Articles | Volume 17, issue 10
https://doi.org/10.5194/tc-17-4241-2023
https://doi.org/10.5194/tc-17-4241-2023
Research article
 | 
06 Oct 2023
Research article |  | 06 Oct 2023

A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams

Beatriz Recinos, Daniel Goldberg, James R. Maddison, and Joe Todd

Related authors

Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska
Beatriz Recinos, Fabien Maussion, Timo Rothenpieler, and Ben Marzeion
The Cryosphere, 13, 2657–2672, https://doi.org/10.5194/tc-13-2657-2019,https://doi.org/10.5194/tc-13-2657-2019, 2019
Short summary
The Open Global Glacier Model (OGGM) v1.1
Fabien Maussion, Anton Butenko, Nicolas Champollion, Matthias Dusch, Julia Eis, Kévin Fourteau, Philipp Gregor, Alexander H. Jarosch, Johannes Landmann, Felix Oesterle, Beatriz Recinos, Timo Rothenpieler, Anouk Vlug, Christian T. Wild, and Ben Marzeion
Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019,https://doi.org/10.5194/gmd-12-909-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Data Assimilation
Impact of time-dependent data assimilation on ice flow model initialization and projections: a case study of Kjer Glacier, Greenland
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023,https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
DeepBedMap: a deep neural network for resolving the bed topography of Antarctica
Wei Ji Leong and Huw Joseph Horgan
The Cryosphere, 14, 3687–3705, https://doi.org/10.5194/tc-14-3687-2020,https://doi.org/10.5194/tc-14-3687-2020, 2020
Short summary
Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter
Fabien Gillet-Chaulet
The Cryosphere, 14, 811–832, https://doi.org/10.5194/tc-14-811-2020,https://doi.org/10.5194/tc-14-811-2020, 2020
Short summary

Cited articles

Altena, B., Kääb, A., and Wouters, B.: Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements, The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, 2022. a, b
Arthern, R. J.: Exploring the use of transformation group priors and the method of maximum relative entropy for Bayesian glaciological inversions, J. Glaciol., 61, 947–962, https://doi.org/10.3189/2015JoG15J050, 2015. a
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res.-Atmos., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b
Download
Short summary
Ice sheet models generate forecasts of ice sheet mass loss, a significant contributor to sea level rise; thus, capturing the complete range of possible projections of mass loss is of critical societal importance. Here we add to data assimilation techniques commonly used in ice sheet modelling (a Bayesian inference approach) and fully characterize calibration uncertainty. We successfully propagate this type of error onto sea level rise projections of three ice streams in West Antarctica.