Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-977-2023
https://doi.org/10.5194/tc-17-977-2023
Research article
 | 
01 Mar 2023
Research article |  | 01 Mar 2023

Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning

Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann

Data sets

MERRA-2 inst6_3d_ana_Np: 3d,6-Hourly, Instantaneous, Pressure-Level, Analysis, Analyzed Meteorological Fields V5.12.4 Global Modeling and Assimilation Office (GMAO) https://doi.org/10.5067/A7S6XP56VZWS

Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_ lnd_ Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4 Global Modeling and Assimilation Office (GMAO) https://doi.org/10.5067/RKPHT8KC1Y1T

MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4 Global Modeling and Assimilation Office (GMAO) https://doi.org/10.5067/VJAFPLI1CSIV

ERA5 hourly data on pressure levels from 1979 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.bd0915c6

ERA5 hourly data on single levels from 1979 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.adbb2d47

Randolph Glacier Inventory - A Dataset of Global Glacier Outlines: Version 6.0 RGI Consortium https://doi.org/10.7265/N5-RGI-60

Fluctuations of Glaciers Database WGMS https://doi.org/10.5904/wgms-fog-2021-05

Download
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.