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Abstract. Spatio-temporal reconstruction of winter glacier
mass balance is important for assessing long-term impacts of
climate change. However, high-altitude regions significantly
lack reliable observations, which is limiting the calibration
of glaciological and hydrological models. Reanalysis prod-
ucts provide estimates of snow precipitation also for remote
high-mountain regions, but this data come with inherent un-
certainty, and assessing their biases is difficult given the low
quantity and quality of available (long-term) in situ observa-
tions. In this study, we aim at improving knowledge on the
spatio-temporal variations in winter glacier mass balance by
exploring the combination of data from reanalyses and direct
snow accumulation observations on glaciers using machine
learning. We use the winter mass balance data of 95 glaciers
distributed over the European Alps, western Canada, Cen-
tral Asia and Scandinavia and compare them with the total
precipitation from the ERA5 and the MERRA-2 reanalysis
products during the snow accumulation seasons from 1981
until 2019. We develop and apply a machine learning model
to adjust the precipitation from the reanalysis products along
the elevation profile of the glaciers and consequently to re-
construct the winter mass balance in both space (for glaciers
without observational data) and time (filling observational
data gaps). The employed machine learning model is a gradi-
ent boosting regressor (GBR), which combines several me-
teorological variables from the reanalyses (e.g. air tempera-

ture, relative humidity) with topographical parameters. These
GBR-derived estimates are evaluated against the winter mass
balance data using (i) independent glaciers (site-independent
GBR) and (ii) independent accumulation seasons (season-
independent GBR). Both approaches resulted in reduced bi-
ases and increased correlation between the precipitation of
the original reanalyses and the winter mass balance data of
the glaciers. Generally, the GBR models have also shown a
good representation of the spatial (vertical elevation inter-
vals) and temporal (years) variability of the winter mass bal-
ance on individual glaciers.

1 Introduction

Climate change considerably alters the high-mountain
cryosphere (e.g. Beniston, 2012; Vorkauf et al., 2021; Marty,
2008; Beniston et al., 2018; Bormann et al., 2018). Vanish-
ing glaciers and changes in the seasonal snow regime sig-
nificantly change water availability and storage capacities in
worldwide high-mountain regions, impacting adjacent low-
lands far away (e.g. Viviroli et al., 2007; Immerzeel et al.,
2020). Cryospheric hazards such as slope failures and glacier
lake outburst floods (e.g. Gobiet et al., 2014; Rasul and
Molden, 2019) are other impacts of climate change in moun-
tain regions, with direct adverse impacts on mountain soci-
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eties (e.g. Adger et al., 2003; Hock et al., 2019). The rate
and magnitude of cryospheric changes significantly depend
on the evolution of the high-altitude precipitation regime.
The elevation dependency of precipitation trends is how-
ever unclear; while precipitation trends from station obser-
vations often show an inconsistent picture with no system-
atic changes with elevation, gridded datasets show reduced
precipitation increases at higher elevations (e.g. Pepin et al.,
2022). It is thus crucial to improve our understanding of the
local high-altitude climate–cryosphere interaction (e.g. Stone
et al., 2013; Salzmann et al., 2014; Huss et al., 2017; Baran-
dun et al., 2020). However, at the local scale and particu-
larly at very high altitudes, snow and precipitation in situ ob-
servations are typically very scarce, spatially not optimally
distributed, with low temporal resolution, too short in time,
or with important gaps caused by technical challenges and
difficult accessibility and thus complicated and lavish main-
tenance (e.g. Beniston et al., 2012; Tapiador et al., 2012).
This is an important limitation for studies focusing on the
long-term effects of climate change at the high-mountain
cryosphere, which require snow accumulation data covering
decadal periods (e.g. Seiz et al., 2010). At very high altitudes,
mostly only measured snow water equivalent (SWE) as the
cumulative snow accumulation on glaciers is available. Mea-
surements of SWE on glaciers are typically used for the de-
termination of winter mass balance (Cogley et al., 2011), an
important variable in international glacier monitoring (e.g.
Zemp et al., 2013). The main process of snow accumulation
is the total precipitation received by the glacier during the
accumulation season. Since melting is often negligible dur-
ing this time period, SWE on glaciers represents a reliable
measure of local winter precipitation and was thus used for
a comparison with precipitation products in different studies
(e.g. Gugerli et al., 2020; Guidicelli et al., 2021). However,
other processes such as deposition of hoar, freezing rain or
snow drift caused by winds and avalanching can also influ-
ence the accumulation (Dadic et al., 2010; Gascoin et al.,
2013).

Worldwide spatio-temporally continuous information on
precipitation, snow depth and SWE is also provided by cli-
mate reanalyses that merge physical laws with the assimi-
lated satellite and ground observations (e.g. Hersbach et al.,
2020; Gelaro et al., 2017). However, the performance of re-
analysis results can vary greatly depending on the region
and the elevation range of interest (Sun et al., 2018). Large
biases in reanalysis precipitation are particularly found in
high-mountain regions (e.g. Liu and Margulis, 2019; Zan-
dler et al., 2019). The scarcity of observations available for
assimilation and the coarse resolution of such models limit
their accuracy in areas of complex topography and their suit-
ability for studies at a local scale (e.g. Salzmann and Mearns,
2012, (for snow)).

Thus, the further development of techniques to spatially
and/or temporally transfer the available observational se-
ries between sites and/or filling data gaps is critical and ur-

gently needed (e.g. Salzmann et al., 2014). Downscaling of
precipitation estimates of reanalyses is thereby a necessary
step to represent the local conditions in high-mountain re-
gions. Different statistical and dynamical downscaling meth-
ods exist (see Maraun et al., 2010), which have also been
employed and evaluated over glacierized regions (e.g. Mölg
and Kaser, 2011). For instance, Liston and Elder (2006) de-
veloped a quasi-physically based meteorological model to
produce high-resolution (30 m to 1 km horizontal grid) at-
mospheric forcings for several variables, where the precip-
itation adjustment is a non-linear function of the elevation
difference between the grid and the point of interest. The
same equation was used by Gupta and Tarboton (2016), who
proposed an approach to downscale the MERRA (Rienecker
et al., 2011) variables. They obtained a Nash–Sutcliffe ef-
ficiency greater than 0.70 for downscaled monthly precipi-
tation at 173 Snow Telemetry (SNOTEL) sites. Fiddes and
Gruber (2014) adapted this method for the Swiss Alps by
including a climatological parameter based on the Alpine
precipitation dataset provided by the Climatic Research Unit
(gridded monthly precipitation totals at 10 arcmin resolution
over the Alps, for the period 1800–2003). Their product al-
lowed for improving the purely lapse-rate-based approach
of Liston and Elder (2006), obtaining a correlation coeffi-
cient of 0.6 (versus 0.5) against the annual precipitation ob-
served at 40 MeteoSwiss automatic meteorological network
(ANETZ) stations. Recently, machine learning methods have
demonstrated their high performance to statistically down-
scale reanalyses (and global climate models) estimates of
precipitation and other meteorological variables, from sub-
daily and daily (e.g. Serifi et al., 2021; Wang et al., 2021)
to monthly and seasonal (e.g. Sachindra et al., 2018; Na-
jafi et al., 2011; Sun and Tang, 2020) resolution. However,
downscaling methods for snow (and precipitation) are rarely
assessed at very high elevations, mainly due to the scarcity
of ground observations. Consequently, long-term effects of
climate change on the snowpack at very high elevations are
not well understood yet (e.g. Seiz et al., 2010).

In this study, we thus aim at analysing total precipitation
biases of reanalysis datasets (ERA5 and MERRA-2) over the
snow accumulation season on glaciers, i.e. at the highest el-
evations of different mountain ranges. The precipitation es-
timates are compared with the winter glacier mass balance
data covering a period of up to 39 years from 95 glaciers in
the European Alps, Scandinavia, Central Asia and western
Canada. The selection of these regions and glaciers depends
on the data consistency and availability (see Sect. 2.2). Ulti-
mately, we aim at reconstructing the winter glacier mass bal-
ance from partial information. In order to achieve this goal,
we develop and evaluate a machine learning approach based
on gradient boosting regressor (GBR) models (see Friedman,
2001) to adjust the total precipitation of reanalysis (main
driver of snow accumulation) along the elevation profiles of
the glaciers. More specifically, the GBR models aim at allow-
ing the spatio-temporal transferability of the learned infor-
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mation over the 95 glaciers to other glaciers with no ground
observations and/or filling gaps of observational series. The
new information provided by our exploratory study is ex-
pected to be helpful to improve the calibration of glaciologi-
cal and hydrological models in observation-scarce regions.

2 Study sites and data

The study was conducted on 95 glaciers located in the Alps,
Scandinavia, Central Asia and western Canada (Fig. 1),
where the longest time series and the highest density of win-
ter glacier mass balance data are available. In the following,
we describe the different data sources used in the study.

