Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2409-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2409-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Asynchronous glacial dynamics of Last Glacial Maximum mountain glaciers in the Ikh Bogd Massif, Gobi Altai mountain range, southwestern Mongolia: aspect control on glacier mass balance
Purevmaa Khandsuren
Department of Geography, Korea University, Seoul 02841, South Korea
Department of Geography, Korea University, Seoul 02841, South Korea
Hyun Hee Rhee
Division of Glacial Environment Research, Korea Polar Research
Institute, Incheon 21990, South Korea
Cho-Hee Lee
Department of Geography, Korea University, Seoul 02841, South Korea
Mehmet Akif Sarikaya
Eurasian Institute of Earth
Sciences, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
Jeong-Sik Oh
Department of Geography, Kyungpook National University, Daegu
41566, South Korea
Khadbaatar Sandag
Department of Geography, Mongolian National University of
Education, Ulaanbaatar 210648, Mongolia
Byung Yong Yu
AMS Laboratory, Korea Institute of Science and Technology, Seoul
02792, South Korea
Related authors
No articles found.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Sangmin Ha, Hee-Cheol Kang, Seongjun Lee, Yeong Bae Seong, Jeong-Heon Choi, Seok-Jin Kim, and Moon Son
EGUsphere, https://doi.org/10.5194/egusphere-2024-1696, https://doi.org/10.5194/egusphere-2024-1696, 2024
Short summary
Short summary
Unlike episodic plate boundary earthquakes, their randomness makes predicting intraplate earthquakes challenging. This study aids seismic hazard assessment by analyzing paleoearthquake records of the Yangsan Fault in Korea. Five trench sites revealed three Quaternary surface-rupturing earthquakes, the latest 3,000 years ago, with Mw 6.7–7.2. The right lateral fault has a 0.14 mm/yr slip rate, and a recurrence interval over 10,000 years, continuously active since the Quaternary.
Chinmay Dash, Yeong Bae Seong, Ajay Kumar Singh, Min Kyung Lee, Jae Il Lee, Kyu-Cheul Yoo, Hyun Hee Rhee, and Byung Yong Yu
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-38, https://doi.org/10.5194/cp-2024-38, 2024
Revised manuscript not accepted
Short summary
Short summary
This study explores sediment core RS15-LC47 from the Ross Sea over the past 800,000 years, examining changes in sea-ice dynamics and deposition environments. It integrates various data to reveal shifts related to Circumpolar Deep Water influx and Antarctic currents, particularly during significant climate transitions. Results highlight potential West Antarctic Ice Sheet collapses in warmer periods, offering new insights into the area's paleoclimate and sedimentary processes.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Related subject area
Discipline: Glaciers | Subject: Geomorphology
In situ 10Be modeling and terrain analysis constrain subglacial quarrying and abrasion rates at Sermeq Kujalleq (Jakobshavn Isbræ), Greenland
Comment on “Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina” by Halla et al. (2021)
Formation of glacier tables caused by differential ice melting: field observation and modelling
High-resolution inventory to capture glacier disintegration in the Austrian Silvretta
Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
W. Brian Whalley
The Cryosphere, 17, 699–700, https://doi.org/10.5194/tc-17-699-2023, https://doi.org/10.5194/tc-17-699-2023, 2023
Short summary
Short summary
Examination of recent Google Earth images of glaciers and rock glaciers in the
Dry Andeshas sufficient detail to show surface meltwater pools. These pools have exposures of glacier ice that core the rock glaciers with volume loss. Such pools are seen on debris-covered glaciers and rock glaciers worldwide and cast doubt on the
permafrostorigin of rock glaciers.
Marceau Hénot, Vincent J. Langlois, Jérémy Vessaire, Nicolas Plihon, and Nicolas Taberlet
The Cryosphere, 16, 2617–2628, https://doi.org/10.5194/tc-16-2617-2022, https://doi.org/10.5194/tc-16-2617-2022, 2022
Short summary
Short summary
Glacier tables are structures frequently encountered on temperate glaciers. They consist of a rock supported by a narrow ice foot which forms through differential melting of the ice. In this article, we investigate their formation by following their dynamics on the Mer de Glace (the Alps, France). We explain this phenomenon by a combination of the effect of turbulent flux, short-wave flux and direct solar radiation that sets a critical size above which a rock will form a glacier table.
