves 10−3 – 10−2 100 – 1000 100 s Act at an ice shelf front. (Bromirski et al.,

2015, 2017)

Unlikely

Seiches 10−3 – 10−2 100 – 1000 > 100 s Seiche frequency depends strongly on

basin bathymetry. (Amundson et al., 2012)

Unlikely
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High confidence events only

Figure S6. Illustration of how clusters (depicted as circles) evolve in composition from k=2 (top row) to k=14 (bottom row) for high
confidence events only. As k increases (top to bottom), each column tracks an individual cluster and arrows indicate when a cluster splits or
merges. The heavy grey line at k=10 indicates the preferred value of k, along this row, cluster numbers are counted from left to right (1 to
10) and match those in Table 1 and Figures 6 and 7. The number above each cluster is the % of total events, thereby the numbers across a
row sums to 100%. Pie chart segments represent the percentage of events within a cluster, as labelled with an event type during the manual
appraisal. Clusters 3, 4, 6, 7, 8, 10 contain events best characterized as noise-types based on the majority labelled as ‘Other’ and their features
(Sect 3). Clusters 1, 2, 5, and 9 contain either labelled events and/or noise that appears related to processes by further analysis. Event types
as identified by manual appraisal are shown in the legend; further event types identified by unsupervised learning (Fig. 6) occur in Cluster
5 (events from an icequake swarm, lasting 2 days). The key differences are that the relative size of clusters is variable depending on how
many low confidence events are associated with a given cluster. For example, Cluster 3 contains 9.16% of all events but 16.41% of high
confidence events only. As another example, Cluster 8 contains 5.71% of all events but 0.31% of high confidence events only. This result
emphasizes the level of legitimacy of a cluster’s contained events, which can streamline the way by which we investigate and interpret the
more noise-dominated clusters in later discussion.
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Figure S7. Distributions of features within each cluster for k = 10. Cluster number as assigned in main text is annotated in the top left of
every plot. The feature tags and color attributions (top to bottom per figure: pink, green, blue, and purple) correspond to the numerical tag
per feature and feature type provided in main text, Table 1. Since each feature is scaled before clustering to have the same median at zero,
we can assume that clusters with features at medians farthest from zero are best differentiated from other clusters by those more extreme
features. Therefore, we report the six features per cluster with the most extreme median values. This type of analysis is useful for comparing
two clusters. For example, Clusters 1 and 2 are both assigned stick-slip events, so it is of interest to understand why all stick-slip events are
not characteristic to one cluster. The feature distributions within each cluster may be informative, such as Cluster 1 being characterized by
shorter event lengths (Fig. S5) whereas Cluster 2 is differentiated most from other clusters by longer event lengths.
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Table S4: Reference for the spatial attribution discussed in main text, Table 1, and used to compile Fig. 6 in main text. Provided is the percentage of
each cluster’s seismic events that are included in each cluster as detected by each seismometer.

Cluster 1 2 3 4 5 6 7 8 9 10

BB01 13.76 8.00 10.59 6.47 13.06 4.59 9.29 3.65 10.59 20.00

BB03 30.02 12.11 8.47 4.36 5.81 3.39 7.02 2.18 14.53 12.11

BB04 45.26 13.33 4.56 0.70 1.40 1.05 2.11 0.00 24.91 6.67

BB06 28.40 18.93 9.05 7.00 4.12 2.88 5.76 1.65 10.29 11.93

BB07 9.52 5.93 9.70 5.75 12.67 9.70 8.36 4.76 8.45 25.16

BB08 10.32 8.88 11.17 5.01 11.32 5.73 8.17 3.72 10.03 25.64

BB10 13.15 5.80 12.11 4.55 4.14 9.52 8.39 4.76 8.49 29.09

BB11 18.41 13.52 8.86 2.56 5.83 8.16 6.53 3.73 16.55 15.85

BB12 11.45 5.73 10.55 4.27 13.64 11.82 7.09 5.45 6.27 23.73

BB13 8.93 8.05 10.82 2.77 6.67 10.82 9.69 5.41 9.56 27.30

BB14 42.92 16.81 6.64 4.87 3.10 1.33 3.10 0.88 10.62 9.73

BB15 17.27 8.49 10.50 7.63 19.71 3.02 5.90 1.87 10.36 15.25

BB16 12.84 11.39 10.49 3.07 20.25 3.98 6.33 2.89 11.39 17.36

BB17 20.91 17.27 12.73 4.55 5.45 3.64 4.24 2.42 18.79 10.00
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Figure S8. Reference for the temporal attribution discussed in main text, Table 1, and shown synthesized in main text, Fig. 6. Provided are
the individual time series of each cluster’s seismic event count per day (left column) and per hour (right column).
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Figure S9. The (a) spatial and (b) temporal attribution of clusters for k=10 showing high confidence events only. The spatial attribution pie
chart segment colors corresponds to the numerical cluster assignments provided in the key. The temporal attribution is provided as a daily
occurrence for days after December 14, 2010, with annotated reference dates Jan 1, Jan 16, and Jan 30, and an hourly occurrence for hours
after 00:00 UTC, where solar noon falls in the time zone of 22:00 UTC. In conjunction, both attributions are used to better characterize the
clusters for k=10. The results of the spatio-temporal analysis are synthesized in Table 1. A breakdown for the spatial attribution and temporal
attribution is provided in the Supplementary Materials (Table S4 and Fig. S8, respectively). Colors were chosen for clarity between separate
classes (Glynn and Naylor, 2021, Ordnance Survey).
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Figure S10. Stability of cluster results compared with the standard procedure showing high confidence events only. From left to right
columns, we show (a) the standard set of features after removal of selected members of the feature pairs with r⩾0.95, (b) the results of
clustering with no features eliminated, and (c) the results with a halved feature set. The top row provides the percentage composition of each
cluster 1–10 as determined from the manual appraisal. The bottom row provides the number (and percentage) of events that are grouped in
each cluster. The order and labelling of the clusters in the (b) and (c) columns is manually decided by a comparative method that matches
clusters approximately one-to-one for each application, when possible. The colors within each cluster in the bottom row signify where the
contents of the clusters resulting from applying the algorithm to the standard feature are placed in the two comparison applications of the
algorithm.

