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Abstract. Ice sheet models are the main tool to generate fore-
casts of ice sheet mass loss, a significant contributor to sea
level rise; thus, knowing the likelihood of such projections is
of critical societal importance. However, to capture the com-
plete range of possible projections of mass loss, ice sheet
models need efficient methods to quantify the forecast uncer-
tainty. Uncertainties originate from the model structure, from
the climate and ocean forcing used to run the model, and
from model calibration. Here we quantify the latter, applying
an error propagation framework to a realistic setting in West
Antarctica. As in many other ice sheet modelling studies we
use a control method to calibrate grid-scale flow parameters
(parameters describing the basal drag and ice stiffness) with
remotely sensed observations. Yet our framework augments
the control method with a Hessian-based Bayesian approach
that estimates the posterior covariance of the inverted param-
eters. This enables us to quantify the impact of the calibra-
tion uncertainty on forecasts of sea level rise contribution or
volume above flotation (VAF) due to the choice of different
regularization strengths (prior strengths), sliding laws, and
velocity inputs. We find that by choosing different satellite
ice velocity products our model leads to different estimates
of VAF after 40 years. We use this difference in model output
to quantify the variance that projections of VAF are expected
to have after 40 years and identify prior strengths that can re-
produce that variability. We demonstrate that if we use prior
strengths suggested by L-curve analysis, as is typically done
in ice sheet calibration studies, our uncertainty quantification
is not able to reproduce that same variability. The regulariza-
tion suggested by the L curves is too strong, and thus prop-
agating the observational error through to VAF uncertainties
under this choice of prior leads to errors that are smaller than

those suggested by our two-member “sample” of observed
velocity fields.

1 Introduction

Ice sheet models are important tools not only for generating
knowledge, but also for operational forecasts. In this way,
they are analogous to weather models and oceanographic
models and have emerged as the de facto standard for gen-
erating projections of ice sheet contribution to sea level rise.
However, quantifying the uncertainty in forecasts produced
by these models remains one of the most challenging goals of
scientific inquiry (Aschwanden et al., 2021). Here, we seek
to characterize the uncertainty in model projections of ma-
rine ice sheet loss which arises from calibration with data.

The paradigm of ice sheet projection is the calibration of
the model parameters with observations (via control meth-
ods; e.g. Macayeal, 1992), followed by running of the cali-
brated model forward in time forced by future ocean and cli-
mate scenarios. The process is uncertain due to (i) model and
structural uncertainty (i.e. uncertainty in the formulation of
the model and its ability to represent the physics of the sys-
tem), (ii) uncertainty in external forcing (e.g. ocean melting
of ice shelves), and (iii) calibration uncertainty (i.e. the un-
certainty in calibrated parameters, sometimes referred to as
parametric uncertainty). In this study we use control methods
and a Bayesian inference approach to characterize (iii). The
Bayesian framework computes posterior information given
the assumed model and external forcing. We do not attempt
to quantify (i) and (ii), but we discuss how these uncertainties
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can be quantified and incorporated into our error propagation
framework.

The use of control methods (“inverse methods”) in ice
sheet modelling dates back to Macayeal (1992). Since then,
their use in estimating basal and internal conditions (hid-
den properties) of glaciers and ice sheets from measured sur-
face velocities has become widespread (e.g. Sergienko et al.,
2008; Morlighem et al., 2010; Cornford et al., 2015; Hill
et al., 2021, to name a few). This is mostly due to the abil-
ity of these methods to perform large-scale inversions via the
minimization of a cost function, thus allowing a better rep-
resentation of basal and rheological conditions to which the
ice flow is sensitive (Barnes et al., 2021). However, these data
assimilation techniques may not be well posed (Petra et al.,
2014) and a unique solution is never guaranteed, regardless
of the control method used (Barnes et al., 2021). Control
methods have regularization terms which need to be chosen
in order to impose smoothness on the inverted parameters
(Koziol et al., 2021). In many studies, the strength of the reg-
ularization is determined heuristically through L-curve anal-
ysis (Gillet-Chaulet et al., 2012; Barnes et al., 2021). Addi-
tionally, control methods do not provide calibration uncer-
tainty. They can be interpreted as methods that return only
the mode of a posterior probability density function (PDF)
of the inverted model parameters, which does not fully char-
acterize calibration uncertainty (Koziol et al., 2021), nor does
it propagate the observational uncertainty onto projections of
sea level rise.

Previous works attempted to quantify uncertainty by con-
sidering the forcing uncertainty (Tsai et al., 2017; Robel
et al., 2019; Levermann et al., 2020) or structural uncertainty
(Hill et al., 2021). Others considered calibration uncertainty
(Isaac et al., 2015; DeConto and Pollard, 2016; Brinkerhoff
et al., 2021; Brinkerhoff, 2022) but used low-dimensional
parameter sets (i.e. smaller than ∼ 20) to describe the ice
rheology and basal friction. Here we carry out the first as-
sessment of calibration uncertainty using a time-dependent
marine ice sheet model (FEniCS_ice, Koziol et al., 2021)
in which the calibration of the ice dynamic parameters scales
with the dimension of the numerical grid – i.e. we calibrate
each parameter for every element in our mesh of approxi-
mately 100 000 unknowns (see Fig. 1).

We deal with the problem of estimating the uncertainty
in the calibrated parameters (or in the solution of our
infinite-dimensional inverse problem) with the framework of
Bayesian inference (Tarantola, 2005; Stuart, 2010), in which
prior knowledge is “updated” with observational evidence
(Koziol et al., 2021). Given satellite ice velocity observa-
tions (and their uncertainty), a forward model that maps pa-
rameters to observations (e.g. FEniCS_ice), and a prior
probability density on model parameters that encodes any
prior knowledge or assumptions regarding the parameters
(e.g. prior covariance of the ice stiffness parameter in Glen’s
ice flow law; Glen and Perutz, 1955; Pattyn, 2010), we find
the posterior probability density of the parameters condi-

Figure 1. Variable-resolution mesh of the study domain. The res-
olution depends on observed strain rates derived by using satellite
velocity data (MEaSUREs v1.0 1996–2012, Rignot et al., 2014) and
BedMachine Antarctica v2.0 (Morlighem et al., 2020). The bound-
aries to the east and south are entirely ice–ice boundaries, whereas
the north and west feature calving fronts where ice meets the ocean.

tioned on the observational data. This posterior probability
density function (PDF) is defined as the Bayesian solution of
our ice sheet inverse problem (Petra et al., 2014). A stan-
dard approach to characterize this posterior PDF is based
on sampling via state-of-the-art Markov chain Monte Carlo
(MCMC) methods. Yet the use of conventional MCMC ap-
proaches becomes intractable and prohibitive due to compu-
tational expense for large-scale ice sheet inverse problems
where we would need a very large number of realizations of
the time-dependent nonlinear Stokes equation (Isaac et al.,
2015; Koziol et al., 2021).

However, it can be shown that under certain assumptions,
the posterior covariance (a property of the joint posterior
PDF) of the inverted parameters can be characterized by
the inverse of the Hessian (the matrix of second derivatives)
of the cost function with respect to the inverted parameters
(Thacker, 1989; Kalmikov and Heimbach, 2014; Petra et al.,
2014; Isaac et al., 2015). Our framework augments the con-
trol method by using this Hessian-based Bayesian approach
that not only inverts for the ice dynamic parameters such that
model velocities match observations, but also characterizes
the posterior covariance of each inverted parameter (also re-
ferred to as control parameters in this study).

We perform a joint inversion for a basal sliding coefficient
and a rheological parameter for describing ice stiffness. Be-
ginning with a cost function definition which allows velocity
data to be imposed at arbitrary locations (i.e. a point cloud),
we generate a low-rank update approximation to the poste-
rior covariance of the control parameters via the use of the
Hessian of the cost function and find the sensitivities of a
time-evolving quantity of interest (QoI) to the control param-
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eters. We then project the covariance onto the resulting linear
sensitivity to estimate the growth of the QoI uncertainty over
time; here our QoI is the sea level rise contribution or volume
above flotation (VAF).

We apply this error propagation framework to a realistic
setting for the first time (three ice streams in West Antarctica)
and present several model experiments that explore the im-
pact on the uncertainty in forecasts of VAF due to the choice
of different strengths of priors (regularization strength), slid-
ing laws, and velocity inputs. We find that significant dif-
ferences in satellite ice velocity products (particularly at the
ice margins) can lead to different projected estimates of sea
level rise contributions or VAF trajectories. We also find that
the choice of regularization strength or regularization param-
eters, suggested by L-curve analysis – a common means of
estimating such parameters – may lead to an overly infor-
mative prior. Here the prior information is sufficiently strong
that we gain a false low posterior error estimate.

We investigate the effect that data density (density of ob-
served velocity data points) has on the resulting inference.
This diagnostic suggests that a large number of data points
may be redundant when inverting for the control parameters,
with potential implications for observational velocity error
models and how they inform the uncertainty in our projec-
tions. Additionally, we test our inversion results against the
numerical framework of a different ice sheet model (i.e. the
STREAMICE module of MITgcm; Goldberg and Heimbach,
2013) in order to qualitatively inspect model structural uncer-
tainty and forcing uncertainty.

2 Methods

The mathematical framework of FEniCS_ice is explained
in detail in Koziol et al. (2021). In this section we summarize
the model physics, the data assimilation techniques used for
the calibration of two key ice dynamic parameters, and how
we quantify calibration uncertainty in projections of sea level
rise contributions or volume above flotation (VAF).

2.1 Physics

FEniCS_ice solves the Stokes equation by implement-
ing the well-known shallow-shelf approximation (SSA;
MacAyeal, 1989; Schoof, 2006; Shapero et al., 2021; Hill
et al., 2021). The ice velocity u is vertically integrated and
has two components: internal deformation and basal slid-
ing (see Sect. 3 from Koziol et al., 2021, for details). The
model uses data assimilation methods to optimize these ve-
locity components based on observations by estimating two
“hidden” properties of the ice: (i) the basal friction coeffi-
cient (α) in the sliding law and (ii) the rheological parameter
for describing ice stiffness (β) in Glen’s flow law (both prop-
erties are referred to as control parameters in this study). In
this section we define the control parameters and the time-

dependent SSA, whereas the details of the inverse methodol-
ogy are explained in Sect. 2.4.

2.1.1 Ice rheology and basal sliding

We define the ice viscosity ν, which depends on εe, the sec-
ond invariant of the strain-rate tensor, as

ν =
1
2
Bε

1−n
2n

e .