2.1 Reanalysis data

We used data from ERA5 and MERRA-2 reanalyses, since
these are currently among the most widely used reanalysis
products, providing the highest spatial resolution and cover-
ing the longest time period in all the regions of our study.

2.1.1 ERA5

ERA5 is the fifth generation of the European Centre for
Medium-Range Weather Forecasts atmospheric reanalyses
of the global climate (see Hersbach et al., 2020 for more
information). In this study, we used several variables from
the ERA5 hourly data on single levels from 1979 to present
(Hersbach et al., 2018b) and the ERA5 hourly data on pres-
sure levels from 1979 to present (Hersbach et al., 2018a),
all with a spatial resolution of 0.25◦,× 0.25◦ (∼ 30 km). All
variables were resampled on a daily timescale before usage.
The list of variables selected for the analysis is reported in
Table B1. The ERA5 precipitation variable used in the study
is total precipitation (tp) from the ERA5 single levels.

2.1.2 MERRA-2

MERRA-2 is the second version of the Modern-Era Retro-
spective Analysis for Research and Applications (see Gelaro
et al., 2017, for more information). In this study, we used sev-
eral variables from the MERRA-2 Land Surface Diagnostics
(Global Modeling and Assimilation Office (GMAO), 2015b),
the MERRA-2 Single-Level Diagnostics (Global Modeling
and Assimilation Office (GMAO), 2015c) and the MERRA-
2 Analysed Meteorological Fields (Global Modeling and As-
similation Office (GMAO), 2015a). All variables have a spa-
tial resolution of 0.5◦× 0.625◦ (∼ 50 km), and we resam-
pled them on a daily timescale before usage. The list of the
selected variables is reported in Table B2. The MERRA-2
precipitation variable used in the study is total precipitation
(PRECTOTLAND) from the MERRA-2 Land Surface Diag-
nostics.

2.2 Winter mass balance data

The World Glacier Monitoring Service (WGMS) compiles
and publishes standardized observations on changes in mass,
volume, length and area of glaciers collected by national
monitoring programmes and local observers around the
world (glacier fluctuations; see Zemp et al., 2021 for more
details). The data compilation provided by the WGMS based
on dozens of detailed national monitoring programmes is
unique in terms of providing consistent in situ data in differ-
ent regions of the world at the highest elevation of mountain
ranges, i.e. on glaciers that can be used for comparison with
precipitation datasets.

Thus, we used the winter mass balance data separated
per elevation intervals (EE-MASS-BALANCE data sheet
in WGMS, 2021), and we refer to them as Bw in this
study. Point observations are also available (EEE-MASS-
BALANCE POINT data sheet in WGMS, 2021) but are not
used in this study because of the smaller number of glaciers
with complete information reported (observation dates, ele-
vation, coordinates). We only considered the Bw data where
the elevation interval is indicated in the WGMS database.
The glacier area related to each elevation interval was also
used to weight the Bw data. In addition, we considered the
average slope and aspect of the glaciers by using the infor-
mation provided in the Randolph Glacier Inventory version 6
(RGI Consortium, 2017).

The winter mass balance is the result of the balance be-
tween the gain of snow which accumulates over the glacier,
as well as refreezing of liquid water within the snowpack, and
the loss caused by melting and sublimation over the accu-
mulation season. Other processes such as snow drift caused
by winds can also influence the accumulation. The amount
of snow melt is typically minor compared to the snow ac-
cumulation and thus negligible in the comparison with the
precipitation totals performed in this study. Snow accumula-
tion is expressed in SWE (e.g. Østrem and Brugman, 1991),
which is calculated by multiplying the measured snow depth
with the respective bulk density of the snowpack. The snow
depth is typically measured with a snow probe or ground-
penetrating radar, while the snow density is usually measured
in snow pits or by coring and is subsequently extrapolated to
all observations on a glacier. The WGMS database only pro-
vides information on Bw but does not generally allow tracing
whether density was directly measured or not.

The Bw data used in this study correspond to the mean
winter balance for the glacier area within the respective ele-
vation interval. Various spatial extrapolation techniques were
applied by the national observers to infer elevation band aver-
age snow accumulation from the (sparse) point observations,
which can be challenging due to important local-scale vari-
ability in snow depth (e.g. Dadic et al., 2010; Helfricht et al.,
2014; Sold et al., 2016). Unfortunately, the WGMS database
does not allow tracing the methods used, hence, resulting
in an uncertainty that is difficult to be estimated. Often, no
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Figure 1. Mean elevation and distribution of the glaciers used in the study (data source: WGMS, 2021). Glaciers shown in Fig. 7 are
highlighted in red.

direct snow depth and density observations are available at
the most extreme elevations of the glaciers because of high
surface slopes and difficult accessibility. The employed tech-
niques in the framework of the Swiss national programme
Glacier Monitoring Switzerland (GLAMOS), which pro-
vides the data of the Swiss sites to WGMS) are described
in Huss et al. (2021). The impact of the inter- and extrapo-
lation of direct SWE measurements acquired on glaciers to
obtain Bw data used in this study on our results is discussed
in Sect. 5.2.5.

The starting date of the accumulation season is not pre-
cisely known but often determined with a stratigraphic sys-
tem (i.e. since the date of the minimum surface in the pre-
vious summer) (e.g. Mayo et al., 1972; Cogley et al., 2011).
The date of the minimum surface varies between the years
and also across the glacier. In fact, snow accumulation starts
typically later at lower elevations than at higher elevations
(Huss et al., 2009). However, in this study we used a unique
starting date for the entire glacier according to the informa-
tion provided in the WGMS database. The end of the season
is determined by the day of the snow survey that is indicated
in the WGMS database. In this study, we cumulated precipi-
tation amounts over the accumulation season. The impact of
the date considered the beginning of the accumulation season
on our results is discussed in Sect. 5.2.5.

3 Methods

First, we derived the total or average of all variables provided
by the reanalyses for the entire accumulation season. Sub-
sequently, a machine learning model to adjust the total pre-
cipitation (see Sect. 2.1.1 and 2.1.2) of the reanalyses over
glaciers for the accumulation season was developed to re-
construct the Bw along the elevation profile of the glaciers.

We use a gradient boosting regressor (GBR), which makes
use of several meteorological variables (original and down-
scaled) and topographical parameters as input variables (pre-
dictors). The list of predictors required by the GBR is sum-
marized in Table B3, while the variable names are described
in Tables B1 (ERA5) and B2 (MERRA-2). In principle, a
different adjustment factor of precipitation might be needed
depending on the precipitation phase. However, as we only
adjust the total precipitation occurring during the accumu-
lation season, the adjustment factors used here represent the
“average” adjustment factor of all precipitation events. More-
over, the snowfall variable was used as a predictor in order to
enable the GBR model to learn that a different “average” ad-
justment factor must be applied depending on the fraction of
snowfall and total precipitation (i.e. depending on the main
precipitation phase during the accumulation season).

The applied methods to downscale the meteorological
variables used by the GBR model as predictors are described
below.

3.1 Downscaling temperature and relative humidity

In addition to the original variables (all “constants”, all “sin-
gle level” and all “land surface” variables in Tables B1 and
B2), the GBR requires some downscaled variables of the re-
analyses as predictors at the glacier elevation intervals (see
Table B3), including air temperature, dew point temperature
and relative humidity (for MERRA-2 and ERA5), vertical
velocity of air motion (for ERA5 only), and specific humid-
ity (for MERRA-2 only). The downscaling procedure was
applied at a daily resolution using a linear interpolation be-
tween the values of the two closest pressure levels to the cen-
tre of the elevation intervals of the Bw data of the glaciers.
This downscaling approach is illustrated in the Supplement
(Fig. S1).
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If information regarding the relative humidity was not di-
rectly provided by the reanalyses, we applied approaches
presented by Liston and Elder (2006) and Gupta and Tar-
boton (2016) to derive it. The applied equations are described
in Appendix A.

3.2 Downscaling precipitation

The total precipitation over the accumulation season was
considered the main driver of Bw. Thus, in order to derive
Bw estimates over the glaciers, we built a machine learning
model that adjusts the total precipitation of reanalysis along
the elevation profile of the glaciers. In this study, we also
applied a pre-existing lapse-rate-based approach (not data-
informed) for precipitation downscaling that we considered
a benchmark. The approaches are described below, and the
results obtained with the two methods are compared after-
ward.