The clustering procedure has enabled an informative analysis of the clusters found with semi-supervised learning, described

in detail in this section. The significance of the sign (i.e. positive or negative) of each discriminant feature per cluster (Table820

S5) is used here to describe the event types represented in each cluster. We review that the term ’platykurtic’ is used to describe

a distribution with less kurtosis than the normal distribution and is more typical for higher amplitude events (i.e. are of high

strength) (Hibert et al., 2014).
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Table S5: Explanations for most discriminant feature as most negative or most positive in a distribution. Useful for explanation of cluster seismic
signal context in main text (Sect. 4).

Feature Negative Positive Citation

0 N/A N/A
1 Short duration Long duration
3 Low ratio signifies high strength event High ratio signifies low strength event Hibert et al. (2014)
4 More impulsive Slow emergence Hibert et al. (2014)
5 Flatter amplitude distribution (platykurtic) Sharper distribution than the normal (leptokurtic) Hibert et al. (2014)

typical for higher strength events are more common for ambient noise

10 Higher signal to noise ratios Tremor-like Langer et al. (2006)
13 Low energy High energy
14 Low energy High energy
15 Low energy High energy
16 Low energy High energy
17 Low energy High energy
18 Low energy in flatter distribution High energy in sharper distribution
19 Low energy in flatter distribution High energy in sharper distribution
20 Low energy in flatter distribution High energy in sharper distribution
21 Low energy in flatter distribution High energy in sharper distribution
22 Low energy in flatter distribution High energy in sharper distribution
24 Low frequency content High frequency content
27 Low frequency of <25% power High frequency of <25% power
28 Low frequency of median power High frequency of median power
29 Low frequency content High frequency content
30 Low variance in frequency content High variance in frequency content
34 Low energy in frequency band High energy in frequency band
35 Low energy in frequency band High energy in frequency band
36 Low energy in frequency band High energy in frequency band
37 Low energy in frequency band High energy in frequency band
38 Low weighted mean of the frequencies High weighted mean of the frequencies
39 Narrow fracture Wide fracture Sayers and Calvez (2010)
68 No preferred direction Linear polarization Hammer et al. (2012)
70 Propagating more from horizontal plane Propogating more from vertical plane Hammer et al. (2012)



71 No preferred direction Polarization in plane Hammer et al. (2012)



Table S6: Cluster attribution for k = 10. Descriptions of the active glacier process or noise events and how the cluster attribution is determined, such
as by unsupervised learning (UL).

Cluster Process event
name (if distinct)

Noise event description Process interpretation
(proposed)

Further remarks Comment, including
processes not likely

1 Stick-slip High-energy, source
near sticky spot.

Stick-slip events matched
to previous studies.

2 Stick-slip,
Teleseismic

Long, high-energy. Stick-slip events matched
to previous studies, some
newly identified by UL.
Teleseismic events
verified by global
catalogues.

3 High-energy, long,
tremor-like

External wavefield? Identified by UL

4 High-energy, emergent,
tremor-like

External wavefield? Identified by UL

5 Event swarm External swarm of
high-freq. fractures from
Jan. 16 to 17.

Potential cause can be melt
on RIS. Similar Jan. 10–16,
2016 RIS icequake swarm
attributed to melt-driven
fracture (Chaput et al.,
2018; Jenkins et al., 2021a).

Identified by UL. Swell
and ocean infragravity
wave causes unlikely due
to limited time span.

6 Low-energy, high-freq.
content

External wavefield? Temporal correlation with
event swarm (Cluster 5).

Identified by UL.

7 Low-energy External wavefield? Identified by UL.
8 Low-energy, emergent External wavefield? Identified by UL.
9 Teleseismic Global earthquakes and

other high energy
events.

Other high energy events
occur in the 14 to 21 UTC
window. Potential sources
are external wavefield
fractures.

Identified in manual
appraisal, also identified
by UL.

10 Low-energy External wavefield? Cluster evolution from k=2
to k=14 indicates high
variability in the character
of events.

Identified by UL.
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Figure S11. Synthesis of the Whillans Ice Stream duration and frequency relationships by manually identified event types and unsupervised
learning clusters showing high confidence events only. For the manually identified events, as labelled from the thesis research, are designated
by filled circles. The clusters are shown in the two plots as (a) Clusters informed by manual appraisal and other reconnaisance, including
Cluster 1 (stick-slip), Cluster 2 (stick-slip), Cluster 5 (potentially icequake swarm), and Cluster 9 (teleseismic and potentially external
fracture-related), (b) Clusters likely pertaining to noise-type events, including Clusters 3, 4, 6, 7, and 8. Some event types can be concealed
by other symbols; the events of type ‘Other’ and other manually identified events are arranged in the background, such that the unsupervised
learning result is in the foreground.
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