Andrea Fischer, Gabriele Schwaizer, Bernd Seiser, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 15, 4637–4654, https://doi.org/10.5194/tc-15-4637-2021, https://doi.org/10.5194/tc-15-4637-2021, 2021
Short summary
Short summary
Eastern Alpine glaciers have been receding since the Little Ice Age maximum, but until now the majority of glacier margins could be delineated unambiguously. Today the outlines of totally debris-covered glacier ice are fuzzy and raise the discussion if these features are still glaciers. We investigated the fate of glacier remnants with high-resolution elevation models, analyzing also thickness changes in buried ice. In the past 13 years, the 46 glaciers of Silvretta lost one-third of their area.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
Cited articles
ALAMGCM: Topographic map of Mongolia, Geodesy and Cartography division of
Agency for Land Administration and Management, Geodesy and Cartography of
Mongolia, Ulaanbaatar, Mongolia, https://en.gazar.gov.mn/p/p-999-123 (last access: 5 January 2023), 1970.
An, Z., Kukla, G., Porter, S. C., and Xiao, J.: Late Quaternary dust flow on the
Chinese loess plateau, Catena, 18, 125–132,
https://doi.org/10.1016/0341-8162(91)90012-M, 1991.
Balco, G.: Contributions and unrealized potential contributions of cosmogenic
nuclide exposure dating to glacier chronology, 1990–2010, Quaternary Sci. Rev.,
30, 3–27, https://doi.org/10.1016/j.quascirev.2010.11.003,
2011.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily
accessible means of calculating surface exposure ages or erosion rates from
10Be and 26Al measurements, Quat. Geochronol., 3, 174–195,
https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Ballantyne, C. K. and Stone, J. O.: Timing and periodicity of paraglacial
rock-slope failures in the Scottish Highlands, Geomorphology, 186, 150–161,
https://doi.org/10.1016/j.geomorph.2012.12.030, 2012.
Barr, I. D. and Lovell, H.: A review of topographic controls on moraine
distribution, Geomorphology, 226, 44–64,
https://doi.org/10.1016/j.geomorph.2014.07.030, 2014.
Barr, I. D. and Spagnolo, M.: Glacial cirques as palaeoenvironmental
indicators: Their potential and limitations, Earth-Sci. Rev., 151, 48–78,
https://doi.org/10.1016/j.earscirev.2015.10.004, 2015.
Batbaatar, J.: Quaternary Glaciation in Central Asia, Doctoral
dissertation, https://digital.lib.washington.edu/researchworks/handle/1773/42867 (last access: 5 January 2023), 2018.
Batbaatar, J. and Gillespie, A. R.: Outburst floods of the Maly Yenisei. Part
II–new age constraints from Darhad basin, Int. Geol. Rev., 58,
1753–1779, https://doi.org/10.1080/00206814.2016.1193452, 2016.
Batbaatar, J., Gillespie, A. R., Fink, D., Matmon, A., and Fujioka, T.:
Asynchronous glaciations in arid continental climate, Quaternary Sci. Rev., 182,
1–19, https://doi.org/10.1016/j.quascirev.2017.12.001, 2018.
Bayasgalan, A., Jackson, J., Ritz, J. F., and Carretier, S. J. T.: Field examples
of strike-slip fault terminations in Mongolia and their tectonic
significance, Tectonics, 18, 394–411,
https://doi.org/10.1029/1999TC900007, 1999.
Benn, D. I. and Hulton, N. R.: An ExcelTM spreadsheet program for
reconstructing the surface profile of former mountain glaciers and ice caps,
Comput. Geosci, 36, 605–610,
https://doi.org/10.1016/j.cageo.2009.09.016, 2010.
Benn, D. I. and Lehmkuhl, F.: Mass balance and equilibrium-line altitudes of
glaciers in high-mountain environments, Quatern. Int., 65, 15–29,
https://doi.org/10.1016/S1040-6182(99)00034-8, 2000.
Berger, A. and Loutre, M.-F.: Insolation values for the climate of the last 10
million years, Quaternary Sci. Rev., 10, 297–317,
https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Berkey, C. P. and Morris, F. K.: The peneplanes of Mongolia, Am. Mus. Novit.,
136, 1–11, 1924.
Blomdin, R., Stroeven, A. P., Harbor, J. M., Lifton, N. A., Heyman, J.,
Gribenski, N., Petrakov, D. A., Caffee, M. W., Ivanov, M. N., Hättestrand,
C., Rogozhina, I., and Usubaliev, R.: Evaluating the timing of former glacier
expansions in the Tian Shan: A key step towards robust spatial correlations,
Quaternary Sci. Rev., 153, 78–96,
https://doi.org/10.1016/j.quascirev.2016.07.029, 2016.
