Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1127-2023
https://doi.org/10.5194/tc-17-1127-2023
Research article
 | 
07 Mar 2023
Research article |  | 07 Mar 2023

Climatic control of the surface mass balance of the Patagonian Icefields

Tomás Carrasco-Escaff, Maisa Rojas, René Darío Garreaud, Deniz Bozkurt, and Marius Schaefer

Related authors

Changes in South American Surface Ozone Trends: Exploring the Influences of Precursors and Extreme Events
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
EGUsphere, https://doi.org/10.5194/egusphere-2024-328,https://doi.org/10.5194/egusphere-2024-328, 2024
Short summary

Related subject area

Discipline: Glaciers | Subject: Climate Interactions
Triggers of the 2022 Larsen B multi-year landfast sea ice break-out and initial glacier response
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-88,https://doi.org/10.5194/tc-2023-88, 2023
Revised manuscript accepted for TC
Short summary
On the attribution of industrial-era glacier mass loss to anthropogenic climate change
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021,https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary
Distributed summer air temperatures across mountain glaciers in the south-east Tibetan Plateau: temperature sensitivity and comparison with existing glacier datasets
Thomas E. Shaw, Wei Yang, Álvaro Ayala, Claudio Bravo, Chuanxi Zhao, and Francesca Pellicciotti
The Cryosphere, 15, 595–614, https://doi.org/10.5194/tc-15-595-2021,https://doi.org/10.5194/tc-15-595-2021, 2021
Short summary
Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020,https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019,https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary

Cited articles

Agosta, E. A., Hurtado, S. I., and Martin, P. B.: “Easterlies” – induced precipitation in eastern Patagonia: Seasonal influences of ENSO'S FLAVOURS and SAM, Int. J. Climatol., 40, 5464–5484, 2020. a
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. a, b
Aniya, M.: Glacier inventory for the Northern Patagonia Icefield, Chile, and variations 1944/45 to 1985/86, Arctic Alpine Res., 20, 179–187, 1988. a
Aniya, M., Naruse, R., Casassa, G., and Rivera, A.: Variations of Patagonian glaciers, South America, utilizing RADARSAT images, in: Proceedings of the International Symposium on RADARSAT Application Development and Research Opportunity (ADRO), Montreal, Canada, October 13–15, 1998. a, b
Aravena, J.-C. and Luckman, B. H.: Spatio-temporal rainfall patterns in southern South America, Int. J. Climatol., 29, 2106–2120, 2009. a, b
Download
Short summary
In this study, we investigate the interplay between climate and the Patagonian Icefields. By modeling the glacioclimatic conditions of the southern Andes, we found that the annual variations in net surface mass change experienced by these icefields are mainly controlled by annual variations in the air pressure field observed near the Drake Passage. Little dependence on main modes of variability was found, suggesting the Drake Passage as a key region for understanding the Patagonian Icefields.