3.2.1 Benchmark

Liston and Elder (2006) proposed a lapse-rate-based ap-
proach to downscale reanalysis’ precipitation by accounting
for the elevation difference between the point of interest and
the grid of the reanalysis. Whereas they applied the approach
to the MERRA reanalysis, we applied the same approach to
MERRA-2 and ERA5 reanalysis data and used the resulting
adjusted precipitation as a benchmark:

Padj = Preanalysis
1+ κ(Hpoint−Hreanalysis)

1− κ(Hpoint−Hreanalysis)
, (1)

where Preanalysis is the precipitation of the reanalysis,
Hreanalysis is the elevation of the reanalysis’ grid, Padj is the
adjusted precipitation at the altitude of the point of interest
(Hpoint) and κ is a monthly adjustment factor (cf. Table 1 of
Liston and Elder, 2006). In our study, we used an average fac-
tor κ = 0.3214, corresponding to the average between Octo-
ber and April. The precipitation adjusted with this approach
on Findelgletscher is illustrated in Fig. S1.

3.2.2 Gradient boosting regressor (GBR) model

In order to represent a potential non-monotonic increase of
snow accumulation (and precipitation) with elevation and to
provide different adjustments of the original reanalysis’ pre-
cipitation depending on the region and the site, we built more
complex models based on machine learning. All models are
built with the open source scikit-learn library for machine
learning in Python (see Pedregosa et al., 2011). Specifically,
we built a series of GBR models, each consisting of an en-
semble of weak learning models (estimators) represented by
regression trees. Similarly to all tree-based models, GBRs
do not provide continuous estimates. In our case, the goal
of the GBR models is to predict the logarithmic adjustment
factors of the reanalysis’ precipitation with respect to the Bw

along the elevation profile of the glaciers (Eq. 2). In a GBR,
the trees are built sequentially, and the subsequent trees learn
from the errors of the previous trees, minimizing the residu-
als between their predictions and the reference values.

FdB,ref = 10log10
Bw

Preanalysis,tot
, (2)

where Preanalysis,tot is the total precipitation of the reanalysis
over the accumulation season. The GBR models aim at min-
imizing the cost function defined in Eq. (3), corresponding
to the mean square error between the predicted and reference
logarithmic adjustment factors.

MSEdB2 =
1
n

n∑
i=1
(FdB,pred,i −FdB,ref,i)

2 (3)

Different hyperparameters characterize a GBR. In this study,
we applied a grid search to optimize the number of estimators
(number of additive trees, i.e. number of iterations), the max-
imum depth that each tree can reach, the minimum number of
samples required to be at a leaf node of a tree and the learn-
ing rate, which can vary between 0 and 1 and determines how
quickly the GBR learns by shrinking the contribution of the
individual trees on the GBR predictions. The higher the num-
ber of estimators or the maximum depth is, the more com-
plex and less generalized the GBR model is. In contrast, the
larger the minimum number of samples is, the less complex
and more generalized the GBR model is. A smaller learning
rate makes the GBR more robust to the specific characteris-
tics of each individual tree, thus allowing a better general-
ization. However, the smaller the learning rate is, the more
subsequent trees (iterations) are generally required to reach
the minimum of the cost function. A 10-fold cross-validation
was applied with different combinations of hyperparameters.
The hyperparameters that were able to minimize the mean
square error of the validation data were chosen. Finally, the
GBR model with the chosen hyperparameters was tested on
independent data.

The validation and the test data were defined differently
depending on the goal of the GBR model. For both reanal-
ysis products (ERA5 and MERRA-2), we built two differ-
ent GBR models with two different goals and two different
cross-validation and test schemes.

The first GBR model is site-independent and aims at “ex-
trapolating” the Bw data in time and space (over glaciers with
no Bw data). For the site-independent GBR, we built 95 mod-
els, one for each glacier, trained and validated with the data
of the other 94 glaciers. Each glacier is used, in turn, as an
independent test for the model based on the data of the other
94 glaciers. Thus, the site-independent GBR is independent
from any data of the glacier where the model is tested (see
Fig. 2).

The second GBR model is season-independent and aims at
extrapolating the Bw data in time only (filling data gaps over
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Figure 2. Training, cross-validation with hyperparameter selection
and test scheme for the site-independent GBR model. FdB, ref is the
reference adjustment factor (Eq. 2), and FdB,pred is the adjustment
factor predicted by the GBR model.

glaciers with discontinuous records of Bw). For the season-
independent GBR, we built a model for each year (when the
Bw data are available) and each glacier. In this case, each year
of each glacier is used, in turn, as an independent test for the
GBR, which is trained using the data of the other years (of
the tested glacier) and of the other 94 glaciers. Thus, unlike
the site-independent GBR, the season-independent GBR is
informed with data of the glacier where the model is tested,
excluding only data of the year when the model is tested. For
the season-independent GBR, data of the other 94 glaciers
are still used in the training, because many glaciers only have
a small number of years with available Bw data. Thus, in the
case of limited Bw data, this may help the GBR to learn from
the data of the other 94 glaciers.

The average optimal hyperparameters for all the stud-
ied glaciers are reported in Table 1. The resulting site-
independent model is more generalized (smaller number
of estimators than the season-independent GBR and higher
minimum number of samples per leaf), while the season-
independent model is more detailed and can be split into in-
dividual sub-models adapted to a small number of samples.
The different architecture between the site-independent and
the season-independent GBRs is discussed in Sect. 5.2.1.

All variables presented in Sect. 2.1 and listed in Sect. B
of the Appendix were considered by the GBR as predictors
(separately for ERA5 and MERRA-2). In addition, we de-
rived and used the differences between the downscaled vari-
ables (cf. Sect. 3.1) and the estimates at the grid of the re-

Table 1. Average hyperparameters of the optimized GBR models
of all the studied glaciers: “n estimators” is the number of addi-
tive trees (i.e. iterations) in the GBR, “max depth” is the maximum
depth that each tree can reach, “min sample leaf” is the minimum
number of samples required to be at a leaf node of a tree, “learning
rate” determines how quickly the GBR learns (it shrinks the contri-
bution of the individual trees on the GBR prediction) and “subsam-
ple” indicates the fraction of samples used for fitting the individual
trees.

Site-independent Season-independent
GBR GBR

ERA5 MERRA-2 ERA5 MERRA-2

n estimators 86 99 131 123
Max depth 7 7 8 8
Min sample leaf 72 77 10 11
Learning rate 0.07 0.07 0.09 0.08
Subsample 0.8 0.7 0.8 0.8

analysis. Some variables were not only averaged consider-
ing all days in the accumulation season but also considering
only the days with a relevant amount of precipitation, here
arbitrarily set to 5 mm. The GBRs also use the latitude and
longitude of the glacier (same value for the entire glacier), as
well as aspect and slope of the glacier (same value for the en-
tire glacier). A summary of the predictors used by the GBRs
is provided in Table B3.

During the training phase of our models, the Bw data were
weighted by considering the area of the glacier related to
the respective elevation interval. Larger glaciers (and ele-
vation intervals related to larger areas) thus receive more
weight than smaller glaciers (and elevation intervals related
to smaller areas).

3.3 Evaluation metrics for the models’ estimates

3.3.1 Adjustment factors

In order to evaluate the bias between the Bw data and the
estimates of the models (original reanalyses, benchmark or
GBR), we computed the adjustment factor f (dimensionless)
as

f =
Bw

Emodel
, (4)

where Emodel is the estimate of a model. The adjustment fac-
tor FdB is expressed in decibels and is used to derive supple-
mentary evaluation metrics:

FdB = 10log10
Bw

Emodel
. (5)

3.3.2 Glacier-wide means

When deriving a glacier-wide factor (or glacier-wide Bw) for
a single accumulation season, we computed a weighted mean
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of the area contained in the individual elevation intervals.
These seasonal glacier-wide values were used to derive Pear-
son’s correlations (r), the root mean square error (RMSE)
and the fraction of standard error (FSE) between the glacier-
wide Bw and the model estimate. The FSE corresponds to the
RMSE divided by the glacier-wide Bw.

3.3.3 Regional metrics

In order to further validate the performance of the GBR mod-
els, we derived the glacier-wide FdB described by Eq. (5) for
every accumulation season and every glacier with Bw data
(FdB,mean). We thus analysed the four investigated regions
separately by deriving a mean factor per region as

FdB, region =

∑n
g=1

∑mg
s=1FdB,mean,g,s

n
∑n
g=1mg

, (6)

where n is the number of glaciers, and mg is the number of
accumulation seasons with Bw data for the glacier g.

4 Results

In the following, we first present the main results of our
study, i.e. the performance of the GBR models over glaciers
in the Alps, Scandinavia, Central Asia and western Canada
(Sect. 4.1), followed by the analysis of the predictors’ impor-
tance in the GBR models (Sect. 4.2).

4.1 Performance of the GBR models

Overall, the GBR models indicate better agreement in terms
of bias and spatial and temporal correlation with the Bw data
than the original reanalyses and the benchmark for the major-
ity of the studied glaciers. In the following we report in detail
on the comparison between the Bw data, the precipitation es-
timates of the reanalyses and the GBR models’ estimates.

