Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-4985-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4985-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of snow assimilation on seasonal snow and meteorological forecasts for the Tibetan Plateau
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, China
Hubei Key Laboratory of Water System Science for Sponge City
Construction, Wuhan University, Wuhan, China
Jie Chen
CORRESPONDING AUTHOR
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, China
Hubei Key Laboratory of Water System Science for Sponge City
Construction, Wuhan University, Wuhan, China
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Yvan J. Orsolini
NILU – Norwegian Institute for Air Research, Kjeller, Norway
Yiheng Xiang
Institute of Heavy Rain, China Meteorological Administration (CMA),
Wuhan, China
Retish Senan
European Centre for Medium-Range Weather Forecasts (ECWMF), Reading, UK
Patricia de Rosnay
European Centre for Medium-Range Weather Forecasts (ECWMF), Reading, UK
Related authors
Wei Li, Lu Li, Jie Chen, Qian Lin, and Hua Chen
Hydrol. Earth Syst. Sci., 25, 4531–4548, https://doi.org/10.5194/hess-25-4531-2021, https://doi.org/10.5194/hess-25-4531-2021, 2021
Short summary
Short summary
Reforestation can influence climate, but the sensitivity of summer rainfall to reforestation is rarely investigated. We take two reforestation scenarios to assess the impacts of reforestation on summer rainfall under different reforestation proportions and explore the potential mechanisms. This study concludes that reforestation increases summer rainfall amount and extremes through thermodynamics processes, and the effects are more pronounced in populated areas than over the whole basin.
Ling Zhang, Lu Li, Zhongshi Zhang, Joël Arnault, Stefan Sobolowski, Anthony Musili Mwanthi, Pratik Kad, Mohammed Abdullahi Hassan, Tanja Portele, and Harald Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-278, https://doi.org/10.5194/hess-2024-278, 2024
Preprint under review for HESS
Short summary
Short summary
To address challenges related to unreliable hydrological simulations, we present an enhanced hydrological simulation with a refined climate model and a more comprehensive hydrological model. The model with the two parts outperforms that without, especially in migrating bias in peak flow and dry-season flow. Our findings highlight the enhanced hydrological simulation capability with the refined climate and lake module contributing 24 % and 76 % improvement, respectively.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-130, https://doi.org/10.5194/hess-2024-130, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing the warnings based on the people’s response process simulation. The results show that adjusting the warning threshold according to the people’s tolerance levels of the failed warnings can improve warning effectiveness, but the prerequisite is to increase the forecasting accuracy and decrease the forecasting variance.
Qian Lin, Jie Chen, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-826, https://doi.org/10.5194/egusphere-2024-826, 2024
Preprint archived
Short summary
Short summary
Glaciers of the Tibetan Plateau (TP) have experienced widespread retreat in recent decades, but impacts of glacier changes that have occurred on regional climate, including precipitation, is still unknown. Thus, this study addressed this knowledge gap, and found that glacier changes exert a more pronounced impact on summer extreme precipitation events than mean precipitation over the TP. This provides a certain theoretical reference for the further improvement of long-term glacier projection.
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Gokturk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-68, https://doi.org/10.5194/hess-2024-68, 2024
Preprint under review for HESS
Short summary
Short summary
We compared extreme precipitations in Norway from convection-permitting models at 3 km resolution (HCLIM3) and regional climate model at 12 km (HCLIM12) and show that the HCLIM3 is more accurate than HCLIM12 in predicting the intense rainfalls that can lead to floods, especially at local scales. This is more clear in hourly extremes than daily. Our research suggests using more detailed climate models could improve forecasts, helping the local society brace for the impacts of extreme weather.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023, https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Short summary
After the severe destruction of the ozone layer, the amount of ozone in the stratosphere is expected to increase again. At northern high latitudes, however, such a recovery has not been detected yet. To assess ozone changes in that region, we analyse the amount of ozone above specific locations (total ozone) measured at three stations in Norway. We found that total ozone increases significantly at two Arctic stations, which may be an indication of ozone recovery at northern high latitudes.
Jinghua Xiong, Shenglian Guo, Abhishek, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022, https://doi.org/10.5194/hess-26-6457-2022, 2022
Short summary
Short summary
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing wetting and drying trends, we show that only 11.01 %–40.84 % of the global land confirms and 10.21 %–35.43 % contradicts the paradigm during 1985–2014 from a terrestrial water storage change perspective. Similar proportions that intensify with the increasing emission scenarios persist until the end of the 21st century. Findings benefit understanding of global hydrological responses to climate change.
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022, https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Short summary
Plant carbon storage potential is central to moderate atmospheric CO2 concentration buildup and mitigation of climate change. There is an ongoing debate about the main driver of carbon storage. To reconcile this discrepancy, we use SEIB-DGVM to investigate the trend and response mechanism of carbon stock fractions among water limitation regions. Results show that the impact of CO2 and temperature on carbon stock depends on water limitation, offering a new perspective on carbon–water coupling.
Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Rym Msadek, Svenya Chripko, Christopher Roberts, Sarah Keeley, and Retish Senan
Weather Clim. Dynam., 3, 555–573, https://doi.org/10.5194/wcd-3-555-2022, https://doi.org/10.5194/wcd-3-555-2022, 2022
Short summary
Short summary
It is unclear how the atmosphere will respond to a retreat of summer Arctic sea ice. Much attention has been paid so far to weather extremes at mid-latitude and in winter. Here we focus on the changes in extremes in surface air temperature and precipitation over the Arctic regions in summer during and following abrupt sea ice retreats. We find that Arctic sea ice loss clearly shifts the extremes in surface air temperature and precipitation over terrestrial regions surrounding the Arctic Ocean.
Jiacheng Chen, Jie Chen, Xunchang John Zhang, Peiyi Peng, and Camille Risi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-460, https://doi.org/10.5194/essd-2021-460, 2022
Manuscript not accepted for further review
Short summary
Short summary
To make full use of the advantages of isotope observations and simulations, this study generates a new dataset by integrating multi-GCM data based on data fusion and bias correction methods. This dataset contains monthly δ18Op over mainland China for the 1870–2017 period with a spatial resolution of 50–60 km. The built isoscape shows similar spatial and temporal distribution characteristics to observations, which is reliable and useful to extend the time and space of observations in China.
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Short summary
Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely.
Jinghua Xiong, Shenglian Guo, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-645, https://doi.org/10.5194/hess-2021-645, 2022
Manuscript not accepted for further review
Short summary
Short summary
Although the “dry gets drier and wet gets wetter” (DDWW) paradigm is widely used to describe the trends in wetting and drying globally, we show that 27.1 % of global land agrees with the paradigm, while 22.4 % shows the opposite pattern during the period 1985–2014 from the perspective of terrestrial water storage change. Similar percentages are discovered under different scenarios during the future period. Our findings will benefit the understanding of hydrological responses under climate change.
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021, https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.
Wei Li, Lu Li, Jie Chen, Qian Lin, and Hua Chen
Hydrol. Earth Syst. Sci., 25, 4531–4548, https://doi.org/10.5194/hess-25-4531-2021, https://doi.org/10.5194/hess-25-4531-2021, 2021
Short summary
Short summary
Reforestation can influence climate, but the sensitivity of summer rainfall to reforestation is rarely investigated. We take two reforestation scenarios to assess the impacts of reforestation on summer rainfall under different reforestation proportions and explore the potential mechanisms. This study concludes that reforestation increases summer rainfall amount and extremes through thermodynamics processes, and the effects are more pronounced in populated areas than over the whole basin.
Trude Eidhammer, Adam Booth, Sven Decker, Lu Li, Michael Barlage, David Gochis, Roy Rasmussen, Kjetil Melvold, Atle Nesje, and Stefan Sobolowski
Hydrol. Earth Syst. Sci., 25, 4275–4297, https://doi.org/10.5194/hess-25-4275-2021, https://doi.org/10.5194/hess-25-4275-2021, 2021
Short summary
Short summary
We coupled a detailed snow–ice model (Crocus) to represent glaciers in the Weather Research and Forecasting (WRF)-Hydro model and tested it on a well-studied glacier. Several observational systems were used to evaluate the system, i.e., satellites, ground-penetrating radar (used over the glacier for snow depth) and stake observations for glacier mass balance and discharge measurements in rivers from the glacier. Results showed improvements in the streamflow projections when including the model.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Beena Balan-Sarojini, Steffen Tietsche, Michael Mayer, Magdalena Balmaseda, Hao Zuo, Patricia de Rosnay, Tim Stockdale, and Frederic Vitart
The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, https://doi.org/10.5194/tc-15-325-2021, 2021
Short summary
Short summary
Our study for the first time shows the impact of measured sea ice thickness (SIT) on seasonal forecasts of all the seasons. We prove that the long-term memory present in the Arctic winter SIT is helpful to improve summer sea ice forecasts. Our findings show that realistic SIT initial conditions to start a forecast are useful in (1) improving seasonal forecasts, (2) understanding errors in the forecast model, and (3) recognizing the need for continuous monitoring of world's ice-covered oceans.
Seidai Nara, Tomohiro O. Sato, Takayoshi Yamada, Tamaki Fujinawa, Kota Kuribayashi, Takeshi Manabe, Lucien Froidevaux, Nathaniel J. Livesey, Kaley A. Walker, Jian Xu, Franz Schreier, Yvan J. Orsolini, Varavut Limpasuvan, Nario Kuno, and Yasuko Kasai
Atmos. Meas. Tech., 13, 6837–6852, https://doi.org/10.5194/amt-13-6837-2020, https://doi.org/10.5194/amt-13-6837-2020, 2020
Short summary
Short summary
In the atmosphere, more than 80 % of chlorine compounds are anthropogenic. Hydrogen chloride (HCl), the main stratospheric chlorine reservoir, is useful to estimate the total budget of the atmospheric chlorine compounds. We report, for the first time, the HCl vertical distribution from the middle troposphere to the lower thermosphere using a high-sensitivity SMILES measurement; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020, https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary
Short summary
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states.