Blomdin, R., Stroeven, A. P., Harbor, J. M., Gribenski, N., Caffee, M. W.,
Heyman, J., Rogozhina, I., Ivanov, M. N., Petrakov, D. A., and Walther, M.: Timing
and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High
Asia, Quat. Geochronol., 47, 54–71,
https://doi.org/10.1016/j.quageo.2018.05.008, 2018.
Buizert, C., Keisling, B., Box, J., He, F., Carlson, A., Sinclair, G., and
DeConto, R.: Greenland-wide seasonal temperatures during the last
deglaciation, Geophys. Res. Lett., 45, 1905–1914,
https://doi.org/10.1002/2017GL075601, 2018.
Byun, J., Heimsath, A. M., Seong, Y. B., and Lee, S. Y.: Erosion of a
high-altitude, low-relief area on the Korean Peninsula: implications for its
development processes and evolution, Earth Surf. Proc. Land., 40,
1730–1745, https://doi.org/10.1002/esp.3749, 2015.
Chai, L. T., Wong, C. J., James, D., Loh, H. Y., Liew, J. J. F., Wong, W. V.
C., and Phua, M. H.: Vertical accuracy comparison of multi-source Digital
Elevation Model (DEM) with Airborne Light Detection and Ranging (LiDAR),
in: IOP Conference Series, Earth. Environ. Sci., 1053, 012025,
https://doi.org/10.1088/1755-1315/1053/1/012025, 2022.
Chauvenet, W.: A Manual of spherical and practical astronomy – Vol. 1:
Spherical astronomy; Vol. 2: Theory and use of astronomical instruments.
Method of least squares, 5th Edn., revised and corrected, Dover Publication, New
York, 1960.
Ciner, A., Sarikaya, M. A., and Yildirim, C.: Misleading old age on a young
landform? The dilemma of cosmogenic inheritance in surface exposure dating:
Moraines vs. rock glaciers, Quat. Geochronol., 42, 76–88,
https://doi.org/10.1016/j.quageo.2017.07.003, 2017.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth,
B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The last glacial
maximum, Science, 325, 710–714,
https://doi.org/10.1126/science.1172873, 2009.
Cossart, E., Braucher, R., Fort, M., Bourlès, D., and Carcaillet, J.: Slope
instability in relation to glacial debuttressing in alpine areas (Upper
Durance catchment, southeastern France): evidence from field data and 10Be
cosmic ray exposure ages, Geomorphology, 95, 3–26,
https://doi.org/10.1016/j.geomorph.2006.12.022, 2008.
Cunningham, D.: Tectonic setting and structural evolution of the Late
Cenozoic Gobi-Altai orogen, J. Geol. Soc. Lond., 338, 361–387,
https://doi.org/10.1144/SP338.17, 2010.
Cunningham, W. D., Windley, B. F., Dorjnamjaa, D., Badamgarov, J., and Saandar,
M.: Late Cenozoic transpression in southwestern Mongolia and the
Gobi-Altai-Tien Shan connection, Earth Planet. Sc. Lett., 140, 67–81,
https://doi.org/10.1016/0012-821X(96)00048-9, 1996.
Dahl, S. O., Bakke, J., Lie, Ø., and Nesje, A.: Reconstruction of former
glacier equilibrium-line altitudes based on proglacial sites: an evaluation
of approaches and selection of sites, Quaternary Sci. Rev., 22, 275–287,
https://doi.org/10.1016/S0277-3791(02)00135-X, 2003.
Delmas, M., Gunnell, Y., Braucher, R., Calvet, M., and Bourlès, D.:
Exposure age chronology of the last glaciation in the eastern
Pyrenees, Quaternary Res., 69,
231–241, https://doi.org/10.1016/j.yqres.2007.11.004, 2008.
Delmas, M., Calvet, M., Gunnell, Y., Braucher, R., and Bourlès, D.:
Palaeogeography and 10Be exposure-age chronology of Middle and Late
Pleistocene glacier systems in the northern Pyrenees: implications for
reconstructing regional palaeoclimates, Palaeogeogr. Palaeocl., 305, 109–122,
https://doi.org/10.1016/j.palaeo.2011.02.025, 2011.
Devyatkin, E.: Structures and formational complexes of the Cenozoic
activated stage, Tectonics of the Mongolian People's Republic, Nauka, 41,
182–195, 1974.