4.1.1 Glacier-wide reanalysis’ bias adjustment

Figure 3 shows the comparison between all glacier-wide Bw
values and the models’ estimates. MERRA-2 precipitation
underestimates Bw more importantly than ERA5 precipita-
tion in all regions (Fig. 3a and b), with an overall RMSE
of 946 mm (mean absolute error (MAE) of 749 mm) against
793 mm (611 mm) of ERA5. Excluding the Alps, the cor-
relation between the Bw data and the ERA5 precipitation
is always higher than the correlation with the MERRA-2
precipitation. The adjusted estimates obtained with the site-
independent and the season-independent GBRs allowed us to
consistently reduce (increase) the bias (Pearson correlation
(r)) between the precipitation of the original reanalyses and
Bw (overall RMSE of 433 mm, MAE of 326 mm, r of 0.86
for the MERRA-2 site-independent GBR; RMSE of 410 mm,
MAE of 307 mm, r of 0.87 for the ERA5 site-independent

GBR; RMSE of 293 mm, MAE of 211 mm, r of 0.94 for
the MERRA-2 season-independent GBR; RMSE of 275 mm,
MAE of 200 mm, r of 0.94 for the ERA5 season-independent
GBR). These results demonstrate the need of an adjustment
of reanalyses data to reproduce Bw data on glaciers, which
are, otherwise, largely underestimated in all four regions in-
volved in this study.

In order to make an in-depth analysis of the model perfor-
mance, we also derived a glacier-wide factor between the Bw
data and reanalysis-based models’ estimates (Eq. 4) for each
accumulation season and for each site separately (Fig. 4).
By comparing Fig. 4b and c, it is clear that, in Central Asia,
the factors for adjusting the MERRA-2 reanalysis’ precipita-
tion are much larger than the factors for the ERA5 precipita-
tion. The benchmark method overestimates the Bw for many
glaciers in the Alps (both ERA5 and MERRA-2) and several
glaciers in Central Asia (ERA5). The site-independent and,
especially, the season-independent GBRs are better scaled
with respect to the Bw data than the original reanalyses and
the benchmarks. In general, the variability of the factors for
each glacier is strongly affected by the number of available
accumulation seasons with Bw data (Fig. 4a). A lower vari-
ability is usually observed for glaciers with a small number
of seasons with Bw data.

Figure 5 shows the mean regional factor between the Bw
data and the models’ estimates as a function of the accumula-
tion seasons from 1981 to 2019. It indicates that the original
reanalyses clearly underestimate Bw on glaciers, except for
ERA5 in Central Asia, where, as a consequence, the bench-
mark overestimates Bw. However, temporal variations in the
mean regional bias are also affected by the considered set of
glaciers that fluctuates over the analysed years. In the Alps,
we observe increasing biases of the original reanalyses in re-
cent years, where a much larger number of glaciers is avail-
able. In Scandinavia, the bias of MERRA-2 and ERA5 is
similar and all the models are generally not able to remove it
completely. In Central Asia, there is a tendency for all models
to yield lower adjustment factors before the 2000s than after-
wards. However, this has to be interpreted with care, because
only one glacier was considered between 2002 and 2014. The
continuity of the available Bw data in western Canada is too
limited to analyse temporal changes in the adjustment fac-
tors.

In order to evaluate the robustness of the GBR models
to reduce the glacier-wide bias of the reanalysis, we per-
formed a temporal and spatial validation of their predictions
(Fig. 6). The performance of the season-independent mod-
els improves when using more accumulation seasons in the
training data (Fig. 6a, c, e and g). Training the models with
more than 20 seasons, however, does not seem to further
improve performance consistently. The performance of the
site-independent models is constant, because they are never
trained with Bw data of the tested glacier. When no Bw data
of the tested glacier are used to train the season-independent
models (as for the site-independent models), their perfor-
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Figure 3. Comparison between all glacier-wide Bw values and the model estimates: (a) original MERRA-2, (b) original ERA5, (c) MERRA-
2 site-independent GBR, (d) ERA5 site-independent GBR, (e) MERRA-2 season-independent GBR and (f) ERA5 season-independent GBR.
The Pearson correlation (CORR), the root mean square error (RMSE), the fraction of standard error (FSE, corresponding to the RMSE
divided by the regional mean Bw) and the number of all seasons of all glaciers (N points) for each region are also reported. The boxplots
indicate the distribution of the model’s estimates (right) and of the Bw data (top) for each region.

mance is worse than the site-independent models, confirming
the importance of a specific optimization scheme depending
on the goal of the model.

As also expected, the performance of the site-independent
models decreases when data of neighbouring glaciers are ex-
cluded from the training (Fig. 6b, d, f and h). The high-
est impact is on the performance of the MERRA-2 site-

independent GBR in Central Asia. Overall, the bias of the
site-independent GBR models remains comparable to the
bias obtained with the benchmark method even when exclud-
ing all other glaciers located within 1000 km from the train-
ing. For the season-independent models, we always kept the
Bw data of the tested glacier in the training data and only
excluded the other glaciers. This explains why the season-
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Figure 4. (a) Number of seasons with available Bw data for each glacier. Factors between seasonal glacier-wide Bw and (b) ERA5-based
models and (c) MERRA-2 based models, for each glacier of the study. The variability shown in the boxplots is given by the different seasons
of Bw data.

independent models perform better and are less sensitive to
the removal of neighbouring glaciers from the training pro-
cess.

The good performance of the GBRs in terms of bias
suggests that they can be used for Bw reconstruction over
glaciers where no ground observations are available (site-
independent GBRs) and for filling data gaps of the recorded
observations (season-independent GBRs). However, the per-
formance generally decreases when the glacier is not in prox-
imity to the glaciers used to train the GBR models. Further-
more, we assume that the resulting performance strongly de-
pends on the characteristics of the glacier with respect to
the glaciers used in the training. The results indicate more-

over that the season-independent GBRs outperform the site-
independent GBRs to reduce the bias against Bw data, espe-
cially in regions with a limited number of glaciers with Bw
data. In conclusion, filling data gaps is much simpler than
estimating Bw on glaciers with no observations.

4.1.2 Spatial winter mass balance variability on
individual glaciers

In order to evaluate the ability of the GBR models to
reproduce the spatial variability of the Bw over individ-
ual glaciers, we compared the vertical profiles of Bw to
the estimates of the models. For Rhonegletscher for in-
stance (Alps, Fig. 7a), both site-independent and season-
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Figure 5. Mean regional factor between the Bw data and the reanalysis-based models’ estimates as a function of the accumulation seasons
from 1981 to 2019 (last available season): (a) the Alps, (b) Scandinavia, (c) Central Asia and (d) western Canada. The error bars indicate the
standard deviation of the regional factors. For each season, all glaciers with available Bw data were considered (the number of glaciers used
to derive the regional factor is indicated by the grey bars).

independent GBRs are able to represent the shape of the ver-
tical profile of the Bw, which is characterized by an increas-
ing Bw until 3350 m a.s.l. and a more stable/decreasing Bw
in the upper part of the glacier. This vertical profile cannot
be reproduced by using the benchmark approach, where, by
definition, the precipitation is monotonically increasing with
the elevation. Decreasing Bw is also clearly indicated in the
upper part of the Abramov glacier (Central Asia, Fig. 7b) in
1992. As suggested by the point observations reported, this is
certainly the result of extrapolating to elevation ranges not or
only poorly covered with data. However, this has a limited in-
fluence on the GBR models than the lower part of the glacier,
as it received higher weights because of the larger areas (see
Sect. 2.2). The site-independent GBRs are not able to adjust
the precipitation by consistently reducing the bias with Bw.
On the other hand, the season-independent GBRs are able to
better fit the altitudinal distribution of Bw. In this case, we
observe that the maximum Bw coincides with the maximum
downscaled MERRA-2 relative humidity. In the case of Stor-
glaciären (Scandinavia, Fig. 7c), Bw is underestimated by the
benchmark, while the GBR models (the season-independent
especially) are able to better represent the steep increase of
Bw over the glacier. In the case of the Sykora glacier (western
Canada, Fig. 7d), all GBR models show a good agreement

with Bw data. By comparing the coefficients of variation, it
is clear that the season-independent GBRs are able to better
reproduce the amplitude of the spatial variability of the Bw
than the site-independent GBRs (see Table S1 in the Sup-
plement). Furthermore, the correlations demonstrate that the
GBRs outperform the benchmark method to reproduce the
Bw of almost all glaciers of this study (Table S1).