Wenyan Qi, Jie Chen, Lu Li, Chong-yu Xu, Jingjing Li, Yiheng Xiang, and Shaobo Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-127, https://doi.org/10.5194/hess-2020-127, 2020
Manuscript not accepted for further review
Short summary
Short summary
Global hydrological models (GHMs) play important roles in global water resources estimation and it is difficult to obtain parameter values for GHMs. A framework is developed for building GHMs based on parameter regionalization of catchment scale conceptual hydrological models. Four different GHMs established based on this framework can produce reliable streamflow simulations. Over all, it can be used with any conceptual hydrological model even though uncertainty exists in using different models.
Nazario Tartaglione, Thomas Toniazzo, Yvan Orsolini, and Odd Helge Otterå
Ann. Geophys., 38, 545–555, https://doi.org/10.5194/angeo-38-545-2020, https://doi.org/10.5194/angeo-38-545-2020, 2020
Short summary
Short summary
It is often claimed that a relationship between atmospheric temperature and geomagnetic activity exists. The aim of this paper is to highlight how the use of statistical tests, used to establish such a relationship, can be prone to misinterpretation when temporal and spatial autocorrelations are not taken into account. When these autocorrelations are considered, the relationship between temperature and geomagnetic activity no longer exists.
Lu Li, Marie Pontoppidan, Stefan Sobolowski, and Alfonso Senatore
Hydrol. Earth Syst. Sci., 24, 771–791, https://doi.org/10.5194/hess-24-771-2020, https://doi.org/10.5194/hess-24-771-2020, 2020
Short summary
Short summary
We assessed the impact of initial conditions on convection-permitting simulations of a flood event over mountainous terrain. The calibrated convection-permitting model performs better than the simpler conceptual model. Discharge is slightly more sensitive to spin-up time than precipitation due to the influence of soil moisture. A maximum of 0.5 m of snow is converted to runoff irrespective of the initial snow depth, and this snowmelt contributes to discharge mostly during peak flow period.
Yvan Orsolini, Martin Wegmann, Emanuel Dutra, Boqi Liu, Gianpaolo Balsamo, Kun Yang, Patricia de Rosnay, Congwen Zhu, Wenli Wang, Retish Senan, and Gabriele Arduini
The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019, https://doi.org/10.5194/tc-13-2221-2019, 2019
Short summary
Short summary
The Tibetan Plateau region exerts a considerable influence on regional climate, yet the snowpack over that region is poorly represented in both climate and forecast models due a large precipitation and snowfall bias. We evaluate the snowpack in state-of-the-art atmospheric reanalyses against in situ observations and satellite remote sensing products. Improved snow initialisation through better use of snow observations in reanalyses may improve medium-range to seasonal weather forecasts.
Lu Li, Mingxi Shen, Yukun Hou, Chong-Yu Xu, Arthur F. Lutz, Jie Chen, Sharad K. Jain, Jingjing Li, and Hua Chen
Hydrol. Earth Syst. Sci., 23, 1483–1503, https://doi.org/10.5194/hess-23-1483-2019, https://doi.org/10.5194/hess-23-1483-2019, 2019
Short summary
Short summary
The study used an integrated glacio-hydrological model for the hydrological projections of the Himalayan Beas basin under climate change. It is very likely that the upper Beas basin will get warmer and wetter in the future. This loss in glacier area will result in a reduction in glacier discharge, while the future changes in total discharge are uncertain. The uncertainty in future hydrological change is not only from GCMs, but also from the bias-correction methods and hydrological modeling.
Christopher D. Roberts, Retish Senan, Franco Molteni, Souhail Boussetta, Michael Mayer, and Sarah P. E. Keeley
Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, https://doi.org/10.5194/gmd-11-3681-2018, 2018
Short summary
Short summary
This paper presents climate model configurations of the European Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF-IFS) for different combinations of ocean and atmosphere resolution. These configurations are used to perform multi-decadal experiments following the protocols of the High Resolution Model Intercomparison Project (HighResMIP) and phase 6 of the Coupled Model Intercomparison Project (CMIP6).
Clement Albergel, Emanuel Dutra, Simon Munier, Jean-Christophe Calvet, Joaquin Munoz-Sabater, Patricia de Rosnay, and Gianpaolo Balsamo
Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, https://doi.org/10.5194/hess-22-3515-2018, 2018
Short summary
Short summary
ECMWF recently released the first 7-year segment of its latest atmospheric reanalysis: ERA-5 (2010–2016). ERA-5 has important changes relative to ERA-Interim including higher spatial and temporal resolutions as well as a more recent model and data assimilation system. ERA-5 is foreseen to replace ERA-Interim reanalysis. One of the main goals of this study is to assess whether ERA-5 can enhance the simulation performances with respect to ERA-Interim when it is used to force a land surface model.
Steffen Tietsche, Magdalena Alonso-Balmaseda, Patricia Rosnay, Hao Zuo, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 12, 2051–2072, https://doi.org/10.5194/tc-12-2051-2018, https://doi.org/10.5194/tc-12-2051-2018, 2018
Short summary
Short summary
We compare Arctic sea-ice thickness from L-band microwave satellite observations and an ocean–sea ice reanalysis. There is good agreement for some regions and times but systematic discrepancy in others. Errors in both the reanalysis and observational products contribute to these discrepancies. Thus, we recommend proceeding with caution when using these observations for model validation or data assimilation. At the same time we emphasise their unique value for improving sea-ice forecast models.