B is generally referred to as the “stiffness” of the ice and is
thought to depend on ice temperature (Pattyn, 2010). Here
we define the control parameter β as the square root of that
stiffness, where β =

√
B =
√

A−1/n. A in this definition is
the rate factor commonly known as the ice creep parameter
in Glen’s ice flow law (Glen and Perutz, 1955), and n is the
exponent of Glen’s flow law with the widely accepted value
of 3 (Cuffey and Paterson, 2010).

Basal sliding is considered the dominant component of
surface velocities in fast-flowing ice streams (Hill et al.,
2021), making the time-dependent part of the ice sheet model
sensitive to the choice of sliding law (Brondex et al., 2019;
Barnes and Gudmundsson, 2022); thus, we consider two dif-
ferent sliding laws. The first is the Weertman–Budd sliding
law (Weertman, 1957; Budd et al., 1979; Budd and Jenssen,
1987) defined here as

τ b = α
2N1/3u−2/3u, (1)

where τ b is basal stress, α is the scalar spatially varying slid-
ing coefficient, u is ice speed, andN is the effective pressure.
Here N is defined as

N = ρigH +min(0,R)ρwg, (2)

where ρi and ρw are ice and ocean densities, g is the magni-
tude of the gravitational acceleration, H is the ice thickness,
and R is the bed elevation (Koziol et al., 2021). Furthermore,
basal stress is nonzero only where ice is grounded, i.e. where
ρigH + ρwR > 0. The second sliding law considered is of-
ten referred to as the Cornford sliding law (Asay-Davis et al.,
2016; Cornford et al., 2020) and is defined as

τ b =
µα2Nu

1−m
m

[α2mu+ (µN)m]1/m
u, (3)

where µ= 1
2 andm= 3. A key property of both sliding laws

is that as the grounding line is approached, effective pressure
becomes small, leading to a smoother transition across the
grounding line in terms of the basal drag from floating to
grounded conditions.

While additional sliding laws have been proposed and are
now implemented within a number of existing ice flow mod-
els (Hill et al., 2021), in this study we use the Weertman–
Budd sliding law for most of our experiments, as it is one
of the most commonly used. However, we trial our error
model framework using the Cornford sliding law (Asay-
Davis et al., 2016) and compare the results of both sliding
laws in Sect. 5.3.
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2.1.2 Time-dependent ice sheet model

The resulting calibrated fields of α and β (see Sect. 2.4 for
details regarding the parameters calibration) are then input
into our forward-in-time simulations where the continuity
equation is solved:

Ht +∇ · (Hu)= b. (4)

Here, b represents localized changes in mass at the surface
and/or the base of the ice sheet, i.e. accumulation due to
snowfall or basal melting of the ice shelf by the ocean. We
assume a constant and uniform surface mass balance field
in time and space (i.e. surface mass balance of 0.38 mm of
sea level equivalent based on Arthern et al., 2006) and im-
plement a simple depth-dependent parameterization of ocean
melt rate m, which gives the melt rate as a function of ice
shelf draft only. Such parameterizations have been used pre-
viously to examine the response of marine ice sheets to ice
shelf melting (e.g. Favier et al., 2014; Seroussi et al., 2017;
Lilien et al., 2019; Robel et al., 2019). The form we use is

m(zb)=
Mmax

2

(
1+ tanh

[
2
(
zb− zth

zth

)])
, (5)

where zb is ice shelf depth, Mmax is the maximum melt rate,
and zth represents the depth of the ocean thermocline. m is
nonzero only where ice shelf thickness H is below flotation
and is also set to zero where thickness H is below 10 m.

We use such a parameterization because our aim is to
study glaciers which are strongly forced by modified Cir-
cumpolar Deep Water (CDW), which is present on certain
parts of the Antarctic continental shelf as a warm deep layer
overlain by cold surface-modified waters (e.g. Jacobs et al.,
2011; Dutrieux et al., 2014; Jenkins, 2016; Jenkins et al.,
2018). The form of Eq. (5) is chosen because the melt pro-
file transitions from low melt rates above the thermocline
depth zth to strong melting at depth and saturates at Mmax
rather than growing without bound. Defining the parameter-
ization in this way rather than a piecewise linear function
helps maintain differentiability, which aids the later applica-
tion of algorithmic differentiation (Sect. 2.5). We discuss our
particular choice of Mmax and zth below in Sect. 3.

The continuity equation is solved with the purpose of find-
ing the loss of ice volume above flotation (VAF), the volume
of ice that can contribute to sea level at a certain time T (e.g.
T = 40 years), which is defined as

QT =

∫
�

(
H(T )−Hf

)+dA, (6)

where Hf is the flotation thickness defined by
max(0,−R

(
ρw
ρi

)
), � is the computational domain (see

Sects. 2.2 and 3 for details), and + refers to the positive part
of the bracketed quantity. Note that we have simplified the
ice sheet surface mass balance and the basal melting of the

ice shelf; thus, calculations of future VAF loss estimates pre-
sented here do not constitute realistic projections. However,
Eqs. (4) and (6) are convenient to calculate such projections
and sufficiently nontrivial and nonlinear that the effect of
uncertainty arising from the calibration of α and β with
observations can be seen.

2.2 Discretization

We solve the shallow-shelf approximation (SSA) momentum
balance as well as Eq. (4) using the FEniCS finite-element
software library (Alnæs et al., 2015). We discretize veloc-
ity u, bathymetry R, and drag and stiffness parameters α
and β using first-order continuous Lagrange elements on a
triangular finite-element mesh. Thickness is defined to be
constant within elements (a DG(0) discretization). The only
non-standard aspect of the formulation is in the weak def-
inition of the driving stress ρgH∇zsurface, which is written
as F +W∇R (see Sect. 3 in Koziol et al., 2021, for F and
W definitions and the SSA formulation). This formulation
is equivalent to the more standard form of driving stress
when H is discretized using continuous finite elements, but
with this formH can be discretized using zero-order discrete
Galerkin (DG(0)) elements as well. The continuity in Eq. (4)
is solved using a simple first-order upwind scheme, which is
found to be more stable when using a DG(0) thickness func-
tion. Details of the mesh generation are explained in Sect. 3
when we discuss the study area.

2.3 Notation

To facilitate readability of this and subsequent sections we
adopt formatting conventions for different mathematical ob-
jects. Coefficient vectors corresponding to finite-element
functions appear as c, other vectors and vector-valued func-
tions as d̆ ∈ Rq , and matrices as E.

2.4 Cost function J c

To calibrate the basal sliding coefficient (α) and the rhe-
ological parameter for describing ice stiffness (β) we ap-
ply data assimilation techniques typically used in glaciology
(Morlighem et al., 2010; Joughin et al., 2010; Cornford et al.,
2015), where the aim is to find the parameter sets which give
the best fit to ice velocity observations. Our approach aug-
ments such data assimilation techniques by using a Hessian-
based Bayesian approach to characterize uncertainty of α and
β. In Sect. 2.5 we describe how we propagate the errors that
result from this calibration into projections of VAF. Here we
describe how we invert for the control parameters via the
minimization of a scalar cost function which takes the gen-
eral form

J c
= J c

mis+ J
c
reg. (7)

J c
mis, the misfit cost, is half the square integral of the misfit

between the surface velocity of the ice model and remotely
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sensed observations, normalized by the observational vari-
ance. These terms are discretized to implement the control
method (as described in Sect. 2.2). The misfit cost can be
written as

J c
mis =

1
2
‖ŭobs− ŭ‖

2
0−1

obs
. (8)

Here, ŭobs is the observed velocity given as cloud point data
(location and velocity value); ŭ is the velocity estimated via
the SSA approximation, interpolated at ŭobs coordinates; and
the norm ‖ · ‖

0−1
obs

is defined by

‖x̆‖
0−1

obs
=

√
x̆T0−1

obsx̆, (9)

where 0obs is the observational covariance. As non-diagonal
error covariance is not given for the considered observational
datasets, 0obs is a diagonal matrix containing the variance of
the observations – note that this neglects observational co-
variance (see Sects. 3.1.3 and 6.4 where we discuss observa-
tional error covariance).
J c

reg, the regularization cost, is imposed to prevent insta-
bilities and is typically chosen as a Tikhonov operator which
penalizes the square integral of the gradient of the parameter
field (e.g. Morlighem et al., 2010; Cornford et al., 2015). It
is defined as

J c
reg =

1
2
‖c− c0‖

2
0−1

prior
, (10)

where c is our hidden field, which depends on both control
parameters c = (α,β). c0 is the prior mean and the symmet-
ric positive definite 0prior is the prior covariance matrix of
the control parameters. The terminology “prior” is used be-
cause, even though Eq. (10) can be interpreted as a regular-
ization cost in the context of a deterministic control method
inversion, it can be interpreted in terms of a prior PDF in a
Bayesian context as discussed in Sect. 2.5 and 2.6.
0prior is block-diagonal, with blocks corresponding to each

of α and β. Following from Koziol et al. (2021), each block
is defined as

L−1ML−1, (11)

where M is the finite-element mass matrix, and L is the stiff-
ness matrix that arises from a finite-element discretization of
the differential operator

L(·)≡ γ∇2(·)− δ(·), (12)

where depending on the parameter in question (sliding α or
ice stiffness β coefficient) γ is either γα or γβ , and δ is either
δα or δβ . J c

reg determines the degree of smoothness of the
inverted parameters (determined by γα,β ) and deviation from
the prior mean (determined by δα,β ). α0, the prior mean of α,
is zero. The prior mean of β is given by

β0 =

(
I −

γ

δ
∇

2
)−1

βbgd, (13)

where βbgd is the initial guess, described in Sect. 3.
Previous assimilations of satellite velocities also consid-

ered ice bed and surface elevations as control parameters
(MacAyeal et al., 1995) because available elevation products
at the time did not capture small-scale features that could
drive variations in velocity. We consider this to be less of
an issue with current elevation products (e.g. BedMachine
Antarctica v2.0; Morlighem et al., 2020), though future stud-
ies with our framework could consider topographic uncer-
tainty and how it covaries with the uncertainty of other pa-
rameters.

2.5 Error propagation framework

Our goal is to find p(c|ŭobs), i.e. the posterior probability
density function (PDF) of the control parameters (c) given
the observational data (ŭobs), as well as to propagate forward
the associated uncertainty in projections of VAF (QT ). The
error propagation framework used here follows from Isaac
et al. (2015) and similar studies (Bui-Thanh et al., 2013; Pe-
tra et al., 2014), and it has been described in detail by Koziol
et al. (2021) – here the key elements are summarized.