Dewey, J. F., Shackleton, R. M., Chengfa, C., and Yiyin, S.: The tectonic
evolution of the Tibetan Plateau, Philos. T. Roy. Soc. A, 327,
379–413, https://doi.org/10.1098/rsta.1988.0135, 1988.
EIC: Geologic map of Mongolia 1:1000000, Environment Information Center of
National Agency for Meteorology, Hydrology and Environmental Monitoring,
Ulaanbaatar, Mongolia, 1981.
Evans, I. S.: Local aspect asymmetry of mountain glaciation: a global survey
of consistency of favoured directions for glacier numbers and
altitudes, Geomorphology, 73,
166–184, https://doi.org/10.1016/j.geomorph.2005.07.009, 2006.
Evans, I. S. and Cox, N. J.: Global variations of local asymmetry in glacier
altitude: separation of north–south and east–west components, J. Glaciol.,
51, 469–482, https://doi.org/10.3189/172756505781829205, 2005.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, Rl, Hensley, S., Kobrick, M., Paller, M., Rodrigue, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Felauer, T., Schlütz, F., Murad, W., Mischke, S., and Lehmkuhl, F.: Late
Quaternary climate and landscape evolution in arid Central Asia: A
multiproxy study of lake archive Bayan Tohomin Nuur, Gobi desert,
southern Mongolia, J. Asian. Earth. Sci., 48, 125–135,
https://doi.org/10.1016/j.jseaes.2011.12.002, 2012.
Ferreira, Z. A. and Cabral, P.: A Comparative study about vertical
accuracy of four freely available digital elevation models: a case study in
the Balsas river watershed, Brazil, ISPRS Int. J. Geo-Inf., 11, 106,
https://doi.org/10.3390/ijgi11020106, 2022.
Fletcher, W. J., Goni, M. F. S., Allen, J. R., Cheddadi, R., Combourieu-Nebout,
N., Huntley, B., Lawson, I., Londeix, L., Magri, D., and Margari, V.:
Millennial-scale variability during the last glacial in vegetation records
from Europe, Quaternary Sci. Rev., 29, 2839–2864,
https://doi.org/10.1016/j.quascirev.2009.11.015, 2010.
Florentine, C., Harper, J., Fagre, D.: Parsing complex terrain controls on
mountain glacier response to climate forcing, Global Planet. Change, 191,
103209, https://doi.org/10.1016/j.gloplacha.2020.103209, 2020.
Gillespie, A. R., Burke, R. M., Komatsu, G., and Bayasgalan, A.: Late Pleistocene
glaciers in Darhad basin, northern Mongolia, Quaternary Res., 69, 169–187,
https://doi.org/10.1016/j.yqres.2008.01.001, 2008.
Goldthwait, R. P.: Mountain glaciers of the Presidential Range in New
Hampshire, Arct. Alp. Res., 2, 85–102,
https://doi.org/10.1080/00040851.1970.12003566, 1970.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides: theory
and application, Quaternary Sci. Rev., 20, 1475–1560,
https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Gribenski, N., Jansson, K. N., Preusser, F., Harbor, J. M., Stroeven, A. P.,
Trauerstein, M., and Zhang, W.: Re-evaluation of MIS 3 glaciation using
cosmogenic radionuclide and single grain luminescence ages, Kanas Valley,
Chinese Altai, J. Quaternary Sci., 33, 55–67, https://doi.org/10.1002/jqs.2998, 2018.
Hashemi, K., Sarıkaya, M. A., Görüm, T., Wilcken,
K. M., Çiner, A., Žebre, M., Stepišnik, U., and Yıldırım, C.:
The Namaras rock avalanche: Evidence of mid-to-late Holocene paraglacial
activity in the Central Taurus Mountains, SW Turkey, Geomorphology, 408,
108261, https://doi.org/10.1016/j.geomorph.2022.108261, 2022.
Heyman, J.: Paleoglaciation of the Tibetan Plateau and surrounding mountains
based on exposure ages and ELA depression estimates, Quaternary Sci. Rev., 91,
30–41, https://doi.org/10.1016/j.quascirev.2014.03.018, 2014.
Heyman, J., Stroeven, A. P., Caffee, M. W., Hättestrand, C., Harbor, J. M.,
Li, Y., Alexanderson, H., Zhou, L., and Hubbard, A.: Palaeoglaciology of Bayan
Har Shan, NE Tibetan Plateau: exposure ages reveal a missing LGM expansion,
Quaternary Sci. Rev., 30, 1988–2001,
https://doi.org/10.1016/j.quascirev.2011.05.002, 2011a.