Nemesio J. Rodríguez-Fernández, Joaquin Muñoz Sabater, Philippe Richaume, Patricia de Rosnay, Yann H. Kerr, Clement Albergel, Matthias Drusch, and Susanne Mecklenburg
Hydrol. Earth Syst. Sci., 21, 5201–5216, https://doi.org/10.5194/hess-21-5201-2017, https://doi.org/10.5194/hess-21-5201-2017, 2017
Short summary
Short summary
The new SMOS satellite near-real-time (NRT) soil moisture (SM) product based on a neural network is presented. The NRT SM product has been evaluated with respect to the SMOS Level 2 product and against a large number of in situ measurements showing performances similar to those of the Level 2 product but it is available in less than 3.5 h after sensing. The new product is distributed by the European Space Agency and the European Organisation for the Exploitation of Meteorological Satellites.
Martin Wegmann, Yvan Orsolini, Emanuel Dutra, Olga Bulygina, Alexander Sterin, and Stefan Brönnimann
The Cryosphere, 11, 923–935, https://doi.org/10.5194/tc-11-923-2017, https://doi.org/10.5194/tc-11-923-2017, 2017
Short summary
Short summary
We investigate long-term climate reanalyses datasets to infer their quality in reproducing snow depth values compared to in situ measured data from meteorological stations that go back to 1900. We found that the long-term reanalyses do a good job in reproducing snow depths but have some questionable snow states early in the 20th century. Thus, with care, climate reanalyses can be a valuable tool to investigate spatial snow evolution in global warming and climate change studies.
Kazutoshi Sagi, Kristell Pérot, Donal Murtagh, and Yvan Orsolini
Atmos. Chem. Phys., 17, 1791–1803, https://doi.org/10.5194/acp-17-1791-2017, https://doi.org/10.5194/acp-17-1791-2017, 2017
Short summary
Short summary
We assess and quantify the ozone loss driven by NOx, triggered by stratospheric warmings and the halogens-induced ozone loss, using data assimilation results over a decade.
To illustrate the difference between halogen-induced loss and NOx-induced loss, we compared a relatively cold and stable winter (2010/2011) with a composite calculation of four winters (2003/2004, 2005/2006, 2008/2009 and 2012/2013) which were all affected by a major mid-winter sudden stratospheric warming event.
Anaïs Barella-Ortiz, Jan Polcher, Patricia de Rosnay, Maria Piles, and Emiliano Gelati
Hydrol. Earth Syst. Sci., 21, 357–375, https://doi.org/10.5194/hess-21-357-2017, https://doi.org/10.5194/hess-21-357-2017, 2017
Short summary
Short summary
L-band radiometry is considered to be one of the most suitable techniques for estimating surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM. This paper compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones. It shows that models and remote-sensed values agree well in temporal variability, but not in their spatial structures.
Rasmus E. Benestad, Retish Senan, and Yvan Orsolini
Earth Syst. Dynam., 7, 851–861, https://doi.org/10.5194/esd-7-851-2016, https://doi.org/10.5194/esd-7-851-2016, 2016
Short summary
Short summary
Seasonal predictions have been challenging for mid-latitude regions such as Europe, and we suspect that one reason may be due to subjective choices in how the forecast models are configured. We tested how (1) the inclusion and omission of the representation of the stratosphere affect the predictions and (2) the degree of detail in the sea-ice description. The test was carried out with a set of simulations (experiments) using a technique known as "factorial regression".
Christine Smith-Johnsen, Yvan Orsolini, Frode Stordal, Varavut Limpasuvan, and Kristell Pérot
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-758, https://doi.org/10.5194/acp-2016-758, 2016
Preprint withdrawn
Short summary
Short summary
Mesospheric ozone enhancements during sudden stratospheric warmings in the northern hemisphere have been reported in the literature. In the southern hemisphere, only one warming event has occurred, and this paper is the first to explain the mesospheric ozone enhancement during this event in 2002, using both a whole atmosphere chemistry climate model and satellite observations from GOMOS.
G. Balsamo, C. Albergel, A. Beljaars, S. Boussetta, E. Brun, H. Cloke, D. Dee, E. Dutra, J. Muñoz-Sabater, F. Pappenberger, P. de Rosnay, T. Stockdale, and F. Vitart
Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, https://doi.org/10.5194/hess-19-389-2015, 2015
Short summary
Short summary
ERA-Interim/Land is a global land surface reanalysis covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim and a precipitation bias correction based on GPCP. A selection of verification results show the added value in representing the terrestrial water cycle and its main land surface storages and fluxes.
