Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1271-2023
https://doi.org/10.5194/tc-17-1271-2023
Brief communication
 | 
15 Mar 2023
Brief communication |  | 15 Mar 2023

Brief communication: Monitoring active layer dynamics using a lightweight nimble ground-penetrating radar system – a laboratory analogue test case

Emmanuel Léger, Albane Saintenoy, Mohammed Serhir, François Costard, and Christophe Grenier

Related authors

Brief Communication: Mimicking periglacial landforms and processes in an ice-rich layered permafrost system with polydispersed melamine materials: a new concept
Emmanuel Léger, François Costard, Rémi Lambert, Albane Saintenoy, Antoine Séjourné, and Maxime Leblanc
EGUsphere, https://doi.org/10.5194/egusphere-2024-2690,https://doi.org/10.5194/egusphere-2024-2690, 2024
Short summary
A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
Emmanuel Léger, Baptiste Dafflon, Yves Robert, Craig Ulrich, John E. Peterson, Sébastien C. Biraud, Vladimir E. Romanovsky, and Susan S. Hubbard
The Cryosphere, 13, 2853–2867, https://doi.org/10.5194/tc-13-2853-2019,https://doi.org/10.5194/tc-13-2853-2019, 2019
Short summary

Related subject area

Discipline: Frozen ground | Subject: Instrumentation
Non-destructive multi-sensor core logging allows for rapid imaging and estimation of frozen bulk density and volumetric ice content in permafrost cores
Joel Pumple, Alistair Monteath, Jordan Harvey, Mahya Roustaei, Alejandro Alvarez, Casey Buchanan, and Duane Froese
The Cryosphere, 18, 489–503, https://doi.org/10.5194/tc-18-489-2024,https://doi.org/10.5194/tc-18-489-2024, 2024
Short summary
Brief communication: Comparison of the performance of thermistors and digital temperature sensors in a mountain permafrost borehole
Lars Widmer, Marcia Phillips, and Chasper Buchli
The Cryosphere, 17, 4289–4295, https://doi.org/10.5194/tc-17-4289-2023,https://doi.org/10.5194/tc-17-4289-2023, 2023
Short summary
Brief communication: Unravelling the composition and microstructure of a permafrost core using X-ray computed tomography
Jan Nitzbon, Damir Gadylyaev, Steffen Schlüter, John Maximilian Köhne, Guido Grosse, and Julia Boike
The Cryosphere, 16, 3507–3515, https://doi.org/10.5194/tc-16-3507-2022,https://doi.org/10.5194/tc-16-3507-2022, 2022
Short summary
A distributed temperature profiling system for vertically and laterally dense acquisition of soil and snow temperature
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022,https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement
Stephan Gruber
The Cryosphere, 14, 1437–1447, https://doi.org/10.5194/tc-14-1437-2020,https://doi.org/10.5194/tc-14-1437-2020, 2020
Short summary

Cited articles

Annan, A.: Ground Penetrating Radar: Workshop Notes, Tech. rep., Sensors and Software Inc., Ontario, Canada, 1999. a
Arcone, S. A., Lawson, D. E., Delaney, A. J., Strasser, J. C., and Strasser, J. D.: Ground-penetrating radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost, Geophysics, 63, 1573–1584, 1998. a
Birchak, J., Gardner, L., Hipp, J., and Victor, J.: High dielectric constant microwave probes for sensing soil moisture, Proc. IEEE, 35, 85–94, 1974. a
Costard, F., Dupeyrat, L., Séjourné, A., Bouchard, F., Fedorov, A., and Saint-Bézar, B.: Retrogressive Thaw Slumps on Ice-Rich Permafrost Under Degradation: Results From a Large-Scale Laboratory Simulation, Geophys. Res. Lett., 48, e2020GL091070, https://doi.org/10.1029/2020GL091070, 2021. a, b
Henry, K. S.: Laboratory investigation of the use of geotextiles to mitigate frost heave, Tech. rep., Cold regions research and engineering laboratory, Hanover, NH, https://apps.dtic.mil/sti/citations/ADA227335 (last access: 9 March 2023), 1990. a
Download
Short summary
This study presents the laboratory test of a low-cost ground-penetrating radar (GPR) system within a laboratory experiment of active layer freezing and thawing monitoring. The system is an in-house-built low-power monostatic GPR antenna coupled with a reflectometer piloted by a single-board computer and was tested prior to field deployment.