Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-211-2023
https://doi.org/10.5194/tc-17-211-2023
Research article
 | 
17 Jan 2023
Research article |  | 17 Jan 2023

Estimating degree-day factors of snow based on energy flux components

Muhammad Fraz Ismail, Wolfgang Bogacki, Markus Disse, Michael Schäfer, and Lothar Kirschbauer

Related authors

The impact of calibration strategies on future evapotranspiration projections: a SWAT-T comparison of three hydrological modeling approaches in West Africa
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Manuel Rauch, Jan Bliefernicht, and Markus Disse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3836,https://doi.org/10.5194/egusphere-2025-3836, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024,https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Drought cascades across multiple systems in Central Asia identified based on the dynamic space–time motion approach
Lu Tian, Markus Disse, and Jingshui Huang
Hydrol. Earth Syst. Sci., 27, 4115–4133, https://doi.org/10.5194/hess-27-4115-2023,https://doi.org/10.5194/hess-27-4115-2023, 2023
Short summary
Building hazard maps with differentiated risk perception for flood impact assessment
Punit K. Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci., 20, 2647–2663, https://doi.org/10.5194/nhess-20-2647-2020,https://doi.org/10.5194/nhess-20-2647-2020, 2020
Short summary

Cited articles

Ahmad, M. J. and Tiwari, G. N.: Solar radiation models-A review, Int. J. Energy Res., 35, 271–290, https://doi.org/10.1002/er.1690, 2011. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy, 300 pp., 1998. 
Amaral, T., Wake, C. P., Dibb, J. E., Burakowski, E. A., and Stampone, M.: A simple model of snow albedo decay using observations from the Community Collaborative Rain, Hail, and Snow-Albedo (CoCoRaHS-Albedo) Network, J. Glaciol., 63, 877–887, https://doi.org/10.1017/jog.2017.54, 2017. 
Ambach, W.: Characteristics of the Heat Balance of the Greenland Ice sheet for Modelling, J. Glaciol., 31, 3–12, https://doi.org/10.3189/S0022143000004925, 1985. 
Anderson, E. A.: National Weather Service river forecast system-snow accumulation and ablation model. National Oceanographic and Atmospheric Administration (NOAA), Tech. Mem., NWS HYDRO-17, US Dept. of Commerce, Silver Spring, MD, 217 pp., https://repository.library.noaa.gov/view/noaa/13507 (last access: 3 January 2023), 1973. 
Download
Short summary
Fresh water from mountainous catchments in the form of snowmelt and ice melt is of critical importance especially in the summer season for people living in these regions. In general, limited data availability is the core concern while modelling the snow and ice melt components from these mountainous catchments. This research will be helpful in selecting realistic parameter values (i.e. degree-day factor) while calibrating the temperature-index models for data-scarce regions.
Share