Related subject area
Discipline: Snow | Subject: Climate Interactions
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Changes in March mean snow water equivalent since the mid-20th century and the contributing factors in reanalyses and CMIP6 climate models
Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning
Synoptic control over winter snowfall variability observed in a remote site of Apennine Mountains (Italy), 1884–2015
Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX Flagship Pilot Study Land Use and Climate Across Scales (LUCAS) models – Part 2: The role of changing vegetation
Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change
Anthropogenic climate change versus internal climate variability: impacts on snow cover in the Swiss Alps
Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble
Optimization of over-summer snow storage at midlatitudes and low elevation
An efficient surface energy–mass balance model for snow and ice
Spring snow albedo feedback over northern Eurasia: Comparing in situ measurements with reanalysis products
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023, https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Short summary
We assess projected changes in snowfall extremes in the French Alps as a function of elevation and global warming level for a high-emission scenario. On average, heavy snowfall is projected to decrease below 3000 m and increase above 3600 m, while extreme snowfall is projected to decrease below 2400 m and increase above 3300 m. At elevations in between, an increase is projected until +3 °C of global warming and then a decrease. These results have implications for the management of risks.
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023, https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Short summary
Changes in snow amount since the mid-20th century are studied, focusing on the mechanisms that have changed the water equivalent of the snowpack (SWE). Both reanalysis and climate model data show a decrease in SWE in most of the Northern Hemisphere. The total winter precipitation has increased in most areas, but this has been compensated for by reduced snowfall-to-precipitation ratio and enhanced snowmelt. However, the details and magnitude of these trends vary between different data sets.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Vincenzo Capozzi, Carmela De Vivo, and Giorgio Budillon
The Cryosphere, 16, 1741–1763, https://doi.org/10.5194/tc-16-1741-2022, https://doi.org/10.5194/tc-16-1741-2022, 2022
Short summary
Short summary
This work documents the snowfall variability observed from late XIX century to recent years in Montevergine (southern Italy) and discusses its relationship with large-scale atmospheric circulation. The main results lie in the absence of a trend until mid-1970s, in the strong reduction of the snowfall quantity and frequency from mid-1970s to 1990s and in the increase of both variables from early 2000s. In the past 50 years, the nivometric regime has been strongly modulated by AO and NAO indices.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Jouni Räisänen
The Cryosphere, 15, 1677–1696, https://doi.org/10.5194/tc-15-1677-2021, https://doi.org/10.5194/tc-15-1677-2021, 2021
Short summary
Short summary
Interannual variability of snow amount in northern Europe is studied. In the coldest areas, total winter precipitation governs snow amount variability. In warmer regions, the fraction of snowfall that survives without melting is more important. Since winter temperature and precipitation are positively correlated, there is often more snow in milder winters in the coldest areas. However, in model simulations of a warmer future climate, snow amount decreases nearly everywhere in northern Europe.
Fabian Willibald, Sven Kotlarski, Adrienne Grêt-Regamey, and Ralf Ludwig
The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-2909-2020, https://doi.org/10.5194/tc-14-2909-2020, 2020
Short summary
Short summary
Climate change will significantly reduce snow cover, but the extent remains disputed. We use regional climate model data as a driver for a snow model to investigate the impacts of climate change and climate variability on snow. We show that natural climate variability is a dominant source of uncertainty in future snow trends. We show that anthropogenic climate change will change the interannual variability of snow. Those factors will increase the vulnerabilities of snow-dependent economies.
Lawrence Mudryk, María Santolaria-Otín, Gerhard Krinner, Martin Ménégoz, Chris Derksen, Claire Brutel-Vuilmet, Mike Brady, and Richard Essery
The Cryosphere, 14, 2495–2514, https://doi.org/10.5194/tc-14-2495-2020, https://doi.org/10.5194/tc-14-2495-2020, 2020
Short summary
Short summary
We analyze how well updated state-of-the-art climate models reproduce observed historical snow cover extent and snow mass and how they project that these quantities will change up to the year 2100. Overall the updated models better represent historical snow extent than previous models, and they simulate stronger historical trends in snow extent and snow mass. They project that spring snow extent will decrease by 8 % for each degree Celsius that the global surface air temperature increases.
Hannah S. Weiss, Paul R. Bierman, Yves Dubief, and Scott D. Hamshaw
The Cryosphere, 13, 3367–3382, https://doi.org/10.5194/tc-13-3367-2019, https://doi.org/10.5194/tc-13-3367-2019, 2019
Short summary
Short summary
Climate change is devastating winter tourism. High-elevation, high-latitude ski centers have turned to saving snow over the summer. We present results of two field seasons to test and optimize over-summer snow storage at a midlatitude, low-elevation nordic ski center in the northeastern USA. In 2018, we tested coverings and found success overlaying 20 cm of wet woodchips with a reflective sheet. In 2019, we employed this strategy to a large pile and stored sufficient snow to open the ski season.
Andreas Born, Michael A. Imhof, and Thomas F. Stocker
The Cryosphere, 13, 1529–1546, https://doi.org/10.5194/tc-13-1529-2019, https://doi.org/10.5194/tc-13-1529-2019, 2019
Short summary
Short summary
We present a new numerical model to simulate the surface energy and mass balance of snow and ice. While similar models exist and cover a wide range of complexity from empirical models to those that simulate the microscopic structure of individual snow grains, we aim to strike a balance between physical completeness and numerical efficiency. This new model will enable physically accurate simulations over timescales of hundreds of millennia, a key requirement of investigating ice age cycles.
