Articles | Volume 16, issue 3
The Cryosphere, 16, 799–806, 2022
https://doi.org/10.5194/tc-16-799-2022
The Cryosphere, 16, 799–806, 2022
https://doi.org/10.5194/tc-16-799-2022
Brief communication
10 Mar 2022
Brief communication | 10 Mar 2022

Brief communication: Application of a muonic cosmic ray snow gauge to monitor the snow water equivalent on alpine glaciers

Rebecca Gugerli et al.

Related authors

Multi-sensor analysis of monthly gridded snow precipitation on alpine glaciers
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021,https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary
Continuous and autonomous snow water equivalent measurements by a cosmic ray sensor on an alpine glacier
Rebecca Gugerli, Nadine Salzmann, Matthias Huss, and Darin Desilets
The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019,https://doi.org/10.5194/tc-13-3413-2019, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Instrumentation
Comparison of manual snow water equivalent (SWE) measurements: seeking the reference for a true SWE value in a boreal biome
Maxime Beaudoin-Galaise and Sylvain Jutras
The Cryosphere, 16, 3199–3214, https://doi.org/10.5194/tc-16-3199-2022,https://doi.org/10.5194/tc-16-3199-2022, 2022
Short summary
GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient
Achille Capelli, Franziska Koch, Patrick Henkel, Markus Lamm, Florian Appel, Christoph Marty, and Jürg Schweizer
The Cryosphere, 16, 505–531, https://doi.org/10.5194/tc-16-505-2022,https://doi.org/10.5194/tc-16-505-2022, 2022
Short summary
Snow water equivalent measurement in the Arctic based on cosmic ray neutron attenuation
Anton Jitnikovitch, Philip Marsh, Branden Walker, and Darin Desilets
The Cryosphere, 15, 5227–5239, https://doi.org/10.5194/tc-15-5227-2021,https://doi.org/10.5194/tc-15-5227-2021, 2021
Short summary
Review article: Performance assessment of radiation-based field sensors for monitoring the water equivalent of snow cover (SWE)
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021,https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary
Spectral albedo measurements over snow-covered slopes: theory and slope effect corrections
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020,https://doi.org/10.5194/tc-14-1497-2020, 2020
Short summary

Cited articles

Avdyushin, S. I., Kolomeyets, E. V., Nazarov, I. M., Pegoyev, A. N., and Fridman, S. D.: Application of Cosmic Rays To the Solution of Some Hydrological Problems, in: Proceeedings of the Exeter Symposium July 1982, IAHS Publ. no. 138, 1982. a
Choquette, Y., Lavigne, P., Nadeau, M., Ducharm, P., Martin, J., Houdayer, A., and Rogoza, J.: GMON, a new sensor for snow water equivalent via gamma monitoring, in: Proceedings Whistler 2008 International Snow Science Workshop, 21–27 September 2008, Whistler, B.C., 802–807, https://arc.lib.montana.edu/snow-science/objects/P__8132.pdf (last access: 8 March 2022), 2008. a
de Mendonça, R. R. S., Braga, C. R., Echer, E., Lago, A. D., Munakata, K., Kuwabara, T., Kozai, M., Kato, C., Rockenbach, M., Schuch, N. J., Jassar, H. K. A., Sharma, M. M., Tokumaru, M., Duldig, M. L., Humble, J. E., Evenson, P., and Sabbah, I.: The temperature effect in secondary cosmic rays (muons) observed at the ground: Analysis of the global muon detector network data, The Astrophys. J., 830, 88, https://doi.org/10.3847/0004-637x/830/2/88, 2016. a
Desilets, D., Zreda, M., and Ferré, T. P.: Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays, Water Resour. Res., 46, W11505, https://doi.org/10.1029/2009WR008726, 2010. a
Ganeva, M., Peglow, S., Hippler, R., Berkova, M., and Yanke, V.: Seasonal variations of the muon flux seen by muon telescope MuSTAnG, J. Phys. Conf. Ser., 409, 012242, https://doi.org/10.1088/1742-6596/409/1/012242, 2013. a
Download
Short summary
Monitoring the snow water equivalent (SWE) in high mountain regions is highly important and a challenge. We explore the use of muon counts to infer SWE temporally continuously. We deployed muonic cosmic ray snow gauges (µ-CRSG) on a Swiss glacier over the winter 2020/21. Evaluated with manual SWE measurements and SWE estimates inferred from neutron counts, we conclude that the µ-CRSG is a highly promising method for remote high mountain regions with several advantages over other current methods.