The cost function (Eq. 7) can be interpreted in a Bayesian
sense. The misfit term of the cost function, J c

mis, is commonly
used in ice sheet data assimilation but is also (up to a normal-
ization term) the negative logarithm of a multivariate Gaus-
sian PDF with mean ŭ and covariance matrix 0obs, and J c

reg
has a similar property. This means that Eq. (7) is actually an
expression of Bayes’ theorem (Stuart, 2010):

p(c|ŭobs)=
p(ŭobs|c)p(c)

p(ŭobs)
. (14)

The relationship states that the PDF of the inverted parame-
ters conditioned on the data is determined by both the likeli-
hood of observing the data conditioned on the modelled ve-
locity values and the prior distribution of sliding and stiffness
parameters – which is not conditioned on data. The connec-
tion with Eq. (7) can be seen by taking the negative logarithm
of both sides and ignoring p(ŭobs), which is essentially a nor-
malization constant. Thus, minimizing the cost function is
equivalent to finding the maximum (or mode) of the poste-
rior – often referred to as the maximum a posteriori, or MAP,
estimate.

In the case of a linear model, the posterior inverse covari-
ance, denoted 0−1

post, is given by the Hessian matrix (here re-
ferred to as the “Hessian”) of J c evaluated at the MAP point.
In the general case the Hessian defines a Gaussian approx-
imation for the posterior PDF (as the second-order approx-
imation for its negative logarithm at the MAP point) and
thus defines an approximation for the inverse posterior co-
variance. Thus, even if the posterior is non-Gaussian, we can
learn about its shape in the vicinity of the MAP point, giving
more information than if we simply minimized J c.

If we have estimates of VAF at a given time (Eq. 6), which
depend linearly on the control parameters, and if the posterior
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(0post) is Gaussian, then the posterior variance of VAF at a
time T is given by

σ 2(QT )=

(
∂QT

∂c

)T
0post

(
∂QT

∂c

)
. (15)

Essentially, the posterior parameter uncertainty is projected
onto the VAF projection. If, for example, sliding coefficients
in a certain region have high uncertainty due to error-prone
data but have little influence on VAF, this will not contribute
greatly to VAF uncertainty. In the case that 0post is not Gaus-
sian or estimates of VAF depend nonlinearly on the control
parameters, Eq. (15) yields an approximation of that poste-
rior variance σ 2(QT ). We discuss the limitations of these as-
sumptions in Sect. 6.

We use the time-dependent adjoint capabilities of
FEniCS_ice to find the sensitivities of VAF to the control
parameters ( ∂QT

∂c
) for discrete values of T over 40 years. The

Hessian itself, which is a good approximation for 0−1
post, is in

general a large, dense matrix which is difficult to invert – so
0post is approximated using a low-rank update to the prior
covariance matrix,

0post ≈ 0prior−Cr3r(Ir +3r)−1CTr , (16)

where 3r and Cr respectively represent the leading r eigen-
values and eigenvectors of the prior-preconditioned misfit
Hessian:

H̃mis = 0prior

(
∂2J c

mis

∂c2

)
. (17)

Notably, this decomposition has the quality that the leading
eigenvectors (those with the largest eigenvalues) are those
most informed by the data. The leading eigenvectors define
the components of the control parameters for which the ob-
servations change the estimated posterior uncertainty, rela-
tive to the prior uncertainty, by the largest factor. Thus, the
retained eigenvectors of the Hessian inform the space of our
mesh in which the model inversion gained the most infor-
mation from the observations and the prior (see Fig. 9 and
Sects. 2.6 and 5.1 for details).

Computationally the key ingredients to compute σ 2(QT )

are the ability to find a minimizer of J c, the ability to com-
pute the derivatives of VAF with respect to the control param-
eters ( ∂QT

∂c
), and the ability to compute Hessian information.

The minimization of J c can be accelerated using gradient-
based methods if J c itself can be differentiated with respect
to c. Here the required first and second derivative information
is obtained using tlm_adjoint (Maddison et al., 2019),
with L-BFGS (Zhu et al., 1997; Morales and Nocedal, 2011)
used to perform the minimization of J c and SLEPc (Hernan-
dez et al., 2005, 2007) used to calculate the eigendecompo-
sition. An important point to make is that the eigenproblem
requires only the action of the misfit Hessian, which would
be computationally infeasible to form in full. Additionally,

the Hessian takes account of the full nonlinearity of the ice
sheet model, in contrast to the Gauss–Newton approximation
to the Hessian (Shapero et al., 2021). In Koziol et al. (2021)
a comparison was made between the two in the context of an
idealized problem, and results were minimal. For more de-
tails on the error propagation framework, see Koziol et al.
(2021).

For all the experiments presented in this study, we cal-
culate up to 104 (out of 105) eigenvalues and eigenvectors
to ensure the convergence of σ 2(QT ) against the number of
eigenvalues (see results in Sect. 5). The uncertainty of VAF
at discrete times σ 2(QT ) is then found using Eq. (15), which
can then be linearly interpolated to find a “trajectory” of un-
certainty.

2.6 Prior distribution of parameters

As mentioned above, the regularization cost J c
reg can be in-

terpreted in the Bayesian sense in terms of a prior PDF. This
prior expresses knowledge of our parameter fields before any
data constraints are applied (Arthern, 2015). We model the
prior as Gaussian, meaning it is completely defined by its co-
variance 0prior and its mean. Although 0prior is determined
by the scalars γ and δ (Sect. 2.4), their meanings are not in-
tuitive. In some of our experiments we therefore make use
of the following expressions for a characteristic pointwise
variance σ 2

c(0) and auto-covariance length scale lc(0) of each
control parameter (see Sect. 2.2 in Lindgren et al., 2011, for
details):

σ 2
c(0) =

1
(4πγ δ)

, (18)

lc(0) =

√
γ

δ
. (19)

For example, if lα(0) and σ 2
α(0) (the auto-covariance scale and

pointwise variance of α, respectively) are both large, then
samples of α from the prior are likely to deviate strongly
from 0 but show little variation over short length scales.
Meanwhile, if lβ(0) and σ 2

β(0) are both small, then samples
of β are likely to vary at small scales but with small devia-
tions from β0. We consider prior distributions of α and β to
be independent.

We note that our form of J c
reg differs from the square gra-

dient regularization sometimes used in control methods (e.g.
Morlighem et al., 2010; Cornford et al., 2015) – but it is used
because the associated prior distribution avoids infinite point-
wise variance as the mesh is refined (Bui-Thanh et al., 2013).
In Sect. 5.1, we show the impact on the VAF projection un-
certainty due to the choice of prior properties.

3 Study area, model domain, and data sources

Our study area, shown in Fig. 1, covers part of the Amund-
sen Sea Embayment (ASE) in West Antarctica and includes
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Figure 2. Observational input data. Satellite surface velocity observations (vector magnitude) and standard deviation (SD) of the velocity
components (vx and vy) from ITS_LIVE (a, b, c; Gardner et al., 2019, 2018) acquired from January to December 2014 and from MEaSUREs
v2.0 (d, e, f; Rignot et al., 2017) acquired from July 2013 to July 2014. For details on observational error model (SD estimates) see Sect. 3.1.3.

three ice streams: Pope, Smith, and Kohler (PSK) glaciers,
as well as the Dotson and Crosson ice shelves. PSK glaciers
have exhibited some of the highest retreat rates in Antarctica
throughout the satellite observing record, with their ground-
ing lines receding over 30 km in recent decades (Scheuchl
et al., 2016; Goldberg and Holland, 2022). Their catchment
can potentially contribute up to 6 cm to the global mean
sea level (Morlighem et al., 2020), double the global mean
sea level contribution of the inventory of Earth’s mountain
glaciers (when excluding the Antarctic and Greenland pe-
riphery; Hock et al., 2023). A complete collapse of the ice
shelves in this area would likely lead to accelerated mass
loss from adjacent ice streams, including Thwaites Glacier
(Goldberg and Holland, 2022). Previous modelling studies
have shown that past and future retreat of these glaciers is
strongly tied to ocean-forced melting but that the method
of calibration may affect projected rates of ice loss as well
(Lilien et al., 2019; Goldberg and Holland, 2022). As such,
and due to the vast quantity of data available for this region,
we choose this area to test our model error framework in a
realistic setting.

The domain is set up by generating an unstructured
finite-element mesh using time-averaged strain rates com-
puted from satellite velocity observations (MEaSUREs v1.0
1996–2012, Rignot et al., 2014). Additionally, BedMachine
Antarctica v2.0 (Morlighem et al., 2020) is used to provide
geometry field information and the raster mask from which
we define our boundary conditions: ice–ocean (calving) and
ice–ice (edge of domain) boundaries in Fig. 1. The mesh
generation occurs in two phases, first by generating an ini-

tial uniform-resolution mesh of 1000 elements with the mesh
generator Gmsh (v.4.8.4 Geuzaine and Remacle, 2009) and
second by refining that mesh with the calculated strain met-
ric in the MMG software (v5.5.2 Dobrzynski, 2012). This
generates a finer triangular mesh in the areas of the do-
main where high resolution is needed (e.g. close the calv-
ing front and in areas where velocities are higher in Fig. 2).
The mesh resolution is highly heterogeneous and depends
on the observed strain rates, with a minimum resolution of
approximately 200 m and a final mesh size of 102 852 ele-
ments. BedMachine Antarctica v2.0 (Morlighem et al., 2020)
is also used to define the model’s bed, ice thickness, and sur-
face elevation fields. The initial guess for β, βbgd, is gener-
ated from the temperature dataset of Pattyn (2010). Based
on coupled ice sheet–ocean modelling for the region (Gold-
berg and Holland, 2022), spatially uniform melt parameters
of Mmax = 30 myr−1 and zth = 600 m were chosen.

3.1 Velocity input data sources

In the last 2 decades, ice velocity mapping at the continen-
tal scale (Rignot et al., 2011; Gardner et al., 2019, 2018) has
allowed major advances in the study of polar regions by pro-
viding complete observations of the complex flow pattern of
ice sheets and glaciers (Mouginot et al., 2017). Much em-
phasis has been put on the fast processing of large data vol-
umes and products with complete spatial coverage. However,
the metadata from such measurements are often highly sim-
plified regarding the measurement precision and uncertainty
(Altena et al., 2022). Moreover, the methods used to estimate
errors in the observed velocities tend to often produce errors
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that are unrealistically small (see Fig. 2 or Gardner et al.,
2019). A quantification of the error estimation or dispersion
(standard deviation) for each individual velocity measure-
ment can be important for the inversion of unknown ice dy-
namic parameters (e.g. the basal friction coefficient α). Er-
rors in the velocity data can propagate into derived results in
a complex way, making model outcomes very sensitive to ve-
locity noise and outliers (Altena et al., 2022). Therefore, we
use two satellite velocity products to carry out inversion ex-
periments and calibration uncertainty propagation: the MEa-
SUREs InSAR-Based Antarctica Ice Velocity Map (MEa-
SUREs v2.0. Rignot et al., 2017; Mouginot et al., 2017) and
ITS_LIVE surface velocities (Gardner et al., 2019, 2018). To
avoid large data gaps in the observations we focus on data
acquired between 2013 and 2014 (see Fig. 2). MEaSUREs
provides surface velocities from July 2013 to July 2014 and
ITS_LIVE from January to December 2014; thus, we inves-
tigated the effect of the 6-month offset between the two prod-
ucts, which turned out to be negligible (see Fig. A1 of Ap-
pendix A). In this section, we describe the acquisition sensors
and standard deviation (SD) of each dataset, as this is rele-
vant to understanding the differences between each product,
our experimental design, and our results (see Sect. 4.2 and
5.2).