Martin Wegmann, Emanuel Dutra, Hans-Werner Jacobi, and Olga Zolina
The Cryosphere, 12, 1887–1898, https://doi.org/10.5194/tc-12-1887-2018, https://doi.org/10.5194/tc-12-1887-2018, 2018
Short summary
Short summary
An important factor for Earth's climate is the high sunlight reflectivity of snow. By melting, it reveals darker surfaces and sunlight is converted to heat. We investigate how well this process is represented in reanalyses data sets compared to observations over Russia. We found snow processes to be well represented, but reflectivity variability needs to be improved. Our results highlight the need for a better representation of this key climate change feedback process in modelled data.
Cited articles
Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M.,
Betts, A. K., and Scipal, K.: A Revised Hydrology for the ECMWF Model:
Verification from Field Site to Terrestrial Water Storage and Impact in the
Integrated Forecast System, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008jhm1068.1, 2009.
Behrangi, A., Tian, Y., Lambrigtsen, B. H., and Stephens, G. L.: What does
CloudSat reveal about global land precipitation detection by other
spaceborne sensors?, Water Resour. Res., 50, 4893–4905, https://doi.org/10.1002/2013wr014566, 2014.
Ceglar, A., Toreti, A., Prodhomme, C., Zampieri, M., Turco, M., and
Doblas-Reyes, F. J.: Land-surface initialisation improves seasonal climate
prediction skill for maize yield forecast, Sci. Rep., 8, 1322, https://doi.org/10.1038/s41598-018-19586-6, 2018.
Chen, F., Zhang, J., Liu, J., Cao, X., Hou, J., Zhu, L., Xu, X., Liu, X.,
Wang, M., Wu, D., Huang, L., Zeng, T., Zhang, S., Huang, W., Zhang, X., and
Yang, K.: Climate change, vegetation history, and landscape responses on the
Tibetan Plateau during the Holocene: A comprehensive review, Quaternary
Sci. Rev., 243, 106444, https://doi.org/10.1016/j.quascirev.2020.106444, 2020.
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Performance and
uncertainty evaluation of empirical downscaling methods in quantifying the
climate change impacts on hydrology over two North American river basins,
J. Hydrol., 479, 200–214, https://doi.org/10.1016/j.jhydrol.2012.11.062, 2013.
Chevuturi, A., Turner, A. G., Johnson, S., Weisheimer, A., Shonk, J. K. P.,
Stockdale, T. N., and Senan, R.: Forecast skill of the Indian monsoon and
its onset in the ECMWF seasonal forecasting system 5 (SEAS5), Clim.
Dynam., 56, 2941–2957, https://doi.org/10.1007/s00382-020-05624-5, 2021.
Clark, R. T., Bett, P. E., Thornton, H. E., and Scaife, A. A.: Skilful
seasonal predictions for the European energy industry, Environ.
Res. Lett., 12, 119602, https://doi.org/10.1088/1748-9326/aa94a7,
2017.
Curio, J. and Scherer, D.: Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau, Earth Syst. Dynam., 7, 767–782, https://doi.org/10.5194/esd-7-767-2016, 2016.
Datt, P., Srivastava, P. K., Negi, P. S., and Satyawali, P. K.: Surface
energy balance of seasonal snow cover for snow-melt estimation in N–W
Himalaya, J. Earth Syst. Sci., 117, 567–573, https://doi.org/10.1007/s12040-008-0053-7, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q.
J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de Rosnay, P., Balsamo, G., Albergel, C., Muñoz-Sabater, J., and
Isaksen, L.: Initialisation of Land Surface Variables for Numerical Weather
Prediction, Surv. Geophys., 35, 607–621, https://doi.org/10.1007/s10712-012-9207-x, 2014.
Duffy, G. and Bennartz, R.: The Role of Melting Snow in the Ocean Surface
Heat Budget, Geophys. Res. Lett., 45, 9782–9789, https://doi.org/10.1029/2018gl079182, 2018.
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Beljaars, A.,
Schär, C., and Elder, K.: An Improved Snow Scheme for the ECMWF Land
Surface Model: Description and Offline Validation, J.
Hydrometeorol., 11, 899–916, https://doi.org/10.1175/2010jhm1249.1, 2010.
ECMWF: IFS Documentation CY45R1 – Part II: Data assimilation, in: IFS
Documentation CY45R1, IFS Documentation, ECMWF, https://www.ecmwf.int/en/elibrary/80893-ifs-documentation-cy45r1-part-ii-data-assimilation (last access: 16 November 2022), 2018.
Ehsan, M. A., Tippett, M. K., Kucharski, F., Almazroui, M., and Ismail, M.:
Predicting peak summer monsoon precipitation over Pakistan in ECMWF SEAS5
and North American Multimodel Ensemble, Int. J.
Climatol., 40, 5556–5573, https://doi.org/10.1002/joc.6535,
2020.
Gubler, S., Sedlmeier, K., Bhend, J., Avalos, G., Coelho, C. A. S.,
Escajadillo, Y., Jacques-Coper, M., Martinez, R., Schwierz, C., de Skansi,
M., and Spirig, C.: Assessment of ECMWF SEAS5 Seasonal Forecast Performance
over South America, Weather Forecast., 35, 561–584, https://doi.org/10.1175/waf-d-19-0106.1, 2020.