Heyman, J., Stroeven, A. P., Harbor, J. M., and Caffee, M. W.: Too young or too
old: evaluating cosmogenic exposure dating based on an analysis of compiled
boulder exposure ages, Earth Planet. Sc. Lett., 302, 71–80,
https://doi.org/10.1016/j.epsl.2010.11.040, 2011b.
Hock, R.: A distributed temperature-index ice-and snowmelt model including
potential direct solar radiation, J. Glaciol., 45, 101–111, https://doi.org/10.3189/S0022143000003087, 1999.
Hughes, P. D., Gibbard, P. L., and Ehlers, J.: Timing of glaciation during the
last glacial cycle: evaluating the concept of a global “Last Glacial
Maximum” (LGM), Earth-Sci. Rev., 125, 171–198,
https://doi.org/10.1016/j.earscirev.2013.07.003, 2013.
Iqbal, M.: An Introduction to Solar Radiation, New York, Academic Press, ISBN 9780323151818,
1983.
JAXA/METI: ALOS PALSAR L1.0 High-resolution terrain
corrected datase, ASF DAAC [data set], https://doi.org/10.5067/J4JVCFDDPEW, 2007.
Jiménez-Sánchez, M., Rodríguez-Rodríguez, L.,
García-Ruiz, J. M., Domínguez-Cuesta, M. J., Farias, P.,
Valero-Garcés, B. L., Moreno, A., and Valcárcel, M.: A review of glacial
geomorphology and chronology in northern Spain: timing and regional
variability during the last glacial cycle, Geomorphology, 196, 50–64,
https://doi.org/10.1016/j.geomorph.2012.06.009, 2013.
Jolivet, M., Ritz, J.-F., Vassallo, R., Larroque, C., Braucher, R.,
Todbileg, M., Chauvet, A., Sue, C., Arnaud, N., and DeVicente, R.: Mongolian summits: an uplifted, flat, old but still preserved
erosion surface, Geology, 35,
871–874, https://doi.org/10.1130/G23758A.1, 2007.
Jones, R., Small, D., Cahill, N., Bentley, M., and Whitehouse, P.: iceTEA: tools
for plotting and analysing cosmogenic-nuclide surface-exposure data from
former ice margins, Quat. Geochronol., 51, 72–86,
https://doi.org/10.1016/j.quageo.2019.01.001, 2019.
Jouzel, J., Stievenard, M., Johnsen, S. J., Landais, A., Masson-Delmotte, V.,
Sveinbjornsdottir, A., Vimeux, F., Von Grafenstein, U., and White, J. W.: The
GRIP deuterium-excess record, Quaternary Sci. Rev., 26, 1–17,
https://doi.org/10.1016/j.quascirev.2006.07.015, 2007.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza,
R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high
resolution for the earth's land surface areas, Sci. Data., 4, 170122,
https://doi.org/10.1038/sdata.2017.122, 2017.
Khandsuren, P., Seong, Y. B., Oh, J. S., Rhee, H. H., Sandag, K., and Yu, B. Y.:
Late Quaternary glacial history of Khentey Mountains, Central Mongolia,
Boreas, 48, 779–799, https://doi.org/10.1111/bor.12386, 2019.
Kirkbride, M. and Winkler, S.: Correlation of Late Quaternary moraines: impact
of climate variability, glacier response, and chronological resolution,
Quaternary Sci. Rev., 46, 1–29, https://doi.org/10.1016/j.quascirev.2012.04.002,
2012.
Klinge, M., Schneider, F., Dulamsuren, C., Arndt, K., Bayarsaikhan, U., and
Sauer, D.: Interrelations between relief,
vegetation, disturbances, and permafrost in the forest-steppe of central
Mongolia, Earth Surf. Proc. Land., 46, 1766–1782, https://doi.org/10.1002/esp.5116, 2021.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement of
in situ -produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56,
3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992.
Koppes, M., Gillespie, A. R., Burke, R. M., Thompson, S. C., and Stone, J.: Late
quaternary glaciation in the Kyrgyz Tien Shan, Quaternary. Sci. Rev., 27,
846–866, https://doi.org/10.1016/j.quascirev.2008.01.009, 2008.