3.1.1 MEaSUREs v2.0

The grid spacing of this dataset is 450 m. According to the
product metadata (Rignot et al., 2017; Mouginot et al., 2017),
the 2013–2014 year is a result of the data gathered by several
instruments: RADARSAT-2 (CSA, 2012–2016), Sentinel-1
(Copernicus/ESA/EU, 2014–2016), and Landsat 8 (2013–
2016). Landsat 8 is an optical sensor, and it has mapped
most of the ice sheet interior and the Antarctic coast, whereas
RADARSAT-2 and Sentinel-1 are C-band synthetic aperture
radar (SAR) instruments and have mostly captured veloci-
ties in the coast. Mouginot et al. (2017) notice that along
the Antarctic coast, large differences (≥ 50 myr−1) between
Landsat 8 and SAR-based velocities are found, which can
be due to stronger weather, ionospheric noise, and ongoing
velocity changes.

3.1.2 ITS_LIVE

The grid spacing of this dataset is 240 m. Surface velocities
are derived only from optical sensor imagery (Landsat 4, 5, 7,
and 8) using the auto-RIFT feature-tracking processing chain
described in Gardner et al. (2018). Data scarcity and/or low
radiometric quality are significant limiting factors for many
regions in the earlier product years. However, annual cover-
age is nearly complete for the years following the Landsat 8
launch in 2013 (Gardner et al., 2019).

3.1.3 Observational error model

The construction of 0obs based on reported errors deserves
attention. Neither velocity product reports information on
spatial error covariance, so 0obs is diagonal for both prod-
ucts. We interpret the likelihood PDF, p(ŭ|c), as the den-
sity associated with the likelihood for a single outcome of
an observation, as opposed to the distribution of the average
outcome over an ensemble of observations. Essentially, we
consider the standard deviation of observations, as opposed
to the standard error of a sample mean.

The MEaSUREs product reports both error and standard
deviation (SD), and we use the latter to construct 0obs. The
ITS_LIVE product does not report standard deviation but
gives the number (count) of measurements for each data
point and expresses error variance as an inverse weighted
sum of individual measurement variances (Gardner et al.,
2019). We therefore express the standard deviation of each
velocity component as

SDITS = count
1
2 × errITS. (20)

Note that this formula assumes uniform variance over all
measurements contributing to a data point, which is not likely
to be true.

In Koziol et al. (2021) it is shown for an idealized problem
that the diagonality of 0obs leads to ever-decreasing poste-
rior uncertainty as data density is increased. This is only an
issue if errors correlate over the scale of separation of data
points, but assessing error covariance is beyond the scope of
this study. Still, this deficiency guides our investigation of the
impacts of data density, described below in Sect. 4.

4 Experimental design and rationale

All inversion methods contain regularization parameters
which must be chosen (Barnes et al., 2021), and L-curve
analysis (e.g. Fürst et al., 2015; Jay-Allemand et al., 2011;
Gillet-Chaulet et al., 2012; Barnes et al., 2021) is a com-
monly used technique to make an informative guess regard-
ing the value of these parameters – although there are alter-
native approaches (see Sect. 2.6 or Waddington et al., 2007;
Habermann et al., 2013). Another common aspect of inver-
sions in ice sheet modelling, due to data availability, is to use
only one type of remotely sensed ice velocity product for the
calibration of the control parameters. In this section we study
how these ongoing practices can impact the forecast of VAF
and its uncertainty (see Sect. 4.1 and 4.2). Additionally, we
assess the effect that data density (i.e. decreasing the num-
ber of observations) has on the inference (see Sect. 4.3). The
experiments described in this section lay the groundwork for
the model configurations used in Sect. 5.
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4.1 L-curve analysis on the control parameters

The L-curve criterion often used in the ice sheet modelling
literature (Jay-Allemand et al., 2011; Gillet-Chaulet et al.,
2012; Seddik et al., 2017; Barnes et al., 2021) is based on
Hansen (1992, 2001) and is used to visualize the trade-off
between the magnitude of the regularization term (how much
the control parameters should vary) and the quality of the fit
(how well we can reproduce observations). L curves are gen-
erally created by plotting the regularization terms against the
misfit in a log–log scale, and the right regularization term
is chosen by locating the “corner” of the L curve. How-
ever, there is large variability in the application of this crite-
rion among studies (e.g. compare Seddik et al., 2017; Barnes
et al., 2021) and finding the corner or “best trade-off” is often
done heuristically. Here we aim to pick parameters (γ and δ)
whose values lie near the corner of the L, where neither J c

nor J c
reg takes high values, following Barnes et al. (2021) ap-

proach.
We generate L curves by varying the smoothing parame-

ters γ and δ rather than the variance and length scale arising
from a physical interpretation of the prior (Sect. 2.6). Both
L curves in Fig. 3e and f are computed independently from
each other – i.e. varying one parameter over several orders
of magnitude while the other three parameters remain fixed
(L-curve model configurations are shown in Table A1). To
shorten this analysis we show only L curves for γ in Fig. 3;
L curves for δ can be found in Appendix A2. The L curves
presented in Fig. 3e and f are created by using ITS_LIVE
surface velocities to find the misfit J c

mis (Eq. 7) and by plot-
ting the regularization terms against the cost function value
J c, as the regularization terms γα and γβ (Eq. 12) vary over
several orders of magnitude (104 to 10−4).

In order to understand the effect that the strength of the
regularization (or prior strength) has on the control param-
eters, we show α and β spatial distributions computed us-
ing the extreme values of the L curves (see Fig. 3a to d). If
the prior strength is strong (i.e. a large γα) the inverted pa-
rameter field (in this case the sliding coefficient) is relatively
smooth (see Fig. 3b) and J c generally small. The L curve for
γα in Fig. 3e suggests γα = 100.0 as a reasonable trade-off
between the cost function value and the regularization term.
For γβ this value is 1 order of magnitude smaller (γβ = 10.0,
see Fig. 3f). For δα,β the L-curve analysis suggests a value of
1×10−5 (see Table A1 for all parameter statistics and units).
We used those values to conduct the rest of the experiments
presented in Sect. 4.2 and 4.3.

4.2 Model output computed with different ice velocity
observations

We use the regularization parameters found in the previous
section and run all stages of the error model framework (all
methods in Sect. 2) twice using different satellite velocity
products for each run: MEaSUREs and ITS_LIVE. We com-

pare the observed ice velocity from both products in Fig. 4b
and find significant differences (≥ 100 myr−1), especially at
the ice margins. The assimilated states of FEniCS_ice re-
produce these differences as shown in Fig. 4a, where we
show modelled velocity differences between the two runs.
Consequently, the inverted parameters from both runs are
also different (see Fig. 4c and d). Differences in the output
from both inversions are particularly large at the ice margins,
and in the case of the ice stiffness parameter β, the largest dif-
ferences are found at the Crosson and Dotson ice shelves (see
Fig. 4d). The projections of VAF differ as well: after 40 years,
the difference in VAF is approximately 3.9× 1011 m3, or
390 km3 – nearly 15 % of overall VAF loss (Fig. 5a).

Figure 5b shows estimated posterior uncertainty of VAF
loss after 40 years from our Hessian-based framework in
our L-curve-informed workflows. The uncertainty estimates
are on the order of 10 km3 (10 km3 for the ITS_LIVE-
constrained inversion and 16 km3 for MEaSUREs) – an order
of magnitude smaller than the observed difference. These re-
sults are seemingly at odds. In other words, our error propa-
gation framework suggests a forecast uncertainty that is 1 or-
der of magnitude smaller than the variability in VAF found
when using two different satellite velocity products. This
leads to a contradiction, as it suggests that our observed vari-
ability in VAF loss is extremely unlikely (see the Discussion
section). This contradiction could arise from one or more
of the following: (i) the regularization suggested by the L-
curve analysis is too strong, i.e. the prior is overly informa-
tive; (ii) the observational error covariance matrix used for
ITS_LIVE does not capture the true variability of the veloc-
ity field shown in Fig. 4b (see Sect. 3.1.3); and/or (iii) there
are too many data points informing our cost function. We ad-
dress point (iii) in the next section, whereas points (i) and (ii)
are addressed in Sect. 5.2 and 5.1.

4.3 Effect of observational data subsampling

In this section we develop a metric to evaluate the quality
of the model’s inversions if we decrease the number of ob-
servations. In other words, we study the effect that different
data densities have on the cost function performance. Similar
techniques have been used to gather information on cross-
correlations between two different sets of observations (e.g.
covariance between winds speed observations in Desroziers
et al., 2005). Here we apply a similar diagnostic test to study
the covariance between adjacent velocity observations from
the same product. Additionally, Koziol et al. (2021) show that
data density affects the posterior covariance of the control pa-
rameters for an idealized experiment; thus, we use the results
of this metric to test how data density affects the posterior
uncertainty of VAF in Sect. 5.2. The test has the following
steps.

1. Produce several training datasets of observed ice veloc-
ity by retaining different percentages of data points from
a given set of observations (e.g. ITS_LIVE).
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Figure 3. L-curve analysis output. (a, b) Sliding parameter (α) computed using extreme γα values (bold values in panel e). (c, d) Ice stiffness
parameter (β) computed using extreme γβ values (bold values in panel g). (e, g)L-curve analysis for γα and γβ . The optimal values suggested
by the L curves are highlighted in red.

Figure 4. Inversion output differences after using two different
satellite velocity products (MEaSUREs and ITS_LIVE) to cali-
brate the ice dynamic parameters. (a) Modelled velocity differences
(b) Observed velocity differences. (c) Sliding parameter (α) differ-
ences. (d) Ice stiffness parameter differences (β).