Guo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Hu, J.,
and Stepanian, P. M.: Early assessment of Integrated Multi-satellite
Retrievals for Global Precipitation Measurement over China, Atmos.
Res., 176–177, 121–133, https://doi.org/10.1016/j.atmosres.2016.02.020, 2016.
Hansen, J. W.: Realizing the potential benefits of climate prediction to
agriculture: issues, approaches, challenges, Agr. Syst., 74,
309–330, https://doi.org/10.1016/S0308-521X(02)00043-4, 2002.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global Precipitation
Measurement Mission, B. Am. Meteorol. Soc., 95,
701–722, https://doi.org/10.1175/bams-d-13-00164.1, 2014.
Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., and Xie, P.: Integrated Multi-satellite Retrievals for GPM (IMERG), version 4.4, NASA's Precipitation Processing Center [data set], ftp://arthurhouftps.pps.eosdis.nasa.gov/gpmdata/ (last access: 16 November 2022), 2014.
Immerzeel, W. W., van Beek, L. P., and Bierkens, M. F.: Climate change will
affect the Asian water towers, Science, 328, 1382–1385, https://doi.org/10.1126/science.1183188, 2010.
Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F. P.: Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff, Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, 2015.
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019.
Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A.,
Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C.
T., Guo, Z., Jeong, J. H., Lawrence, D. M., Lee, W. S., Li, Z., Luo, L.,
Malyshev, S., Merryfield, W. J., Seneviratne, S. I., Stanelle, T., van den
Hurk, B. J. J. M., Vitart, F., and Wood, E. F.: Contribution of land surface
initialization to subseasonal forecast skill: First results from a
multi-model experiment, Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009gl041677, 2010.
Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A.,
Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C.
T., Guo, Z., Jeong, J. H., Lee, W. S., Li, Z., Luo, L., Malyshev, S.,
Merryfield, W. J., Seneviratne, S. I., Stanelle, T., van den Hurk, B. J. J.
M., Vitart, F., and Wood, E. F.: The Second Phase of the Global
Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to
Subseasonal Forecast Skill, J. Hydrometeorol., 12, 805–822,
https://doi.org/10.1175/2011jhm1365.1, 2011.
Kuang, X. and Jiao, J. J.: Review on climate change on the Tibetan Plateau
during the last half century, J. Geophys. Res.-Atmos.,
121, 3979–4007, https://doi.org/10.1002/2015jd024728, 2016.
Li, D., Yang, K., Tang, W., Li, X., Zhou, X., and Guo, D.: Characterizing
precipitation in high altitudes of the western Tibetan plateau with a focus
on major glacier areas, Int. J. Climatol., 40, 5114–5127,
https://doi.org/10.1002/joc.6509, 2020.
Li, W., Guo, W., Qiu, B., Xue, Y., Hsu, P.-C., and Wei, J.: Influence of
Tibetan Plateau snow cover on East Asian atmospheric circulation at
medium-range time scales, Nat. Commun., 9, 4243, https://doi.org/10.1038/s41467-018-06762-5, 2018.
Li, W., Chen, J., Li, L., Chen, H., Liu, B., Xu, C.-Y., and Li, X.:
Evaluation and Bias Correction of S2S Precipitation for Hydrological
Extremes, J. Hydrometeorol., 20, 1887–1906, https://doi.org/10.1175/jhm-d-19-0042.1, 2019.
Li, W., Hu, S., Hsu, P.-C., Guo, W., and Wei, J.: Systematic bias of Tibetan Plateau snow cover in subseasonal-to-seasonal models, The Cryosphere, 14, 3565–3579, https://doi.org/10.5194/tc-14-3565-2020, 2020.
Lin, Q., Chen, J., Chen, D., Wang, X., Li, W., and Scherer, D.: Impacts of
Bias-corrected ERA5 Initial Snow Depth on Dynamical Downscaling Simulations
for the Tibetan Plateau, J. Geophys. Res.-Atmos., 126, e2021JD035625,
https://doi.org/10.1029/2021jd035625, 2021.
Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., de Rosnay, P., Zhu, C., Wang, W., Senan, R., and Arduini, G.: Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations, The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019, 2019.
Palmer, T. N.: Towards the probabilistic Earth-system simulator: a vision
for the future of climate and weather prediction, Q. J.
Roy. Meteor. Soc., 138, 841–861, https://doi.org/10.1002/qj.1923, 2012.
Prakash, S., Mitra, A. K., AghaKouchak, A., Liu, Z., Norouzi, H., and Pai,
D. S.: A preliminary assessment of GPM-based multi-satellite precipitation
estimates over a monsoon dominated region, J. Hydrol., 556,
865–876, https://doi.org/10.1016/j.jhydrol.2016.01.029, 2018.
Qian, Y. F., Zheng, Y. Q., Zhang, Y., and Miao, M. Q.: Responses of China's
summer monsoon climate to snow anomaly over the Tibetan Plateau,
Int. J. Climatol., 23, 593–613, https://doi.org/10.1002/joc.901, 2003.
Qiu, J.: China: The third pole, Nature, 454, 393–396, https://doi.org/10.1038/454393a, 2008.