4.1.3 Temporal winter mass balance variability on
individual glaciers

In general, the GBR models show a better performance in re-
producing the relative changes of Bw among individual years
for the same glacier than the original reanalysis (see Table 2).
The correlation between the GBR models’ estimates and the
Bw over the years is often much higher than for the origi-
nal reanalysis. The level of significance of the correlation be-
tween the original ERA5 and/or MERRA-2 improves when
the GBR models are applied, especially for Goldbergkees,
Graasubreen and the Ts. Tuyuksuyskiy glacier. However, in
some cases we still have low correlations, indicating that the
models are not suitable to represent the temporal variability.
Furthermore, although the season-independent GBRs are the
best models to reduce the bias, the relative changes among
years are sometimes better explained by the site-independent
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Figure 6. Evaluation of the mean regional factor between theBw data and the reanalysis-based models’ estimates (FdB, region defined in Eq. 6)
depending on different data used in the training of the GBR models. (a, c, e, g) Evaluation of the performance of the season-independent
GBR models as a function of the number of seasons of the tested glacier used in the training (from no data to a maximum of 40 years of data
of the tested glacier). (a) Model validation depending on the number of training seasons per glacier in the Alps, (c) Scandinavia, (e) Central
Asia and (g) western Canada. (b, d, f, h) Evaluation of the robustness of the GBR models as a function of the number of other glaciers in the
same region used in the training. All glaciers located within a range growing from 0 to 1000 km from the tested glacier were excluded from
the training. (b) Model evaluation depending on the range of excluded glaciers from the training in the Alps, (d) Scandinavia, (f) Central
Asia and (h) western Canada.

GBRs. In fact, the number of years of data of the tested
glacier used to train the season-independent GBRs does not
seem to impact its performance in terms of temporal corre-
lation with the Bw data (see Fig. S3). The number of years
with available Bw data is typically much smaller in western
Canada and Central Asia than in the Alps and Scandinavia
(see Fig. 4a); therefore, we could not robustly evaluate the
ability of the models to represent the temporal variability of
the Bw data for these regions.

4.2 Importance of predictors in the GBR models

In order to understand the importance of the predictors used
by the GBR models (i.e. those not related to the elevation
of the glaciers and their elevation difference with the re-
analysis’ grid), we evaluated the changes in terms of over-
all GBR model performance when suppressing groups of
predictors. For both ERA5 and MERRA-2 site-independent
GBR models, the smallest RMSE results when using all pre-
dictors (Fig. 8a and b). The RMSE particularly increases
when suppressing the MERRA-2 single-level and pressure-
level variables from the predictors. In turn, for both ERA5

https://doi.org/10.5194/tc-17-977-2023 The Cryosphere, 17, 977–1002, 2023



988 M. Guidicelli et al.: Winter glacier mass balance reconstruction using reanalyses and machine learning

Figure 7. Vertical profiles of Bw at the end of a specific accumulation season: (a) Rhonegletscher (Alps), (b) Abramov glacier (Central
Asia), (c) Storglaciären (Scandinavia) and (d) Sykora glacier (western Canada). RH refers to the average relative humidity during days with
a minimum precipitation of 5 mm. Note that the scale of the y axis differs between the panels.

and MERRA-2 season-independent GBR models, the small-
est RMSE results when suppressing the single-level and
pressure-level variables from the predictors (Fig. 8c and d).
The RMSE increases most when suppressing the year, the
topographical parameters and the glacier coordinates simul-
taneously as predictors.

However, skipping reanalysis variables from the set of pre-
dictors leads to higher errors for some individual glaciers,
especially in the representation of the temporal variability of
the Bw data. In fact, by excluding the reanalysis variables,
the year is the only predictor able to vehiculate the clima-
tological information; in other words, the year is the only
predictor that could be used by the GBR to predict a differ-
ent adjustment factor depending on the accumulation season

(all the other predictors are constant in time). Therefore, and
to allow a fairer comparison between site-independent and
season-independent GBRs, in all our following analyses we
always included all predictors.

In order to infer the importance of the predictors for the in-
dividual study regions, we built an individual GBR for each
region. We furthermore performed a principal component
analysis (PCA) considering the 10 predictors most frequently
used by the GBRs for each region. In the Alps, lower factors
between Bw and ERA5 precipitation result at lower latitudes,
and the glaciers affected by 100 m westerly winds (nega-
tive u component of the wind speed) have generally higher
factors than those affected by easterly winds (Fig. S2a). In
Scandinavia, we notice a cluster of five glaciers with smaller
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Table 2. Pearson correlation (r [–]) between the reanalysis-based models and the glacier-wide Bw over the accumulation seasons (temporal
correlation) separated by regions. Only the glaciers with a minimum of 15 seasons withBw data are shown (i.e. no glacier in western Canada).
The significance of the correlation is based on Student’s t distribution. The level of the correlation significance is indicated as follows: normal
font, not significant (p value > 0.10); underlined, significant (p value ≤ 0.10); and underlined and bold, highly significant (p value ≤ 0.05).

r n seasons

Original Benchmark Site-indep GB Season-indep GB

Glacier ERA5 MERRA-2 ERA5 MERRA-2 ERA5 MERRA-2 ERA5 MERRA-2

Allalingletscher 0.71 0.74 0.68 0.70 0.76 0.81 0.80 0.86 16
Claridenfirn 0.71 0.83 0.74 0.85 0.69 0.83 0.74 0.82 38
Griesgletscher 0.45 0.53 0.47 0.55 0.53 0.57 0.60 0.57 34
Silvrettagletscher 0.56 0.63 0.55 0.62 0.59 0.67 0.59 0.66 35
Ghiacciaio del Ciardoney 0.66 0.52 0.66 0.52 0.64 0.50 0.61 0.36 19
Ghiacciaio di Fontana Bianca 0.88 0.90 0.87 0.89 0.86 0.86 0.78 0.90 15
Goldbergkees 0.46 0.31 0.46 0.31 0.63 0.62 0.58 0.35 15
Jamtalferner 0.60 0.65 0.60 0.64 0.70 0.64 0.76 0.69 24
Vernagtferner 0.64 0.66 0.64 0.65 0.65 0.64 0.52 0.59 31
Wurtenkees 0.65 0.56 0.65 0.56 0.67 0.69 0.70 0.67 26

Aalfotbreen 0.80 0.78 0.81 0.79 0.90 0.91 0.93 0.93 37
Austdalsbreen 0.94 0.91 0.94 0.91 0.93 0.93 0.92 0.94 31
Engabreen 0.84 0.79 0.82 0.77 0.84 0.75 0.82 0.81 38
Graasubreen 0.38 0.28 0.38 0.28 0.49 0.56 0.58 0.68 38
Hansebreen 0.88 0.85 0.88 0.85 0.92 0.92 0.94 0.94 32
Hellstugubreen 0.59 0.46 0.58 0.44 0.66 0.72 0.63 0.76 37
Langfjordjoekelen 0.74 0.72 0.74 0.72 0.85 0.80 0.81 0.70 26
Nigardsbreen 0.76 0.72 0.75 0.71 0.80 0.79 0.82 0.81 38
Rembesdalskåka 0.78 0.74 0.74 0.70 0.79 0.83 0.84 0.84 38
Storbreen 0.77 0.80 0.77 0.79 0.82 0.86 0.82 0.85 30

Ts. Tuyuksuyskiy glacier 0.43 0.25 0.47 0.28 0.42 0.15 0.41 0.49 31

ERA5 factors and higher downscaled temperatures during
precipitation events (Fig. S2c). In Central Asia, the glaciers’
aspect is the predictor that most clearly discriminates be-
tween high and low factors between Bw and both ERA5 and
MERRA-2 precipitation. Glaciers with∼ north-facing slopes
show smaller ERA5 factors and ∼ east-facing slopes higher
MERRA-2 factors (Fig. S2e and f). In western Canada, lower
ERA5 factors correlate with larger precipitation amounts and
lower elevation of the glaciers, while MERRA-2 factors are
clearly lower at higher latitudes, which are characterized by
stronger southerly winds at 850 hPa (Fig. S2g and f).

5 Discussion

The GBR models developed, evaluated and presented in this
study showed a better overall agreement in terms of bias and
spatial and temporal correlation with the Bw data than the
original reanalyses and the benchmark (lapse-rate-based ap-
proach described in Sect. 3.2.1) for the majority of the stud-
ied glaciers in the Alps, Scandinavia, Central Asia and west-
ern Canada. In the following, we provide a comprehensive
discussion of the approach and the results.

5.1 Advantages and disadvantages of gradient boosting
regressors

5.1.1 Differences with lapse-rate-based approaches

With the exception of some specific sites, our GBR mod-
els outperformed the benchmark method (lapse-rate-based
approach (Sect. 3.2.1)) in the Alps, Scandinavia, Central
Asia and western Canada regarding the reduction of the bias
against glacier-wide Bw data (Figs. 4 and 5). This suggests
that data-informed models such as our GBRs are needed
to adjust reanalysis to different glacier sites, which can be
characterized by different topographical and climatic condi-
tions, and where the performance of reanalysis’ estimates can
vary greatly depending on the region (e.g. Sun et al., 2018).
In fact, (independent) Bw data were used to train our GBR
models, allowing the GBRs to learn specific characteristics
of actual Bw on glaciers and to transfer them to unknown
sites (site-independent GBRs) and unknown seasons (season-
independent GBRs).