2. Use those training sets to compute inversions of α and
β using our L-curve-informed prior configuration.

3. Use the α and β results from step 2 to evaluate J c
mis

(Eq. 8) on velocity points that were not used to compute
the inversions (i.e. using a validation dataset with obser-
vations from a different product such as MEaSUREs).

Based on metadata from both products (see Sect. 3.1), we
consider MEaSUREs and ITS_LIVE velocities to be two in-
dependent realizations of the state of the ice sheet at a given
time and location. Hence, we use ITS_LIVE velocities for
training and MEaSUREs for validation.

To construct the training sets, we divide the domain into
cells of different sizes (different grid-spacing) and systemat-
ically drop observations by iterating over the x and y direc-
tions of the ITS_LIVE grid. We select subsamples of the data
by retaining corner and centre observations from each cell
per iteration – i.e. upper and middle cell points. An exam-
ple of a training dataset is shown in Fig. 6a, where we retain
only 1.6 % of the velocity observations. To construct the vali-
dation set, we downscale MEaSUREs to the ITS_LIVE reso-
lution and drop problematic data points (see Fig. 6d to f), i.e.
locations where MEaSUREs and ITS_LIVE present velocity
differences higher than 50 myr−1 (as shown in Fig. 4b).

Results of the test (see Fig. 7) demonstrate that our frame-
work provides robust inversions for the drag and stiffness pa-
rameters α and β. Additionally, these results reveal that the
value of J c

mis does not change significantly even when we re-
tain only 1.6 % of the data, which suggests that a large num-

The Cryosphere, 17, 4241–4266, 2023 https://doi.org/10.5194/tc-17-4241-2023



B. Recinos et al.: A framework for time-dependent ice sheet uncertainty quantification 4251

Figure 5. (a) Trajectories of change in VAF (i.e.QT −Q0) using different velocity products and the regularization terms suggested by the L
curves (γα = 100, γβ = 10). (b) Hessian-based prior (dash lines) and posterior (solid line) uncertainties of VAF over time (2σQT represents
the 95 % confidence interval).

Figure 6. Overview of the input data used for the observational data subsampling test and for the experiments presented in Sect. 5. (a) Ex-
ample of a training dataset from ITS_LIVE where only 1.6 % of the data points are retained. (b, c) ITS_LIVE uncertainty in the x and
y direction with the same data density as in (a) and with the SD of each component adjusted (see Sect. 5.2 for details). (d–f) MEaSUREs
validation dataset used for the test.

ber of data points may be redundant when inverting for the
control parameters, with potential implications for the error
propagation of VAF (see the results from Sect. 5.2). However,
observations are needed to inform the model in critical areas
of the domain (i.e. at the grounding line or calving fronts),
and if we drop observations in a random manner the perfor-
mance of J c

mis may decrease.

5 Results

Results from Sect. 4.2 show that if we use the prior strength
suggested by the L curves and the original ITS_LIVE ve-

locity and standard deviation (SD), our framework underes-
timates the posterior uncertainty of VAF loss after 40 years
by 1 order of magnitude (see Fig. 5b). More precisely, we
calculate a posterior uncertainty which suggests that the dif-
ference in projected VAF (estimated by using two velocity
products that nominally observe the same physical properties
to calibrate our model) is extremely unlikely (see Fig. 5a).
To achieve a posterior uncertainty that reflects the same or-
der of magnitude, i.e. ∼O(1011 m3), we carry out two more
experiments aiming to understand how the uncertainty in the
forecast of VAF is affected by the use of different strengths
of prior (Sect. 5.1) and different versions of the ITS_LIVE
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Figure 7. Observational data subsampling results. J c
mis perfor-

mance if retaining a different number of observations for each train-
ing set.

data (Sect. 5.2). Additionally, we study the impact of using
different sliding laws on the posterior uncertainty of VAF
(Sect. 5.3).

5.1 Impact of using different prior strengths on the
posterior uncertainty of VAF

We keep the same velocity input for all model configura-
tions trialled in this section (i.e. retaining only 1.6 % of the
ITS_LIVE data and adjusting the observations SD, as ex-
plained in Sect. 5.2) but vary the strengths of the prior. We ex-
periment with the variance σ 2

c(0) and auto-covariance length
scale lc(0) of each control parameter instead of using pri-
ors suggested by L-curve analysis, as these definitions (see
Sect. 2.6) have a more physical meaning. We calculate prior
strengths using Eq. (18) and by making an informed guess for
σ 2
c(0) and lc(0) based on existing prior knowledge and physi-

cal concepts that define each control parameter.
From the literature (Pattyn, 2010; Khazendar et al., 2011;

Still et al., 2022) we know that the spatial pattern of the ice
stiffness is not uncorrelated. The advection of colder tribu-
tary glacier ice onto the ice shelf is well represented by the
vast expanses of stiffer ice originating at the grounding line
and extending downstream for tens of kilometres (see pan-
els c and d of Fig. 3), whereas observed deformation pat-
terns at the shear margins (Khazendar et al., 2011; Still et al.,
2022) suggest the presence of weaker deformable ice, where
the prominent formation of crevasses occurs. Thus, we keep
an auto-covariance length scale lβ(0) for β equal to 1 km in
all prior configurations, as crevasses can be present within
that length scale. In future studies this length scale could
be set by conducting a detailed spatial statistical analysis of
crevasse maps derived from remote sensing, which is beyond
the scope of this study. For σ 2

β(0) we trial variance values
computed from the SD of the ice stiffness (B) initial guess
(see details in Sect. 3).

For the sliding parameter we define auto-covariance length
scales lα(0) that are slightly larger than those assumed for β
(i.e. 2 to 3 km), as observations from airborne radar over the

ice sheet (De Rydt et al., 2013) verify that for fast-flowing
ice streams, the surface topography carries important infor-
mation about the bed with wavelengths between 1 and 20
times the mean ice thickness (≥ 1 km), thus controlling basal
sliding at similar scales. Additionally, model experiments de-
scribed in Gudmundsson (2008) show that the SSA overes-
timates the effects of bed slipperiness perturbations on the
surface profile for wavelengths less than about 5 to 10 times
the mean ice thicknesses, with the exact number depending
on values of surface slope and slip ratio. Variance values are
less intuitive; thus, we trial σ 2

α(0) values over several orders
of magnitude in order to vary the prior strength imposed on
α.

The resultant prior strengths are shown in Table 1, and the
estimated posterior uncertainty of VAF for each prior con-
figuration is shown in Fig. 8a (solid lines). Both are ordered
from weak to strong. For the weakest prior we find an un-
certainty of approximately 160 km3 – an order of magnitude
larger than the estimates found previously. This suggests that
a strong prior on the sliding parameter (such as the one sug-
gested by the L-curve analysis) suppresses the error propa-
gation from the satellite data onto projections of VAF. Most
of our prior experiments focus on α; however, we also trial
our error propagation framework changing the variance of
β (see Table 1). Compared to prior experiments run on α,
changing β priors show little influence in the posterior un-
certainty of VAF. We also test weaker priors for both param-
eters, but these experiments lead to non-stable solutions of
the time-dependent SSA as the parameters present undesir-
able and nonphysical features (not shown).

Our low-rank approximation to the Hessian (Eq. 16)
makes the assumption that if additional eigenvectors were
retained (i.e. if r were larger) the estimated posterior un-
certainty σ(QT ) would not change considerably. To test this
we examine the marginal change in σ(QT ) for each r (see
Fig. 8c), which exhibits an approximately exponential decay
with r . To estimate the effect of the low-rank approximation
we assume that the decay rate holds up to r =N , where N is
the full problem size, and that all neglected terms in Eq. (16)
make a negative contribution to σ(QT ) – i.e. we estimate the
“worst case” in which every extra eigenvector and eigenvalue
calculated decreases the uncertainty (see Appendix B for de-
tails of this estimate). The resulting estimated SDs of VAF
for an infinite number of eigenvalues σ est

full are shown in the
captions of Fig. 8c and indicate that for all prior strengths,
even in the worst case, posterior uncertainties decrease by a
small proportion and more importantly are not as small as
those values seen in our L-curve investigations. We perform
this same check in all remaining experiments and observe
similar results (see Fig. 8d and Fig. 10f).

Finally, the retained eigenvectors from the Hessian can be
interpreted as modes in the parameter space that change the
approximated posterior uncertainty relative to the prior un-
certainty. We show in Fig. 9 the leading eigenvectors (see
panels a to f) for the prior configuration highlighted in Ta-
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Figure 8. Hessian-based prior (dash lines) and posterior (solid line) uncertainties of VAF over time (2σQT represents the 95 % confidence
interval) computed using (a) different strengths of the prior and (b) different versions of the ITS_LIVE data (i.e. different data density and
SD; see details in Sect. 5.2). (c, d) Rate of change for the posterior uncertainty of VAF (δσQT ) against the number of eigenvalues calculated;
statistics are shown in the lower corners, i.e. σ est

full, the estimated SD of VAF for an infinite number of eigenvalues, and the decreasing trend
coefficient of determination (r2).

Table 1. Prior strength configurations used in Sect. 5.1 and 5.3, based on the pointwise standard deviation σc(0) and auto-covariance length
scale lc(0) of each control parameter, ordered from weak to strong (except for the Cornford sliding law experiment).

Prior configurations σα(0) lα(0) γα δα σβ(0) lβ(0) γβ δβ

Weak 1000 3000 0.85 9.40× 10−8 30 1000 9.4 9.40× 10−6

510 2000 1.1 2.80× 10−7 30 1000 9.4 9.40× 10−6

↓ 500 3000 1.7 1.90×10−7 30 1000 9.4 9.40×10−6

500 3000 1.7 1.90× 10−7 60 1000 4.7 4.70× 10−6

Strong 150 3000 5.6 6.20× 10−7 30 1000 9.4 9.40× 10−6

Cornford sliding law 3000 3000 0.28 3.1× 10−8 30 1000 9.4 9.40× 10−6

The configuration in bold is also used in the experiments of Sect. 5.2 and 5.3. The units of σα(0) are m−1/6 yr1/6 Pa1/2 and σβ(0) are
Pa1/2 yr1/6. The unit of the auto-covariance length scale lc(0) is reported in metres (m). Following Eq. (18), the units of γα are
m7/6 yr−1/6 Pa−1/2, γβ are m Pa−1/2 yr−1/4, δα are m−5/6 yr−1/6 Pa−1/2, and δα are m−1 Pa−1/2 yr−1/4.

ble 1. The dominant eigenvectors of the ice stiffness param-
eter field β (panels b, d, and f) suggest that we gained more
information regarding this parameter at the grounding line.
The eigenvector corresponding to the smallest eigenvalue
(Fig. 9h) is increasingly more oscillatory (and thus provides

information at smaller length scales in the parameter space)
and is increasingly relatively less informed by the velocity
observations; such patterns are also present in similar studies
(e.g. Isaac et al., 2015).
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Figure 9. Eigenvectors (v) of the Hessian. Each eigenvector has an
α component (right column) and a β component (second column).
Each component is scaled to have a maximum magnitude of 1. Or-
dered from large to small (from top to bottom), these v values cor-
respond to the 1st, 2nd, 3rd, and 5000th eigenvalues.