Laabs, B. J., Refsnider, K. A., Munroe, J. S., Mickelson, D. M., Applegate,
P. J., Singer, B. S., and Caffee, M. W.: Latest Pleistocene glacial
chronology of the Uinta Mountains: support for moisture-driven asynchrony of
the last deglaciation, Quaternary Sci. Rev., 28, 1171–1187,
https://doi.org/10.1016/j.quascirev.2008.12.012, 2009.
Laabs, B. J., Licciardi, J. M., Leonard, E. M., Munroe, J. S., and
Marchetti, D. W.: Updated cosmogenic chronologies of Pleistocene mountain
glaciation in the western United States and associated paleoclimate
inferences, Quaternary Sci. Rev., 242, 106427,
https://doi.org/10.1016/j.quascirev.2020.106427, 2020.
Laabs, B. J., Marchetti, D. W., Munroe, J. S., Refsnider, K. A., Gosse, J.
C., Lips, E. W., and Singer, B. S.: Chronology of latest Pleistocene
mountain glaciation in the western Wasatch Mountains, Utah, USA, Quaternary
Res., 76, 272–284, https://doi.org/10.1016/j.yqres.2011.06.016, 2011.
Laabs, B. J. C. and Munroe, J. S.: Late Pleistocene mountain glaciation in
the Lake Bonneville basin, in: Developments in Earth. Surf. Process.,
20, 462–503, https://doi.org/10.1016/B978-0-444-63590-7.00017-2, 2016.
Lee, M. K., Lee, Y. I., Lim, H. S., Lee, J. I., and Yoon, H. I.: Late
Pleistocene–Holocene records from Lake Ulaan, southern Mongolia:
implications for east Asian palaeomonsoonal climate changes, J. Quaternary Sci.,
28, 370–378, https://doi.org/10.1002/jqs.2626, 2013.
Lehmkuhl, F., Grunert, J., Hülle, D., Batkhishig, O., Stauch, G.:
Paleolakes in the Gobi region of southern Mongolia, Quaternary Sci. Rev., 179,
1–23, https://doi.org/10.1016/j.quascirev.2017.10.035, 2018.
Li, Y., Liu, G., Chen, Y., Li, Y., Harbor, J., Stroeven, A. P., Caffee, M.,
Zhang, M., Li, C., and Cui, Z.: Timing and extent of Quaternary glaciations in
the Tianger Range, eastern Tian Shan, China, investigated using 10Be
surface exposure dating, Quaternary Sci. Rev., 98, 7–23,
https://doi.org/10.1016/j.quascirev.2014.05.009, 2014.
Licciardi, J. M., Clark, P. U., Brook, E. J., Pierce, K. L., Kurz, M. D.,
Elmore, D., and Sharma, P.: Cosmogenic 3He and 10Be chronologies of the
late Pinedale northern Yellowstone ice cap, Montana, USA, Geology, 29,
1095–1098, https://doi.org/10.1130/0091-7613(2001)029<1095:CHABCO>2.0.CO;2, 2001.
Licciardi, J. M., Clark, P. U., Brook, E. J., Elmore, D., and Sharma, P.:
Variable responses of western US glaciers during the last
deglaciation, Geology, 32, 81–84, https://doi.org/10.1130/G19868.1, 2004.
Licciardi, J. M. and Pierce, K. L.: History and dynamics of the Greater
Yellowstone Glacial System during the last two glaciations, Quaternary Sci.
Rev., 200, 1–33, https://doi.org/10.1016/j.quascirev.2018.08.027, 2018.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planet. Sc. Lett., 386, 149–160,
https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Luckman, B. H.: The Geomorphic Activity of Snow Avalanches, Geogr. Ann. A, 59, 31–48,
https://doi.org/10.1080/04353676.1977.11879945, 1977.
Meierding, T. C.: Late Pleistocene glacial equilibrium-line altitudes in the
Colorado Front Range: a comparison of methods, Quaternary Res., 18, 289–310,
https://doi.org/10.1016/0033-5894(82)90076-X, 1982.
Mischke, S., Lee, M. K., and Lee, Y. I.: Climate history of southern Mongolia
since 17 ka: The ostracod, gastropod and charophyte record from Lake Ulaan,
Front, Earth Sci., 8, 221, https://doi.org/10.3389/feart.2020.00221, 2020.
NAMHEM: Climate data, Institute for Hydrology and Aviation Meteorological
Center of National Agency for Meteorology, Hydrology and Environmental
Monitoring, Ulaanbaatar, Mongolia, https://www.namem.gov.mn/ (last access: 5 January 2023), 2020.