The GBR models also outperform the benchmark to re-
produce the spatial variability of Bw on individual glaciers.
We observed lower Bw in the uppermost sections of many
glaciers, which may be attributed to preferential snow depo-
sition redistribution processes, caused by the interplay be-
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Figure 8. Overall root mean square error (RMSE) between Bw and
GBR models using different groups of predictors, for all analysed
glaciers and years: (a) ERA5 site-independent GBR, (b) MERRA-
2 site-independent GBR, (c) ERA5 season-independent GBR and
(d) MERRA-2 season-independent GBR. The “pressure-level”
group refers to all variables derived from the pressure-level data,
i.e. “downscaled” variables and “delta_variable” (except for the el-
evation difference) in Table B3. The “single-level” group refers to
all single-level variables listed in Table B3. The “topography” group
refers to the topographical parameters describing the reanalysis’s
subgrid complexity (all constants in Tables B1 and B2) and the
average slope and aspect of the glaciers by using the information
provided in the Randolph Glacier Inventory version 6 (RGI Consor-
tium, 2017).

tween snow, wind and the generally steep topography (e.g.
Sold et al., 2016; Gerber et al., 2019). The ability of GBRs to
model non-linear relationships allows for a better representa-
tion of the vertical profiles of Bw than the benchmark method
(Fig. 7, Table S1). In fact, the observed spatial variability
of Bw could not be reproduced with the benchmark method,
which by definition cannot represent decreasing values with
the elevation (cf. Eq. 1).

Both the GBR models and the benchmark do not require
direct in situ observations to be applied. However, the bench-
mark method is independent from any Bw data used in this
study (not data-informed). In turn, the performance of the
GBR models is influenced by the number of data used to train
the models and strongly depends on the characteristics of the
glacier with respect to the glaciers used to train the models.

5.1.2 Differences with other machine learning
algorithms

Intuitively, we preferred a tree-based algorithm given the
high inhomogeneity in terms of spatial distribution of the
considered glaciers. As further discussed in Sect. 5.2.1, a
tree-based algorithm can exploit the coordinates (if pro-
vided as predictors) to easily split into individual sub-models
adapted to different regions of the world (from the continen-
tal scale to the glacier-specific scale). Such operations would
not be possible by using a simpler model such as a multi-
ple linear regression. Also, it is less clear to us how artificial
neural networks would behave given the considerable inho-
mogeneity of the spatial distribution. In fact, we have cho-
sen a tree-based algorithm because of its higher readability
in terms of the predictors’ usage compared to other machine
learning methods (e.g. Huysmans et al., 2011; Freitas, 2014).
A disadvantage of tree-based algorithms, however, could be
that this approach does not predict continuous values. Yet,
here, we aim at predicting an adjustment factor depending
on a classification based on the used predictors, which is ex-
actly the purpose of a tree-based algorithm. The choice of
a gradient boosting instead of other tree-based algorithms
(e.g. random forest; Breiman, 2001) is motivated by the fact
that gradient boosting is a gradient descent algorithm, where
each additional tree tries to reduce the bias (which is the main
goal of our study) rather than the variance of the predictions.

5.2 Impact of the data used to train the GBR models

5.2.1 Site-independent and season-independent GBRs

The lower generalization of the season-independent GBRs
compared with the site-independent GBRs allows for the
splitting into individual sub-models adapted to a small num-
ber of samples (see Table 1). This enables us to exploit the
Bw data of the tested glacier by creating a specific sub-model
but can result in an overfit of the training data. On the con-
trary, the higher generalization of the site-independent GBRs
allows for learning on overall relationships between the used
predictors and the reference adjustment factors (Eq. 2).

The used training data and the selected hyperparameters
also have a direct influence on the predictors needed by the
GBR models to reduce the cost function (Eq. 3). In fact,
the use of reanalysis variables (from single level and pres-
sure levels) as predictors caused an increase of the overall
RMSE of both ERA5 and MERRA-2 season-independent
GBRs against the Bw data of all glaciers of the study (Fig. 8c
and d). However, despite the high correlation of the down-
scaled reanalysis variables (cf. Sect. 3.1) with the elevation
of the glaciers, their inclusion in the set of predictors for
the training of the site-independent GBRs reduced the over-
all RMSE (Fig. 8a and b). This difference can be explained
by the combined effect of using data of the tested glacier
in the training of the season-independent GBRs and defin-
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ing a small minimum number of samples required to create a
leaf node of the GBR. In fact, the season-independent GBR
can theoretically exploit the coordinates to split into indi-
vidual sub-models adapted to individual glaciers. Therefore,
the season-independent GBRs can learn the adjustment fac-
tors observed in the other accumulation seasons of the tested
glacier and predict a similar adjustment factor for the tested
accumulation season, with no need for learning overall rela-
tionships between the reanalysis predictors and the reference
adjustment factors (Eq. 2).

In general, the year was included in the set of predictors
for the GBRs, because it may allow for learning the clima-
tological information and potential trends in terms of reanal-
ysis biases against the Bw data. This can be relevant in case
reanalysis variables included in the predictors are not able to
represent the hypothetical trends of these biases, which can
exist due to the increasing availability of observational data
that could have been assimilated by reanalysis models over
the years. From Fig. 8, we notice that the year has a different
impact on the site-independent and the season-independent
GBRs. For the site-independent GBR, the withdrawal of the
year from the predictors leads to a smaller increase of the
overall RMSE than the withdrawal of the reanalysis variables
(pressure levels and single level). In contrast, for the season-
independent GBR, the best performance is reached by with-
drawing the reanalysis variables. Thus, given the mentioned
ability of the season-independent GBR to potentially create
sub-models for specific glaciers using their coordinates, we
think that the year may be the one predictor to actually ve-
hiculate the climatological information in this case (the GBR
model learns which periods correspond to larger/smaller bi-
ases for the tested glacier).

5.2.2 Spatial and temporal transferability of the GBR
models

The GBR models were trained with almost 100 glaciers
distributed over the four regions on three continents. Be-
tween the regions we observed different robustness and per-
formances. The performance of the GBR models tends to
decrease when removing Bw data of neighbouring glaciers
from the training process (Fig. 6b, d, f and h). Neighbour-
ing glaciers were removed from the training as a function of
the distance (range) from the tested glacier. Our results sug-
gest that more available glaciers with Bw data would prob-
ably greatly improve the performance in Central Asia and
western Canada, where our dataset is limited in terms of the
number of monitored glaciers, and the horizontal spacing be-
tween different sites is considerable. In the Alps, the network
of monitored glaciers is much denser. Thus, more glaciers are
excluded from the training for shorter distances than in other
regions, impacting the performance of the site-independent
GBR models. When the range of excluded neighbouring
glaciers is extended to 1000 km, a strongly reduced number
of glaciers of the same region is still used in the training,

meaning that the models are almost exclusively trained with
the glaciers of the other regions (the site-independent GBR
almost becomes a region-independent GBR). The climate
conditions and the complexity of the weather processes can
be very different among the four investigated regions (and
even within the individual regions). A region-independent
model is thus not expected to provide accurate results. In
Scandinavia, a linear precipitation gradient with elevation is
more appropriate than in the more complex topography of
the Alps and Central Asia (e.g. Rasmussen and Andreassen,
2005). Thus, the site-independent GBR models are only per-
forming slightly better than the benchmark when the full set
of the other glaciers is used in the training, indicating that a
simpler lapse-rate-based approach might be preferable. How-
ever, considering the four regions, the bias of the region-
independent GBR models remains comparable to the bias
obtained with the benchmark method, which is independent
from any ground observation.

The performance of the season-independent GBR models
improved consistently when including in the training only
a few other seasons of Bw data related to the tested glacier
(Fig. 6a, c, e and g). This thus demonstrates the uniqueness
of the Bw distribution over each glacier that cannot be easily
reproduced by using the relations learned at other glaciers.
However, this also indicates that the Bw distribution, and its
relation with precipitation, is similar in different years (see
also e.g. Grünewald et al., 2013; Sold et al., 2016). For our
application, there would be the added benefit from Bw data
on additional glaciers rather than on additional seasons.

The inclusion of the year in the set of predictors is not
problematic for temporal reconstruction of Bw with limited
gaps but could be a limitation for extrapolation to future con-
ditions (using for instance global or regional climate model
data in lieu of reanalysis). In fact, even though the use of the
year as predictor could allow for identifying and modelling
trends of reanalysis biases against the Bw data, these trends
would be limited to the training period of the GBRs. In con-
trast, the exclusive use of reanalysis variables as predictors
could allow for identifying and modelling trends of biases as
a function of specific climatological conditions represented
by reanalysis variables.