5.2 Impact of using different ice velocity observations
on the posterior uncertainty of VAF

Contrary to the previous section, here we keep the same prior
strength for all the experiments but modify the velocity in-
put. We modify the original ITS_LIVE data by decreasing
the number of observations and by adjusting the SD of each

velocity component to match the following condition:

vxsd→max(vxsd, abs(vxI− vxM)), (21)
vysd→max(vysd, abs(vyI− vyM)), (22)

where vxsd and vysd are standard deviations of velocity com-
ponents, and the I and M subscripts refer to ITS_LIVE and
MEaSUREs, respectively. In other words, where the origi-
nal uncertainty of the data is small, we replace the SD of
those coordinates with the absolute difference between MEa-
SUREs and ITS_LIVE velocities at that same location. Fig-
ure 6b and c show this error adjustment for each velocity
component. We generate three versions of the ITS_LIVE
data by (i) retaining all data points but adjusting the SD,
(ii) retaining only 1.6 % of the data (in line with the results
from the observational data subsampling test) and adjusting
the SD, and (iii) retaining only 1.6 % of the data but keeping
the original SD.

We run our error propagation framework using these three
datasets (and the weak prior configuration highlighted in Ta-
ble 1) and compute VAF posterior uncertainties as shown
in Fig. 8b (see solid lines); uncertainties in this figure are
plotted from high to low (from dark to light blue) and repre-
sent a 95 % confidence interval. The effect of retaining only
1.6 % of the observational data leads to a slight decrease
in posterior VAF uncertainty – which is counter-intuitive as
one would expect fewer observations to give a larger pos-
terior calibration uncertainty. However, the VAF uncertainty
(Eq. 15) is derived from both calibration uncertainty and VAF
sensitivity. The latter differs between the experiments, as can
be seen from the projection of prior uncertainty onto VAF
sensitivity (blue dashed lines). The adjustment of observa-
tional SD increases VAF uncertainty at approximately 5 to
15 years but has less impact after. Importantly, however, the
overall impact on the posterior uncertainty of VAF loss after
40 years is small relative to the effect of changing the prior
strength (see solid line differences between panels a and b of
Fig. 8).

5.3 Impact of using different sliding laws on the
posterior uncertainty of VAF

In previous configurations we use the Weertman–Budd slid-
ing law, but due to the sensitivity of the time-dependent ice
sheet model to the choice of sliding law (Brondex et al.,
2019; Kazmierczak et al., 2022; Barnes and Gudmundsson,
2022) we trial our error propagation framework using the
Cornford law and compare qualitative differences from both
laws in Fig. 10. We use the same velocity constraints (i.e. the
same as in Sect. 5.2) and consider only a single prior distri-
bution. Ideally, we would need to investigate a range of pri-
ors for the Cornford law (as we did for Weertman–Budd in
Sect. 5.1), but this is beyond the scope of our study. The prior
distribution used is similar to the highlighted parameters in
Table 1, but with a modified σ 2

α(0) – since in the interior the
basal stress is independent of the effective stress (Cornford
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Figure 10. Model output when using two different sliding laws. Pointwise SD of the sliding parameter α for the (a) Weertman–Budd and
(b) Cornford law. (c) Pointwise SD of the ice stiffness parameter β (independent of the sliding law). (d) Trajectories of change in VAF
(QT −Q0) using the different sliding laws and the highlighted weak prior from Table 1. (e) Hessian-based prior (dash lines) and posterior
(solid lines) uncertainties of VAF over time (2σQT represents the 95 % confidence interval). (f) Rate of change for the posterior uncertainty
of VAF (δσQT ) against the number of eigenvalues calculated; statistics are shown in the lower corners, i.e. σ est

full, the estimated SD of VAF
for an infinite number of eigenvalues, and the decreasing trend coefficient of determination (r2).

et al., 2020), and thus we expect variations of α to have a
different scale (see last configuration in Table 1).

Using the inverse of the low-rank update approximation
for the cost function Hessian (0post) we can estimate the pos-
terior standard deviation (SD) of α and β. We divide the mesh
into “patches” of approximately 1 km in diameter, and for
each patch we compute the mean of each control parame-
ter. We treat this mean as a new quantity of interest (QoI)
and compute its SD via the same framework as projections
of VAF loss (see Sect. 2.5). Essentially, in panels (a) to (c) of
Fig. 10 we visualize the posterior of a “local average” of α
and β.

For both sliding laws the sliding parameter α is more un-
certain close to the grounding line and at the Bear Peninsula
(see Fig. 10a and b) where uncertainties from the ITS_LIVE
product are higher (see Fig. 2b and c). The large uncertainty
just at the grounding line in the Cornford results (relative to
that of Weertman–Budd) is due to the insensitivity of basal
stress to α when the ice is near flotation (see sensitivity anal-
ysis below). For the ice stiffness parameter β the most uncer-
tain areas of our domain are the grounding lines of the PSK
glaciers and the Crosson ice shelf (see panel c of Fig. 10) –
these are the areas where the speeds from the two satellite
products show significant differences (see Fig. 4b).

For both sliding laws, VAF uncertainty reaches a similar
order of magnitude∼ O(1011)m3 at year 40 (Fig. 10e). How-

ever, a quantitative comparison is somewhat misleading, as
the impact of prior strength is not investigated for the Corn-
ford law. There are qualitative differences, however: the pos-
terior uncertainty of VAF for each sliding law saturates at
a different rate, with the posterior uncertainty of the Corn-
ford law configuration growing at a faster rate after year 10.
We compare sensitivity maps of the model’s VAF estimates
to the basal friction coefficient α2 at years 10 and 40, nor-
malized to year 40 sensitivities for the respective experiment
(see Fig. 11). VAF sensitivities at year 10 computed using
the Weertman–Budd law have a higher sensitivity to the basal
friction coefficient relative to those computed using the Corn-
ford law – particularly at the grounding line of Kohler Glacier
(see panels a and c of Fig. 11). Additionally, Fig. 11 shows
that at year 40 both sliding laws have similar sensitivities. In
this section we only show sensitivity maps for α2; sensitivi-
ties to the ice stiffness are shown in Fig. A3 of Appendix A.

6 Discussion

The efficiency of our error propagation framework allows us
to explore how different prior strengths, velocity inputs, and
sliding laws affect the uncertainty of VAF projections. We
find that by choosing different satellite ice velocity products
(that nominally observed the same physical properties to cal-
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Figure 11. Sensitivity maps of the model’s change in volume above
flotation (QT ) to the basal friction coefficient α2 for year 10 and
year 40 when using two different sliding laws. Units of α2 are
m−1/3 yr1/3 Pa. (a, b) Weertman–Budd and (c, d) Cornford law.
These visualize the node-wise sensitivity given the choice of mesh
and finite-element discretization.

ibrate FEniCS_ice) our model leads to different estimates
of VAF loss after 40 years (see Sect. 4.2). This effect may
be less important for ice streams strongly coupled to ocean
forcing (Lilien et al., 2019; Goldberg and Holland, 2022) but
could be more influential for unstable margins (Joughin et al.,
2014).

The differences in VAF trajectories (shown in Fig. 5a)
computed using the different velocity products allow us to
additionally identify issues in our initial prior probability
densities computed using the L-curve criteria. The observed
differences are extremely unlikely to be seen under the pos-
terior densities informed by L-curve analysis, whereas they
are far more likely under the posterior informed by physi-
cally motivated priors. The regularization suggested by the L
curves is thus too strong and thus suppresses the error prop-
agation from the satellite data into the QoI, resulting in VAF
projections with quantified uncertainties that are too low.

Our analysis also suggests that the error provided with
the velocity products cannot fully explain the variability in
ice velocities observed in Fig. 4b and that large numbers of
data points may be redundant, with implications for the error
propagation of the QoI.

Our ice sheet flow model described in Sect. 2 can be
thought of as a (nonlinear) mapping from a set of input fields,
which might be unobservable or poorly known (α and β

fields), to a set of output fields, which might correspond to
observable quantities (e.g. satellite surface velocity observa-
tions). In FEniCS_ice, the parameter-to-observable map
f̆ is a composition of two functions: the solution of the SSA
equations (see Sect. 3 of Koziol et al., 2021, for details) and
the misfit term J c

mis (Eq. 8).
Our error propagation framework considers the ice sheet

inverse problem as a linearized inverse problem; by lineariza-
tion we mean that f̆ is linearized about the MAP point. Thus,
the framework relies on a number of key assumptions related
to this and other issues.

1. (i) The observational errors and prior distributions are
defined as Gaussian distributions, (ii) the parameter-
to-observable map f̆ is linear (or close to linear), and
(iii) the quantity of interest (i.e. VAF) at a given time
depends linearly (or nearly linearly) on the control pa-
rameters – in other words, the parameter-to-QoI map is
close to linear.

2. The difference between velocities predicted by the
model and the observations is due only to measurement
errors (we assume zero model error; see Sect. 2.4 – or
more precisely we consider conditional posterior infor-
mation given the model).

3. The observational error covariance matrix is diagonal;
i.e. errors in observations do not correlate spatially.

4. The posterior covariance of the control parameters 0post
is fully sampled with the number of eigenvectors and
eigenvalues that we retain from the Hessian.

Note (1i, ii) that the above implies a Gaussian posterior. We
test point (4) in Sect. 5.1 and address points (1)–(3) in the
following subsections.

6.1 Linear dependence of parameter-to-observable and
quantity of interest maps with respect to the
control parameters

FEniCS_ice computes a second-order approximation to
the posterior covariance of the control parameters 0post (via
the eigendecomposition of the cost function Hessian evalu-
ated at the MAP point; see Sect. 2.5) and propagates forward
the associated calibration uncertainty in time-dependent es-
timates of VAF loss (our QoI). The posterior PDF of c is
not guaranteed to be Gaussian due to the nonlinearity of the
Stokes equations that describe f̆ . Furthermore, the propa-
gation step (Eq. 15) is based on a linear transformation of
a Gaussian random variable and assumes that QT (c), the
parameter-to-QoI map, is well described by linear sensitiv-
ities.

