Articles | Volume 17, issue 5
https://doi.org/10.5194/tc-17-1967-2023
https://doi.org/10.5194/tc-17-1967-2023
Research article
 | 
10 May 2023
Research article |  | 10 May 2023

A model of the weathering crust and microbial activity on an ice-sheet surface

Tilly Woods and Ian J. Hewitt

Related authors

Groundwater dynamics beneath a marine ice sheet
Gabriel Cairns, Graham Benham, and Ian Hewitt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2880,https://doi.org/10.5194/egusphere-2024-2880, 2024
Short summary
A risk-based network analysis of distributed in-stream leaky barriers for flood risk management
Barry Hankin, Ian Hewitt, Graham Sander, Federico Danieli, Giuseppe Formetta, Alissa Kamilova, Ann Kretzschmar, Kris Kiradjiev, Clint Wong, Sam Pegler, and Rob Lamb
Nat. Hazards Earth Syst. Sci., 20, 2567–2584, https://doi.org/10.5194/nhess-20-2567-2020,https://doi.org/10.5194/nhess-20-2567-2020, 2020
Short summary
A continuum model for meltwater flow through compacting snow
Colin R. Meyer and Ian J. Hewitt
The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017,https://doi.org/10.5194/tc-11-2799-2017, 2017
Short summary
Models for polythermal ice sheets and glaciers
Ian J. Hewitt and Christian Schoof
The Cryosphere, 11, 541–551, https://doi.org/10.5194/tc-11-541-2017,https://doi.org/10.5194/tc-11-541-2017, 2017
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Sheets
Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under conditions of high ice-shelf basal melt
Sanket Jantre, Matthew J. Hoffman, Nathan M. Urban, Trevor Hillebrand, Mauro Perego, Stephen Price, and John D. Jakeman
The Cryosphere, 18, 5207–5238, https://doi.org/10.5194/tc-18-5207-2024,https://doi.org/10.5194/tc-18-5207-2024, 2024
Short summary
Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024,https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
The influence of firn-layer material properties on surface crevasse propagation in glaciers and ice shelves
Theo Clayton, Ravindra Duddu, Tim Hageman, and Emilio Martinez-Paneda
EGUsphere, https://doi.org/10.5194/egusphere-2024-660,https://doi.org/10.5194/egusphere-2024-660, 2024
Short summary
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023,https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Stagnant ice and age modelling in the Dome C region, Antarctica
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023,https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary

Cited articles

Bagshaw, E. A., Tranter, M., Fountain, A. G., Welch, K., Basagic, H. J., and Lyons, W. B.: Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica?, Arct. Antarct. Alp. Res., 45, 440–454, https://doi.org/10.1657/1938-4246-45.4.440, 2013. a
Benning, L. G., Anesio, A. M., Lutz, S., and Tranter, M.: Biological impact on Greenland's albedo, Nat. Geosci., 7, 691, https://doi.org/10.1038/ngeo2260, 2014. a, b
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012. a, b
Chevrollier, L.-A., Cook, J. M., Halbach, L., Jakobsen, H., Benning, L. G., Anesio, A. M., and Tranter, M.: Light absorption and albedo reduction by pigmented microalgae on snow and ice, J. Glaciol., 69, 333–341, https://doi.org/10.1017/jog.2022.64, 2022. a
Christner, B. C., Lavender, H. F., Davis, C. L., Oliver, E. E., Neuhaus, S. U., Myers, K. F., Hagedorn, B., Tulaczyk, S. M., Doran, P. T., and Stone, W. C.: Microbial processes in the weathering crust aquifer of a temperate glacier, The Cryosphere, 12, 3653–3669, https://doi.org/10.5194/tc-12-3653-2018, 2018. a, b, c, d, e
Download
Short summary
Solar radiation causes melting at and just below the surface of the Greenland ice sheet, forming a porous surface layer known as the weathering crust. The weathering crust is home to many microbes, and the growth of these microbes is linked to the melting of the weathering crust and vice versa. We use a mathematical model to investigate what controls the size and structure of the weathering crust, the number of microbes within it, and its sensitivity to climate change.