Qiu, Y., Wang, X., and Han, L.: Daily Fractional Snow Cover (FSC) Data set
over High Asia, Science Data Bank [data set], https://doi.org/10.11922/sciencedb.457, 2017.
Schiemann, R., Lüthi, D., and Schär, C.: Seasonality and Interannual
Variability of the Westerly Jet in the Tibetan Plateau Region, J.
Climate, 22, 2940–2957, https://doi.org/10.1175/2008jcli2625.1,
2009.
Shafiee-Jood, M., Cai, X., Chen, L., Liang, X.-Z., and Kumar, P.: Assessing
the value of seasonal climate forecast information through an end-to-end
forecasting framework: Application to U.S. 2012 drought in central Illinois,
Water Resour. Res., 50, 6592–6609, https://doi.org/10.1002/2014wr015822, 2014.
Su, F., Duan, X., Chen, D., Hao, Z., and Cuo, L.: Evaluation of the Global
Climate Models in the CMIP5 over the Tibetan Plateau, J. Climate,
26, 3187–3208, https://doi.org/10.1175/jcli-d-12-00321.1, 2013.
Tan, M. and Duan, Z.: Assessment of GPM and TRMM Precipitation Products over
Singapore, Remote Sensing, 9, 720, https://doi.org/10.3390/rs9070720, 2017.
Themeßl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical
downscaling and error correction of regional climate models and its impact
on the climate change signal, Climatic Change, 112, 449–468, https://doi.org/10.1007/s10584-011-0224-4, 2011.
U.S. National Ice Center: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1, Boulder, Colorado USA, National Snow and Ice Data Center [data set], https://doi.org/10.7265/N52R3PMC, 2008.
Wang, Q. J., Shao, Y., Song, Y., Schepen, A., Robertson, D. E., Ryu, D., and
Pappenberger, F.: An evaluation of ECMWF SEAS5 seasonal climate forecasts
for Australia using a new forecast calibration algorithm, Environm.
Modell. Softw. 122, 104550, https://doi.org/10.1016/j.envsoft.2019.104550, 2019.
Wang, X., Tolksdorf, V., Otto, M., and Scherer, D.: WRF-based dynamical
downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new
version of the High Asia Refined analysis, Int. J.
Climatol., 41, 743–762, https://doi.org/10.1002/joc.6686,
2020.
Wu, J., Gao, X., Giorgi, F., and Chen, D.: Changes of effective temperature
and cold/hot days in late decades over China based on a high resolution
gridded observation dataset, Int. J. Climatol., 37,
788–800, https://doi.org/10.1002/joc.5038, 2017.
Xu, Y., Gao, X., Shen, Y., Xu, C., Shi, Y., and Giorgi, F.: A daily
temperature dataset over China and its application in validating a RCM
simulation, Adv. Atmos. Sci., 26, 763–772, https://doi.org/10.1007/s00376-009-9029-z, 2009.
Yan, D., Ma, N., and Zhang, Y.: A daily, 0.05∘ Snow depth dataset for Tibetan Plateau (2000–2018), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Snow.tpdc.271743, 2021.
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., and Chen, Y.: Recent climate
changes over the Tibetan Plateau and their impacts on energy and water
cycle: A review, Global Planet. Change, 112, 79–91, https://doi.org/10.1016/j.gloplacha.2013.12.001, 2014.
Yang, M., Wang, X., Pang, G., Wan, G., and Liu, Z.: The Tibetan Plateau
cryosphere: Observations and model simulations for current status and recent
changes, Earth-Sci. Rev., 190, 353–369, https://doi.org/10.1016/j.earscirev.2018.12.018, 2019.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan,
K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak,
D.: Different glacier status with atmospheric circulations in Tibetan
Plateau and surroundings, Nat. Clim. Change, 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yong, Z., Xiong, J., Wang, Z., Cheng, W., Yang, J., and Pang, Q.:
Relationship of extreme precipitation, surface air temperature, and dew
point temperature across the Tibetan Plateau, Climatic Change, 165, 41,
https://doi.org/10.1007/s10584-021-03076-2, 2021.
Zhang, H., Wu, C., Chen, W., and Huang, G.: Effect of urban expansion on
summer rainfall in the Pearl River Delta, South China, J. Hydrol.,
568, 747–757, https://doi.org/10.1016/j.jhydrol.2018.11.036,
2019.
Zhang, J., Ma, Q., Chen, H., Zhao, S., and Chen, Z.: Increasing warm-season
precipitation in Asian drylands and response to reducing spring snow cover
over the Tibetan Plateau, J. Climate, 34, 3129–3144, https://doi.org/10.1175/JCLI-D-20-0479.1, 2021.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Short summary
Snow assimilation over the Tibetan Plateau (TP) may influence seasonal forecasts over this region. To investigate the impacts of snow assimilation on the seasonal forecasts of snow, temperature and precipitation, twin ensemble reforecasts are initialized with and without snow assimilation above 1500 m altitude over the TP for spring and summer in 2018. The results show that snow assimilation can improve seasonal forecasts over the TP through the interaction between land and atmosphere.
Snow assimilation over the Tibetan Plateau (TP) may influence seasonal forecasts over this...