Furthermore, the use of total seasonal averages as inputs
for the GBRs has limitations for the application of the pre-
sented approach. The GBRs provide an estimate of the over-
all adjustment factor for the reanalysis precipitation accord-
ing to the average climatic conditions of the accumulation
season. Thus, a unique adjustment factor is estimated for the
whole accumulation season. The application of this adjust-
ment factor to daily precipitation data would allow for ob-
taining an average estimate of the SWE evolution during the
accumulation season. However, the obtained SWE evolution
would neglect potential melt of snow during the accumula-
tion season (see Sect. 2.2), as well as potentially different
adjustment factors for precipitation at higher temporal scales
than seasonal. This limitation is related to the lack of refer-
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ence in situ observations at higher temporal resolution than
seasonal available for our study, focusing on different regions
of the world and at high elevations.

5.2.3 Representation of the temporal variability of the
winter mass balance

All GBRs aimed at minimizing the MSE between the pre-
dicted and reference logarithmic adjustment factors (Eq. 3).
The improvement of the temporal correlation between the
original reanalysis and the Bw data is thus a consequence
of bias-adjusted estimates over accumulation seasons rather
than a primary goal of the GBRs. A sensitivity test re-
ported in the Supplement (Fig. S3) suggests that the season-
independent GBRs are not very sensitive to the number of
years of data of the tested glacier used for training. Their
performance is comparable to the site-independent GBRs
(Table 2). Furthermore, only in a few cases did the site-
independent GBRs show a performance inferior to the orig-
inal reanalysis or the benchmark method (e.g. Ts. Tuyuk-
suyskiy glacier). These promising results suggest that our
new estimates could also be used to derive Bw trends with
generally higher accuracy than the original reanalyses, thus
potentially providing insights into the relation between cli-
mate change and both snow accumulation and precipitation
at the highest elevations of mountain ranges, where virtually
no direct precipitation records are available. Still, the limited
number of glaciers with abundant Bw data coverage avail-
able over a sufficient number of years does not allow us to
perform a complete application of this approach.

5.2.4 Impact of the chosen reanalyses on the GBR
models

At a regional scale, the total precipitation estimated in the
accumulation season by the original MERRA-2 has shown
larger biases than the original ERA5 when compared to Bw
on glaciers. The coarser spatial resolution of MERRA-2 is
certainly a factor causing larger biases in complex high-
mountain areas (e.g. Zandler et al., 2019; Chen et al., 2021).
In fact, a coarse resolution directly implies that mountains
are more strongly smoothed. The absolute elevation of a grid
cell is thus lower for a coarse resolution, and the estimated
precipitation also refers to the lower elevation of the grid cell.

The performance of the original ERA5 and MERRA-2 has
a direct impact on the GBR models. However, the GBR mod-
els were able to compensate for such differences in the bias.
In fact, the biases of the ERA5 and MERRA-2 GBR models
are much closer to each other than the biases of the original
reanalyses (see Fig. 3a–d). The differences between the per-
formance of our GBR models are also caused by the different
predictors that have been used. For instance, we considered
all the topographical predictors describing the reanalysis’s
subgrid complexity of both reanalysis products, and ERA5 is

providing more descriptors than MERRA-2 (see Tables B1
and B2).

5.2.5 Influence of the winter mass balance data
accuracy on the GBR models

Our study strongly relies on reference Bw data on glaciers.
However, various problems are related to the direct measure-
ments of snow accumulation on glaciers thus leading to un-
certainties in the observations (e.g. Zemp et al., 2013; Sold
et al., 2016; O’Neel et al., 2019; Huss et al., 2021). Most im-
portantly, snow accumulation measured at individual points
needs to be extrapolated in space to obtain Bw data used
in our analysis. At the highest elevations of glaciers with a
typically difficult accessibility for manual observations, re-
sults are often purely based on extrapolation techniques (e.g.
Østrem and Brugman, 1991; Cogley et al., 2011; Huss et al.,
2021). Given that the WGMS database does not generally
report how this was achieved and how many actual observa-
tions were available in a given elevation interval, it is difficult
to assess the integrative uncertainty in the Bw data used. In
order to illustrate the importance of the extrapolated Bw data
used in this study, we more closely inspected point winter
snow observations for 12 Swiss sites and three years (2016–
2018) based on a dataset with higher resolution and full doc-
umentation (GLAMOS, 2021).

Figure 9a indicates that a lower number of manual obser-
vations was typically performed at the lowest and the high-
est elevations of the glaciers. In some elevation bands, even
no manual observations are available and Bw data refer to
an extrapolation. However, a much larger number of manual
observations is typically performed in the elevation intervals
corresponding to the largest areas of the glaciers (Fig. 9a
and c). As indicated by Fig. 9e, considerable uncertainties
might exist in the analysed vertical profiles of Bw. However,
the weighting function dependent on the area of the intervals
used in the training of the GBR models assigned more impor-
tance to the Bw data in such observation-rich areas. Further-
more, the main results of the study relate to glacier-wide Bw
data, which for most glaciers is very close to the glacier-wide
mean of the manual observations as also indicated in Fig. 9e
(only in 3 out of 34 cases is the ratio of glacier-wide mass
balance to the average of all individual observations larger
than 1.10, and in no case is the ratio lower than 0.90).

Another source of uncertainty that is difficult to assess is
the starting date of the accumulation season. We considered
the same starting date for all elevation intervals, even though
it varies over the glacier’s elevation range. The accumulation
of snow starts later at low elevations and earlier at high el-
evations. Therefore, the different elevations also collect dif-
ferent precipitation totals (as the periods differ). The impact
on the study of the date considered the beginning of the ac-
cumulation season has been evaluated with a sensitivity test
(Fig. 9). For the same 12 Swiss glaciers and 3 years as above,
we rely on the more detailed dataset of point winter mass
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Figure 9. Sensitivity analysis of extrapolated Bw data and used starting dates for 12 glaciers in the Swiss Alps between 2016 and 2018
(GLAMOS, 2021). (a, c, e) Difference between Bw data used in this study and point-SWE observations: (a) number of manual observations
performed in the elevation intervals of the glaciers. (c) Area of the glacier according to the elevation interval. (e) Ratio between the observed
SWE and the Bw data. (b, d, f) Impact of the date considered the beginning of the accumulation season on seasonal precipitation totals:
(b) differences between accurate (varying) dates of the beginning of the accumulation period and the used dates in the study (the day and the
month of the used dates are written on the figure (DD.MM)). (d) Ratio between the total precipitation of MERRA-2 according to the accurate
dates and the used dates. (f) Ratio between the total precipitation of ERA5 according to the accurate dates and the used dates.

balance data that documents start dates of measured cumu-
lative snow precipitation of the winter season for each loca-
tion individually. Start dates have been inferred based on a
distributed glaciological modelling approach driven by daily
local weather data (Huss et al., 2021). The total precipita-
tion of ERA5 and MERRA-2 was derived over these varying
starting dates and was compared with the total precipitation

obtained with non-varying, average starting dates (Fig. 9b,
d and f). Figure 9b indicates that at high (low) elevations,
the accumulation season can start up to 20 d before (after)
the unique date that we considered for all elevation inter-
vals. These differences may translate into different amounts
of total precipitation. In extreme cases, the total MERRA-2
(Fig. 9d) or ERA5 (Fig. 9f) precipitation that would be ob-
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tained with varying dates would be almost twice (or half) of
the total precipitation that we considered. However, the im-
pact on the main results presented above is limited, because
these large differences are typically observed at the high-
est/lowest elevations of the glaciers, where the glacier area is
minor, and thus, a lower weight is assigned to the Bw data in
the training of the GBR models. Moreover, the main results
of the study are based on glacier-wide values, and for both
MERRA-2 and ERA5 we observe very small differences in
terms of glacier-wide precipitation totals for the majority of
the Swiss glaciers. Only in 6 out of 34 cases is the glacier-
wide ratio smaller (larger) than 0.97 (1.03), and only in two
cases it exceeds 1.10.

This analysis suggests that the used Bw data and the con-
sidered start dates can lead to relevant uncertainties in the
analysis of vertical profiles. However, this does not generally
have a relevant impact on our conclusions, which are mainly
based on glacier-wide values.

6 Conclusions

In this study, we developed and evaluated a machine learning
approach based on gradient boosting regressor models to ad-
just the total precipitation of reanalysis datasets (ERA5 and
MERRA-2) over the accumulation season on glaciers and to
ultimately reconstruct spatio-temporal winter mass balance
(Bw). The high performance achieved with our approach al-
lowed us to use it to derive observation-independent Bw es-
timates over glaciers in the Alps, Scandinavia, Central Asia
and western Canada. Data on Bw covering a period of up to
39 years from 95 glaciers (WGMS, 2021) were used to train
our approach.