National Oceanic and Atmospheric Administration (NOAA): US standard atmosphere,
Vol. 76, edited by: Teweles, S., Washington DC, 003-017-00323-0, 1976.
Nishiizumi, K., Imamura, M., Caffee, M., Southon, J., Finkel, R., McAninch,
J.: Absolute calibration of 10Be AMS Standards, Nucl. Instrum. Meth. B., 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297,
2007.
Oliva, M., Palacios, D., Fernández-Fernández, J. M.,
Rodríguez-Rodríguez, L., García-Ruiz, J. M., Andrés, N.,
and Hughes, P. D.: Late Quaternary glacial phases in the Iberian
Peninsula, Earth-Sci. Rev., 192, 564–600,
https://doi.org/10.1016/j.earscirev.2019.03.015, 2019.
Olson, M. and Rupper, S.: Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography, The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, 2019.
Palacios, D., Stokes, C. R., Phillips, F. M., Clague, J. J.,
Alcalá-Reygosa, J., Andrés, N., and Ward, D. J.: The
deglaciation of the Americas during the Last Glacial Termination, Earth-Sci.
Rev., 203, 103113, https://doi.org/10.1016/j.earscirev.2020.103113, 2020.
Porter, S. C.: Snowline depression in the tropics during the Last
Glaciation, Quaternary Sci. Rev., 20,
1067–1091, https://doi.org/10.1016/S0277-3791(00)00178-5, 2001.
Pötsch, S.: Dynamics and paleo-climatic forcing of late Pleistocene
glaciers in the Turgen and Khangai mountains (Mongolia) reconstructed from
geomorphology, 10Be surface exposure dating, and ice flow modelling,
PhD thesis, Greifswald, Finsterwalde, urn:nbn:de:gbv:9-002817-2, 2017.
Quirk, B. J., Moore, J. R., Laabs, B. J., Plummer, M. A., andCaffee, M.
W.: Latest Pleistocene glacial and climate history of the Wasatch Range,
Utah, Quaternary Sci. Rev., 238, 106313,
https://doi.org/10.1016/j.quascirev.2020.106313, 2020.
Ross, S. M.: Peirce's criterion for the elimination of suspect experimental
data, J. Eng. Technol., 20, 38–41, 2003.
Rother, H., Lehmkuhl, F., Fink, D., and Nottebaum, V.: Surface exposure dating
reveals MIS-3 glacial maximum in the Khangai Mountains of Mongolia, Quaternary
Res., 82, 297–308, https://doi.org/10.1016/j.yqres.2014.04.006, 2014.
Sanders, J. W., Cuffey, K. M., Moore, J. R., MacGregor, K. R., and
Kavanaugh, J. L.: Periglacial weathering and headwall erosion in cirque
glacier bergschrunds, Geology, 40, 779–782, https://https://doi.org/10.1130/G33330.1,
2012.
Şengör, A., Natal'In, B., and Burtman, V.: Evolution of the Altaid
tectonic collage and Palaeozoic crustal growth in Eurasia, Nature,
364, 299–307, https://doi.org/10.1038/364299a0, 1993.
Seong, Y. B., Dorn, R. I., and Yu, B. Y.: Evaluating the life expectancy of a
desert pavement, Earth-Sci. Rev., 162, 129–154,
https://doi.org/10.1016/j.earscirev.2016.08.005, 2016.
Shackleton, N.: Oxygen isotope analyses and Pleistocene temperatures
re-assessed, Nature, 215, 15–17, https://doi.org/10.1038/215015a0,
1967.
Shackleton, N. J.: The 100,000-year ice-age cycle identified and found to lag
temperature, carbon dioxide, and orbital eccentricity, Science, 289,
1897–1902, https://doi.org/10.1126/science.289.5486.1897, 2000.
Skinner, L. and Shackleton, N.: An Atlantic lead over Pacific deep-water change
across Termination I: implications for the application of the marine isotope
stage stratigraphy, Quaternary Sci. Rev., 24, 571–580,
https://doi.org/10.1016/j.quascirev.2004.11.008, 2005.
Smith, S. G., Wegmann, K. W., Ancuta, L. D., Gosse, J. C., and Hopkins, C. E.:
Paleotopography and erosion rates in the central Hangay Dome, Mongolia:
Landscape evolution since the mid-Miocene, J. Asian. Earth. Sci., 125, 37–57,
https://doi.org/10.1016/j.jseaes.2016.05.013, 2016.