Petra et al. (2014) test the Gaussianity of the parameter-
to-observable map by sampling from the posterior PDF of
the hidden field c via different Markov chain Monte Carlo
(MCMC) sampling methods (Tierney, 1994), including a
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new stochastic Newton method with a MAP-based Hessian.
They solve a two-dimensional flow-line ice sheet inverse
problem with a moderate number of parameters (∼ 100). It
is suggested that for control parameter directions which are
more strongly informed by observations, and in the weak ob-
servational noise limit, the posterior may be closer to Gaus-
sian due to the weaker influence of the nonlinearity of f̆ . It
is further suggested that for directions which are weakly in-
formed by observations, and hence for which the Gaussian
prior dominates, the posterior may again be closer to Gaus-
sian. Therefore, a Hessian-based approximation (such as the
one describe in Sect. 2.5) to the posterior covariance of the
parameters may be useful despite the nonlinearity of f̆ .

Koziol et al. (2021) test the linearity of the FEniCS_ice
parameter-to-QoI map for an idealized ice sheet flow prob-
lem (Pattyn et al., 2008) through a simple Monte Carlo sam-
pling of the posterior PDF of c. The study finds strong agree-
ment with the linearly propagated posterior covariance when
there is a moderately strong prior, but slightly poorer agree-
ment with a weak prior.

Unfortunately, due to the size of our parameter space, test-
ing the Gaussianity of the posterior PDF of c is beyond the
scope of our study. Similarly, sampling the posterior PDF to
validate the propagation of calibration uncertainty to the QoI
as in Koziol et al. (2021) would be intractable for our more
realistic setting. Instead, we develop a simple test to check
the linearity of the parameter-to-QoI map and how this lin-
earity is affected when we impose different strengths of the
prior. We test the linearity of the parameter-to-QoI mapping
by using data from Sect. 4.2 to compute the following dot
products:

∂QI
T

∂αI
· (αI−αM), (23)

∂QI
T

∂βI
· (βI−βM). (24)

Here I and M indicate model output computed by using ei-
ther ITS_LIVE or MEaSUREs velocities. We visualize the
linearity of the VAF operator by plotting each dot product
together with the absolute difference between VAF trajecto-
ries computed using ITS_LIVE and MEaSUREs. Addition-
ally, we repeat this test for a stronger prior configuration by
imposing a strong regularization on β (stronger than the one
suggested by the L-curve analysis, γβ = 100.0).

Results from both tests are shown in Fig. 12 and verify
that VAF estimates over time are highly dependent on α and
that the linearity of the parameter-to-QoI map depends on the
strength of the regularization (as in Fig. 12b and in Koziol
et al., 2021). The main objective of this study is to propa-
gate calibration uncertainty into projections of VAF loss. We
find that in order to do so, we must impose a weaker prior
on the control parameters than widely used methods (i.e. L-
curve analysis) would suggest. But as shown above, in do-
ing so we might need to compromise on the linearity of the

parameter-to-QoI map. Moreover, as shown in Koziol et al.
(2021), a weaker prior means a weaker spectral decay of the
prior-preconditioned Hessian spectrum, requiring us to retain
more of its eigenvectors (see also Sect. 5.1).

In other words, to avoid the prior probability from over-
whelming the likelihood in our Bayesian inversion, we are
required to examine a regime where we compromise the lin-
earity of the time-dependent model in certain areas of the
domain. Still, we expect that the framework can provide an
“order-of-magnitude” estimate of the contribution of calibra-
tion uncertainty to QoI uncertainty. Although not previously
applied to a problem as large as the present study, stochas-
tic Newton MCMC (Martin et al., 2012; Petra et al., 2014),
which does not rely on a Gaussian assumption, may provide
a more robust estimate in such regimes. Importantly, to be
tractable this method requires a reasonable estimate of the
posterior density (the “proposal density”) – and such an esti-
mate can be provided using the low-rank Hessian approxima-
tion generated within our framework. Thus, stochastic New-
ton MCMC may be a viable approach for non-Gaussian un-
certainty quantification in future studies.

6.2 Qualitative inspection of the model’s structural and
forcing uncertainty

We only quantify calibration (parametric) uncertainty in pro-
jections of marine ice sheet loss. We do not quantify struc-
tural or model uncertainty, i.e. errors that arise from the dis-
cretization of the inverse problem (Barnes et al., 2021) or
from the formulation of the model and its ability to represent
the physics of the system (Hill et al., 2021). In Sect. 5.3 we
trial our error propagation framework with different sliding
laws and examine the implications for projections of VAF
loss (see Fig. 10), though quantifying the likelihood of vari-
ous sliding law formulations is beyond the scope of our study.

In this section we look at uncertainty due to the use of dif-
ferent physics and discretization to solve the ice sheet mo-
mentum balance. We do this by using a second ice sheet
model: the STREAMICE module of MITgcm (Goldberg and
Heimbach, 2013), which solves a depth-integrated balance
that accounts for vertical shearing (absent from the shal-
low ice stream approximation; Goldberg, 2011). STREAM-
ICE solves the momentum balance on a regular rectangular
grid, a distinct discretization from FEniCS_ice. With a
uniform 500 m grid, we simulate with STREAMICE an in-
stantaneous velocity field (without time evolution) using the
inverted parameter fields of FEniCS_ice (interpolated to
the STREAMICE grid) and the same geometry and boundary
conditions described in Sect. 3. The particular fields of α and
β are from ourL-curve analysis (Sect. 4.1). We compare both
models’ surface velocities and find differences on the order
of 100–200 myr−1, particularly in the fastest-flowing ice ar-
eas and on the ice shelves (see Fig. A4). FEniCS_ice and
STREAMICE have different approximations to Stokes flow,
employ different treatments of the grounding line in their
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Figure 12. Linearity test results. Absolute difference of trajectories of VAF (QT ) estimated using different satellite velocity product (red
dotted lines) and dot product results (solid lines) from Eqs. (23) and (24) plotted in blue and yellow, respectively. For this figure we use model
output from Sect. 4.2. (a) Linearity test using the regularization strength suggested by the L curves and (b) linearity test using a stronger
regularization on β.

equations, and have very different resolution, which may lead
to this disagreement. Barnes et al. (2021) find similar results,
when two other adaptive mesh, finite-element SSA models
are compared to STREAMICE through the same diagnostic
experiment. The authors show that these diagnostic calcula-
tions are not indicative of the performance of the models in
time-dependent simulations (see Fig. 6 of Barnes et al., 2021,
where all models reach similar projections of VAF).

We emphasize that this comparison cannot quantify struc-
tural uncertainty, but can inform us (qualitatively) of the ef-
fects of implementing different discretizations and grounding
line formulations in the model numerics.

6.3 Relevance of calibration uncertainty versus
structural and forcing uncertainty

As previously mentioned, structural uncertainty is neglected
in our study and we use a very simple ocean forcing param-
eterization, for which uncertainties are not considered. We
make it clear that our aim is to quantify calibration uncer-
tainty alone; however, it is only worth doing so if the con-
tribution of calibration uncertainty to forecast uncertainty
is non-negligible and/or the framework represents nontriv-
ial steps toward incorporating these other sources of uncer-
tainty. Regarding the former, the existing literature provides
some clues as to whether calibration uncertainty is impor-
tant. Goldberg and Holland (2022) carry out coupled ice
sheet–ocean modelling experiments for the PSK glacier re-
gion and show that the type of calibration of ice model pa-
rameters (i.e. whether fit to observed thinning is accounted

for) strongly determines ice loss over 20–30 years; beyond
this point, ice loss depends on far-field ocean conditions. For
other catchments, this “crossover time” could be shorter or
longer – meaning that uncertainty in calibration could inform
projection uncertainty on the multidecadal scale before it is
overtaken by climate uncertainty. The short-term persistence
of calibration errors is echoed in other types of cryospheric
modelling: Aschwanden and Brinkerhoff (2022) showed that
the introduction of satellite-based information strongly re-
duced uncertainty in short-term projections of Greenland ice
loss but that this relative information gain was greatly re-
duced by 2100, particularly under strong climate forcing sce-
narios. Still, calibration uncertainties should not be dismissed
even if they are overwhelmed by climate forcing on long
timescales: there are strong reasons why short-term (multi-
decadal) projections of ice loss are key for planning and mit-
igation (Bassis, 2022).

Moreover, our framework of estimating calibration uncer-
tainty can easily be expanded to account for forcing uncer-
tainty. Provided that forcing uncertainty is independent of pa-
rameter uncertainty, the contribution of forcing to projection
uncertainty is additive and can be found using an expression
similar to Eq. (15). Importantly, such a calculation is inde-
pendent from the estimation of posterior parameter uncer-
tainty through eigendecomposition of the Hessian – which is
by far the most costly component. This is not true of model
uncertainty: our likelihood PDF p(ŭ|c) gives the probabil-
ity of observable velocity conditioned on parameters and the
model and hence neglects model uncertainty. A potential way
to incorporate model uncertainty – once it is quantified – is
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to adjust the observational error covariance used in the likeli-
hood. A similar approach has been used in the Bayesian error
approximation method of Babaniyi et al. (2021).

6.4 Accuracy of observational error model

We draw the tentative conclusion that, for our study area,
the choice of prior distribution informed by L-curve analysis
is overly informative and underestimates calibration uncer-
tainty. This is based on the fact that, with such a prior, the
posterior VAF is an order of magnitude smaller than the vari-
ability in VAF between two widely used velocity products
as constraining data. Essentially, the two products are treated
as a two-member sample from a distribution describing the
true surface velocities. While this is a very small sample size,
our assessment makes the assumptions that (i) the posterior
VAF distribution is Gaussian (which is explored above) and
(ii) the two members are likely sampling outcomes under our
observational error model – and therefore that the variation of
∼O(1011 m3) is not a statistical outlier – thus, our Hessian-
based assessment must be too small.

A further assumption in our assessment is that our observa-
tional error model is accurate. As described in Sect. 3.1.3, we
use reported errors and standard deviations to define diagonal
terms in 0obs and assume zero spatial error covariance. Er-
ror magnitudes may be underestimated – although we some-
what account for this by adjusting observational errors based
on differences between the products (Sect. 5.2). Addition-
ally, not accounting for spatial error correlation could un-
derestimate calibration uncertainty, as shown in the idealized
experiments of Koziol et al. (2021). It is possible that im-
proved assessments of spatial observational error covariance
may be needed to accurately quantify calibration uncertainty
when calibrating ice sheet models with satellite-based data.
Such approaches have been used in weather data assimilation
(Tabeart et al., 2020).