The most important variables that were automatically se-
lected by our GBR models were those related to the eleva-
tion difference between the glacier surface and the terrain
model underlying the reanalyses. The latitude and longitude
of the studied sites were also frequently used in order to dis-
criminate between regions that are characterized by different
climate conditions and weather systems, allowing the GBR
models to be split into individual sub-models adapted to spe-
cific sub-regions.

In general, the total precipitation of the reanalyses largely
underestimates observed Bw on glaciers. The largest (rela-
tive) regional underestimation is observed in Central Asia for
MERRA-2 and in Scandinavia for ERA5 (Fig. 3). The GBR
models allowed for reducing these biases. In Central Asia
and western Canada, the correlation between the original re-
analyses’ estimates and the Bw on the analysed glaciers has
considerably increased with the season-independent GBRs
only. With the exception of some specific glaciers, our GBR
models outperformed the benchmark method (lapse-rate-
based approach) in the Alps, Scandinavia, Central Asia and
western Canada by reducing the bias of the original reanaly-
sis against the Bw data (Fig. 4). This suggests that more com-

plex and data-informed models such as our GBRs are needed
to adjust reanalysis data to different glaciers located in dif-
ferent topographical settings and climatic conditions and to
overcome the varying performance of reanalysis data for dif-
ferent region of the world.

Our results furthermore indicate that the season-
independent GBRs outperform the site-independent GBRs to
reduce the bias, which consequently makes filling temporal
data gaps much simpler than estimating Bw of glaciers where
no in situ observations are available. Thus, a denser network
of ground-based snow accumulation measurements and/or
improved remote sensing observations are of great impor-
tance to further develop methods that allow spatio-temporal
transferability of the observed snow and/or precipitation in
high-mountain areas.

The GBR models, compared to the original reanalyses,
have moreover shown improved performance in reproducing
temporal changes (over years) of Bw for the majority of the
analysed glaciers. Generally, our GBR models would allow
for deriving more accurateBw trends than the original reanal-
yses, thus potentially providing insights on the relation be-
tween climate change and snow accumulation over glaciers.

We finally demonstrated that machine learning models
(with robust cross-validation schemes) can be powerful in-
struments to adjust precipitation estimates over glaciers. The
new information that our approach is able to deliver can sig-
nificantly improve the calibration of glaciological and hydro-
logical models in different regions of the world, in particular
for regions where the quantity and quality of observations
are very limited, and the spatial resolution and performance
of reanalysis products are (too) low.

Appendix A: Equations used to derive the relative
humidity

The relative humidity is not directly provided by all the re-
analysis products; therefore we derived it by applying a sim-
ilar approach to Liston and Elder (2006) and Gupta and Tar-
boton (2016), which is presented hereafter.

A1 ERA5

The relative humidity is not directly provided at the grid
level; therefore, we combined the 2 m temperature (t2m) and
dew point temperature (d2m) as follows:

r2m∗ =
a · exp( b·d2m

c+d2m )

a · exp( b·t2m
c+t2m )

, (A1)

where r2m∗ is the computed 2 m relative humidity, and for
ice/snow, a = 611.21 Pa, b = 22.452 and c = 272.55 ◦C.

A2 MERRA-2

MERRA-2 is not providing the relative humidity at the grid
and at the pressure levels; furthermore, the dew point temper-
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ature is not provided at the pressure levels either. Therefore,
we combined the specific humidity and the pressure in order
to derive them (at the grid and at the pressure levels). For
ice/snow, a = 611.21 Pa, b = 22.452 and c = 272.55 ◦C.

Vapour pressure is

e∗ =
QV ·P

0.622+QV
, (A2)

where the specific humidity is QV= QV10M for the grid
and QV= QVlevels for the pressure levels, and the pressure
is P = PS for the grid and P = Plevels for the pressure levels.
The vapour pressure e∗ was named e10M∗ for the grid and
e∗levels for the pressure levels.

Dew point temperature is

Td∗ = 273.15+
c · ln( e

∗

a
)

b− ln( e
∗

a
)
. (A3)

The dew point temperature Td∗ was named Td10M∗ for the
grid and Td∗levels for the pressure levels.

Relative humidity is

RH∗ =
a · exp( b·Td∗

c+Td∗ )

a · exp( b·T
c+T

)
, (A4)

where the temperature is T = T 10M for the grid and T =
Tlevels for the pressure levels. The relative humidity RH∗ was
named RH10M∗ for the grid and RH∗levels for the pressure
levels.
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Appendix B: Derivation and list of the variables used in
the GBR models

In Tables B1 and B2, we report the complete list of variables
selected from the reanalyses products. In Table B3 we pro-
vide a summary of all the variables used by the GBR models.

Table B1. ERA5 variables used in the study.

Product type Variable abbreviation Variable full name

ERA5 constants z Surface geopotential
anor Angle of subgrid-scale orography
isor Anisotropy of subgrid-scale orography
slor Slope of subgrid-scale orography
sdor Standard deviation of orography

ERA5 single levels u100, u10 100, 10 m U wind component
v100, v10 100, 10 m V wind component
d2m 2 m dew point temperature
t2m 2 m temperature
bld Boundary layer dissipation
blh Boundary layer height
cp Convective precipitation
csf Convective snowfall
lsp Large-scale precipitation
lspf Large-scale precipitation fraction
lsf Large-scale snowfall
m.s.l. Mean sea level pressure
sf Snowfall
slhf Surface latent heat flux
ssr Surface net solar radiation
str Surface net thermal radiation
sp Surface pressure
sshf Surface sensible heat flux
tcrw Total column rain water
tcsw Total column snow water
tp* Total precipitation
p54.162 Vertical integral of temperature
deg0l 0 ◦C isothermal level

ERA5 pressure levels t Temperature
at 1000, 850, 700, 500, 400, 300 hPa r Relative humidity

w Vertical velocity

* Ttp was used as precipitation variable.
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Table B2. MERRA-2 variables used in the study.

Product type Variable abbreviation Variable full name

MERRA-2 constants PHYS Surface geopotential height
SGH Isotropic SD of GWD topography

MERRA-2 Land Surface Diagnostics PRECSNOLAND Snowfall
PRECTOTLAND* Total precipitation
TSURF Surface temperature

MERRA-2 Single-Level Diagnostics CLDPRS Cloud top pressure
CLDTMP Cloud top temperature
DISPH Zero plane displacement height
H100, H850, H500, H250 Height at 1000, 850, 500, 250 mb
OMEGA500 Vertical velocity at 500 hPa
PBLTOP Pbltop pressure
PS Surface pressure
Q850, Q500, Q250 Specific humidity at 850, 500, 250 hPa
QV10M, QV2M 10, 2 m specific humidity
SLP Sea level pressure
T10M, T2M 10, 2 m air temperature
T850, T500, T250 Air temperature at 850, 500, 250 hPa
T2MDEW Dew point temperature at 2 m
T2MWET Wet bulb temperature at 2 m
TQI Total precipitable ice water
TQL Total precipitable liquid water
TQV Total precipitable water vapour
TROPPB Tropopause pressure, blended estimate
TROPPT Tropopause pressure, thermal estimate
TROPPV Tropopause pressure, EPV estimate
TROPQ Tropopause specific humidity, blended estimate
TROPT Tropopause temperature, blended estimate
U50M, U10M, U2M 50, 10, 2 m eastward wind
U850, U500, U250 Eastward wind at 850, 500, 250 hPa
V50M, V10M, V2M 50, 10, 2 m northward wind
V850, V500, V250 Northward wind at 850, 500, 250 hPa

MERRA-2 Analysed Meteorological Fields at 1000 to T Air temperature
700 hPa (25 hPa steps) and 700 to 400 hPa (50 hPa steps) QV Specific humidity

* PRECTOTLAND was used as precipitation variable.
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Data availability. Winter mass balance data separated per eleva-
tion interval are freely available at https://doi.org/10.5904/wgms-
fog-2021-05 (EE-MASS-BALANCE data sheet in WGMS, 2021,
last access: 1 June 2021). The average slope and aspect of
the glaciers were obtained from the Randolph Glacier Inven-
tory version 6 at https://doi.org/10.7265/4m1f-gd79 (last access:
5 May 2021, RGI Consortium, 2017). ERA5 hourly data on
single levels and on pressure levels were downloaded from the
Copernicus Climate Change Service (C3S) Climate Data Store at
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2018b; last
access: 1 June 2021) and https://doi.org/10.24381/cds.bd0915c6
(Hersbach et al., 2018a; last access: 1 June 2021), respectively.
MERRA-2 Land Surface Diagnostics, MERRA-2 Single-Level Di-
agnostics and MERRA-2 Analysed Meteorological Fields data
are available at https://doi.org/10.5067/RKPHT8KC1Y1T (Global
Modeling and Assimilation Office (GMAO), 2015b; last access:
13 June 2021), https://doi.org/10.5067/VJAFPLI1CSIV (Global
Modeling and Assimilation Office (GMAO), 2015c; last ac-
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