Tang, Z. and Fang, J.: Temperature variation along the northern and
southern slopes of Mt. Taibai, China, Agr. Forest Meteorol., 139,
200–207, https://doi.org/10.1016/j.agrformet.2006.07.001, 2006.
Tarasov, P., Peyron, O., Guiot, J., Brewer, S., Volkova, V., Bezusko, L.,
Dorofeyuk, N., Kvavadze, E., Osipova, I., and Panova, N.: Last Glacial
Maximum climate of the former Soviet Union and Mongolia reconstructed from
pollen and plant macrofossil data, Clim. Dynam., 15, 227–240,
https://doi.org/10.1007/s003820050278, 1999.
Thackray, G. D.: Varied climatic and topographic influences on Late
Pleistocene mountain glaciation in the western United States, J. Quaternary
Sci., 23, 671–681,
https://doi.org/10.1002/jqs.1210, 2008.
Thompson, W. G., Spiegelman, M. W., Goldstein, S. L., and Speed, R. C.: An
open-system model for U-series age determinations of fossil corals, Earth
Planet. Sc. Lett., 210, 365–381,
https://doi.org/10.1016/S0012-821X(03)00121-3, 2003.
Traynor, J. and Sladen, C.: Tectonic and stratigraphic evolution of the
Mongolian People's Republic and its influence on hydrocarbon geology and
potential, Mar. Petrol. Geol., 12, 35–52,
https://doi.org/10.1016/0264-8172(95)90386-X, 1995.
Vassallo, R., Jolivet, M., Ritz, J.-F., Braucher, R., Larroque, C., Sue, C.,
Todbileg, M., and Javkhlanbold, D.: Uplift age and rates of the Gurvan Bogd
system (Gobi-Altay) by apatite fission track analysis, Earth Planet. Sc.
Lett., 259, 333–346, https://doi.org/10.1016/j.epsl.2007.04.047, 2007.
Vassallo, R., Ritz, J.-F., and Carretier, S.: Control of geomorphic processes on
10Be concentrations in individual clasts: Complexity of the exposure
history in Gobi-Altay range (Mongolia), Geomorphology, 135, 35–47,
https://doi.org/10.1016/j.geomorph.2011.07.023, 2011.
Wang, Y.-J., Cheng, H., Edwards, R. L., An, Z., Wu, J., Shen, C.-C., and Dorale,
J. A.: A high-resolution absolute-dated late Pleistocene monsoon record from
Hulu Cave, China, Science, 294, 2345–2348,
https://doi.org/10.1126/science.1064618, 2001.
Young, N. E., Briner, J. P., Leonard, E. M., Licciardi, J. M., and Lee, K.:
Assessing climatic and nonclimatic forcing of Pinedale glaciation and
deglaciation in the western United States, Geology, 39, 171–174,
https://doi.org/10.1130/G31527.1, 2011.
Yu, K., Lehmkuhl, F., Diekmann, B., Zeeden, C., Nottebaum, V., and Stauch, G.:
Geochemical imprints of coupled paleoenvironmental and provenance change in
the lacustrine sequence of Orog Nuur, Gobi Desert of Mongolia, J.
Paleolimnol., 58, 511–532, https://doi.org/10.1007/s10933-017-0007-7,
2017.
Yu, K., Lehmkuhl, F., Schlütz, F., Diekmann, B., Mischke, S., Grunert,
J., Murad, W., Nottebaum, V., Stauch, G., and Zeeden, C.: Late Quaternary
environments in the Gobi Desert of Mongolia: Vegetation, hydrological, and
palaeoclimate evolution, Palaeogeogr. Palaeoclim., 514,
77–91, https://doi.org956/10.1016/j.palaeo.2018.10.004, 2019.
Zhang, S., Zhao, H., Sheng, Y., Chen, S., Li, G., and Chen, F.: Late
Quaternary lake level record of Orog Nuur, southern Mongolia, revealed by
optical dating of paleo-shorelines, Quat. Geochronol., 72, 101370,
https://doi.org/10.1016/j.quageo.2022.101370, 2022.
Short summary
Moraine is an awe-inspiring landscape in alpine areas and stores information on past climate. We measured the timing of moraine formation on the Ih Bogd Massif, southern Mongolia. Here, glaciers move synchronously as a response to changing climate; however, our glacier on the northern slope reached its maximum extent 3 millennia after the southern one. We ran a 2D ice surface model and found that the diachronous behavior of glaciers was real. Aspect also controls the mass of alpine glaciers.
Moraine is an awe-inspiring landscape in alpine areas and stores information on past climate. We...