7 Conclusions

This study set out to apply the FEniCS_ice error prop-
agation framework to a realistic setting in West Antarctica
(which includes three ice streams: Pope, Smith, and Kohler
glaciers) and infer from satellite velocity observations two
important unknown parameters in ice dynamics and its un-
certainties: the basal sliding friction coefficient (α) and the
rheological parameter for describing ice stiffness (β). As
in many other ice sheet modelling studies we use a con-
trol method to calibrate grid-scale flow parameters. However,
our framework augments the control method with a Hessian-
based Bayesian inference approach, which characterizes the
posterior covariance of the inverted parameters. We project
calibration uncertainty forward in time and onto projections
of volume above flotation (VAF).

We find that by choosing different satellite ice velocity
products (that nominally observed the same physical proper-
ties to calibrate FEniCS_ice) our model leads to different
estimates of VAF after 40 years or to different projections of
sea level rise contribution. We use this difference in model
output as an order-of-magnitude estimate of the variance that
projections of VAF should have after 40 years and identify
prior strengths that can reproduce that variability. We demon-
strate that if we use prior strengths suggested by L curves, as
is typically done in ice sheet calibration studies, our uncer-
tainty quantification is not able to reproduce that same vari-
ability. The regularization suggested by the L curves is too
strong (i.e. the information contained in the prior distribu-
tion computed via L-curve analysis dominates over the infor-
mation contained in ice velocity observations) and thus sup-
presses the error propagation from the satellite data into VAF
projections with quantified uncertainties that are smaller than
those suggested by our two-member “sample” of observed
velocity fields. Therefore, we recommend using the variance
and length scale arising from a physical interpretation of the
prior to define regularization parameters, as these definitions
(see Sect. 2.6) will inform the ice sheet model with a more
realistic spatial variability regarding the basal sliding and ice
stiffness parameters. Additionally, our experiments suggest
that large numbers of data points may be redundant, with im-
plications for the error propagation of VAF.

We qualitatively inspect one aspect of structural uncer-
tainty by trialling our error propagation framework with two
different sliding laws (Weertman–Budd and Cornford laws).
The posterior uncertainty of VAF evolves differently for the
two parameterizations, with the Weertman–Budd uncertainty
saturating relatively quickly while that of Cornford steadily
increases. This may be due to differing patterns of sensitiv-
ity of VAF to the sliding parameters, particularly near the
grounding line.

Finally, our framework alone does not fully quantify
sea level rise forecast uncertainty, but represents an impor-
tant step. Further improvements to our method could be to
(i) quantify calibration uncertainty through stochastic New-
ton Markov chain Monte Carlo (MCMC) using our Hessian
eigendecomposition as the proposal density, (ii) take into ac-
count model error in the likelihood probability density func-
tion, and (iii) take into account forcing uncertainty in the er-
ror propagation framework.

Appendix A: Extra figures and tables

A1 ITS_LIVE 6-month offset speed change

To study the 6-month offset between ITS_LIVE and MEa-
SUREs velocities, i.e. from July 2014 to December 2014, we
subtract data acquired in 2014 from the 2018 ITS_LIVE ve-
locity mosaic and divide this by 8 in order get the monthly
changes (see Fig. A1a). The effect of the 6-month offset be-
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tween the two products is negligible compared to the dif-
ference observed in Fig. 4b and to the speed ratio shown in
Fig. A1b. However, there are significant differences (over a
small area) at the calving front of the Crosson ice shelf (see
Fig. A1a).

A2 δα L curve

In addition to the experiments shown in Sect. 4.1, we con-
structed an L curve only for δα and use the same result
for δβ . Results are shown in Fig. A2 and suggest a value
for δα of 1× 10−4 compared to values in Table 1. Any
δα ≥ 1× 10−7 will result in a stronger prior, and thus we
choose δα = 1× 10−5 for the error propagation experiments
shown in Fig. 3e and f.

A3 Sensitivity of VAF to the ice stiffness (B)

We compare sensitivity maps of the model’s VAF estimates
to the ice stiffness B (or β2) at years 10 and 40 (see Fig. A3).
VAF projections are more sensitive to the ice stiffness at the
grounding line of the PSK glaciers and at the Crosson ice
shelf. In future studies, these sensitivity maps and the ice
stiffness spatial distribution could be correlated with detailed
spatial maps of crevasses in the area.

Figure A1. Speed comparisons. (a) The 6-month offset speed
change from ITS_LIVE 2014 (July–December) and (b) the speed
ratio of the difference between the two products (ITS_LIVE 2014 –
MEaSUREs acquired from July 2013 to July 2014) and ITS_LIVE
2014. Empty pixels in panel (b) are due to gaps in the MEa-
SUREs dataset, which increase when the data are interpolated to
the ITS_LIVE grid.

Figure A2. L curve for δα .

Figure A3. Sensitivity maps of the model’s change in volume above
flotation (QT ) to the ice stiffness (B or β2). Units of B are Pa yr1/3.
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Figure A4. The models’ surface velocity comparison. Surface velocities are calculated by using FEniCS_ice inversions of α and β
calibrated with ITS_LIVE and the highlighted weak prior configuration from Table 1. (a) STREAMICE. (b) FEniCS_ice. (c) Difference
between the two models.

Table A1. L-curve configurations used in Sect. 4.1. Reference values for β parameters are obtained from variance values computed from the
SD of the ice stiffness (B) initial guess (see details in Sect. 3). Reference values for α parameters (first guess) are chosen heuristically and
looking to maintain the linearity of the VAF operator and stable solutions of the time-dependent SSA.

Prior configurations σα(0) lα(0) γα δα σβ(0) lβ(0) γβ δβ

γα L curves – – – 1.9× 10−7 30 1000 9.4 9.4× 10−6

γβ L curves 65 23 000 100 1.9× 10−7 – – – 9.4× 10−6

δα L curves – – 100 – 30 1000 9.4 9.4× 10−6

ITS_LIVE and MEaSUREs L-curve workflow 8.9 3200 100 1× 10−5 28 1000 10 1× 10−5

The dash (–) indicates that those parameters were varied by several orders of magnitude while constructing the L curves. The units of σα(0) are m−1/6 yr1/6 Pa1/2

and σβ(0) are Pa1/2 yr1/6. The unit of the auto-covariance length scale lc(0) is reported in metres (m). Following Eq. (18), the units of γα are m7/6 yr−1/6 Pa−1/2, γβ
are m Pa−1/2 yr−1/4, δα are m−5/6 yr−1/6 Pa−1/2, and δα are m−1 Pa−1/2 yr−1/4.
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Appendix B: Convergence of the estimated posterior
uncertainty σ(QT ) with the number of eigenvectors

For each successive eigenvalue–eigenvector pair (λr , Cr ) we
construct the low-rank approximation to the posterior covari-
ance using Eq. (16) and find the associated approximation to
σ(QT ) by projecting the estimated covariance onto the QoI
(Eq. 15). We refer to this iteration here as σr – the posterior
QoI uncertainty using the leading r eigenvectors – and to the
difference σr − σr−1 as 1σr .

We observe that, for sufficiently large r , the absolute
change with r can be represented reasonably well by an ex-
ponential decay, i.e.

|1σr | = d0b
r , (B1)

for some b smaller than 1 (Fig. 8c and d). Assuming this to
hold as r becomes large, we can estimate a lower bound for
σ(QT )= σN (where N is the parameter dimension) with a
geometric sum. Specifically, we find the d0 and b that best fit
|1σr | for rth ≤ r ≤ rM , where rth is inferred from the decay
of |1σr | and rN is the number of eigenpairs retained (in our
case 104). The relationship given by Eq. (B1) then implies
for M >N

σM = σN +

M−1∑
r=N+1

1σr

≤ σN − d0b
N

(
1− bM−N

1− b

)
< σN −

d0b
N

1− b
. (B2)

In Sect. 5 we use this result (with rth = 3000) to estimate
a lower bound for the posterior uncertainty of QT without
low-rank approximation. The calculation is done at the final
time, i.e. for T = 40 only. We emphasize that this calcula-
tion is purely heuristic, and we are unaware of a theoretical
lower bound for σM . Due to the tendency of the shallow-shelf
approximation to filter high spatial frequencies in basal pa-
rameters (Gudmundsson, 2008), it is unlikely that |1σr | will
decay more slowly than predicted by Eq. (B1), and it may
even decay more quickly. However, due to the large size of
the parameter space (105) it is not tractable to find the full
spectrum, so the estimate is not testable for this problem.

Finally, other studies use eigenvalue magnitude as a cri-
terion for truncating the spectrum (e.g. Isaac et al., 2015).
More specifically, eigenvectors are retained up to an index r
such that λr

λr+1 � 1. We note that this constraint alone does
not ensure that the contribution to QoI uncertainty arising
from the truncated part of the spectrum is negligible, even
if the marginal contribution associated with each individual
eigenpair is small.

Code availability. The version of tlm_adjoint used
in this paper is available in a permanent DOI repository

(https://doi.org/10.5281/zenodo.7625841; Maddison and Re-
cinos, 2023). The FEniCS_ice software, together with the
application of the code to a real domain, is coded in the Python
language and licensed under the GPL-3.0 license. The latest
version of the FEniCS_ice code is available on GitHub
(https://github.com/EdiGlacUQ/fenics_ice, last access: 4 Octo-
ber 2023) and Zenodo (https://doi.org/10.5281/zenodo.7615309;
Maddison et al., 2023), and the documentation website
of the model is under construction, but a user guide is
provided (https://github.com/EdiGlacUQ/fenics_ice/blob/
58742fc8c5dcda88ace9860a7c79cabb3160c374/user_guide/user_
guide.pdf, last access: 2 October 2023). The code used to generate
all figures and analyses of this study is available in a permanent DOI
repository (https://doi.org/10.5281/zenodo.7615259; Recinos et al.,
2023) and on GitHub (https://github.com/bearecinos/smith_glacier,
last access: 2 October 2023) as is the FEniCS_ice version used
for this study (https://doi.org/10.5281/zenodo.7615309; Maddison
et al., 2023). We have constructed a documentation website for
the application of the model to the domain of the PSK glaciers
(https://doi.org/10.5281/zenodo.7615259; Recinos et al., 2023)
where we explain in detail the installation of the code, the prepa-
ration of input data, and how to run and visualize the experiments
presented in this study.

Data availability. The output data of the model are
available in the following permanent DOI reposi-
tory: https://doi.org/10.5281/zenodo.7612243 (Recinos,
2023). Information about how to read and plot the
data can be found in the Smith repository wiki – see
https://github.com/bearecinos/smith_glacier/wiki (last access:
2 October 2023).
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