Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice fabrics in two-dimensional flows: beyond pure and simple shear
Daniel H. Richards
CORRESPONDING AUTHOR
School of Mathematics, University of Leeds, Leeds, United Kingdom
Samuel S. Pegler
School of Mathematics, University of Leeds, Leeds, United Kingdom
Sandra Piazolo
School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Related authors
Qinyu Wang, Sheng Fan, Daniel H. Richards, Rachel Worthington, David J. Prior, and Chao Qi
The Cryosphere, 19, 827–848, https://doi.org/10.5194/tc-19-827-2025, https://doi.org/10.5194/tc-19-827-2025, 2025
Short summary
Short summary
Ice often exhibits a single-cluster fabric when deformed to high strains in glaciers and ice sheets. Using the equal-channel angular pressing technique, we achieved high shear strains in laboratory experiments and examined the fabrics. We investigated the evolutions of fabric and recrystallization mechanisms with strain. The results suggest that rotation recrystallization dominates fabric development when ice is deformed to high strains, explaining the fabrics found in natural ice.
Daniel H. Richards, Elisa Mantelli, Samuel S. Pegler, and Sandra Piazolo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3067, https://doi.org/10.5194/egusphere-2024-3067, 2024
Short summary
Short summary
Ice behaves differently depending on its crystal orientation, but how this affects its flow is unclear. We combine a range of previous models into a common equation to better understand crystal alignment. We tested a range of previous models on ice streams and divides, discovering that the best fit to observations comes from a) assuming neighbouring crystals have the same stress, and b) through describing the effect of crystal orientation on the flow in a way that allows directional variation.
Qinyu Wang, Sheng Fan, Daniel H. Richards, Rachel Worthington, David J. Prior, and Chao Qi
The Cryosphere, 19, 827–848, https://doi.org/10.5194/tc-19-827-2025, https://doi.org/10.5194/tc-19-827-2025, 2025
Short summary
Short summary
Ice often exhibits a single-cluster fabric when deformed to high strains in glaciers and ice sheets. Using the equal-channel angular pressing technique, we achieved high shear strains in laboratory experiments and examined the fabrics. We investigated the evolutions of fabric and recrystallization mechanisms with strain. The results suggest that rotation recrystallization dominates fabric development when ice is deformed to high strains, explaining the fabrics found in natural ice.
Daniel H. Richards, Elisa Mantelli, Samuel S. Pegler, and Sandra Piazolo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3067, https://doi.org/10.5194/egusphere-2024-3067, 2024
Short summary
Short summary
Ice behaves differently depending on its crystal orientation, but how this affects its flow is unclear. We combine a range of previous models into a common equation to better understand crystal alignment. We tested a range of previous models on ice streams and divides, discovering that the best fit to observations comes from a) assuming neighbouring crystals have the same stress, and b) through describing the effect of crystal orientation on the flow in a way that allows directional variation.
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024, https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Short summary
This study uses novel techniques to look at the microstructure of planktonic foraminifera (single-celled marine organisms) fossils, to further our understanding of how they form their hard exterior shells and how the microstructure and chemistry of these shells can change as a result of processes that occur after deposition on the seafloor. Understanding these processes is of critical importance for using planktonic foraminifera for robust climate and environmental reconstructions of the past.
Sheng Fan, David J. Prior, Brent Pooley, Hamish Bowman, Lucy Davidson, David Wallis, Sandra Piazolo, Chao Qi, David L. Goldsby, and Travis F. Hager
The Cryosphere, 17, 3443–3459, https://doi.org/10.5194/tc-17-3443-2023, https://doi.org/10.5194/tc-17-3443-2023, 2023
Short summary
Short summary
The microstructure of ice controls the behaviour of polar ice flow. Grain growth can modify the microstructure of ice; however, its processes and kinetics are poorly understood. We conduct grain-growth experiments on synthetic and natural ice samples at 0 °C. Microstructural data show synthetic ice grows continuously with time. In contrast, natural ice does not grow within a month. The inhibition of grain growth in natural ice is largely contributed by bubble pinning at ice grain boundaries.
Cited articles
Alley, R. B.: Fabrics in Polar Ice Sheets: Development and
Prediction, Science, 240, 493, https://doi.org/10.1126/science.240.4851.493, 1988. a
Alley, R. B.: Flow-law hypotheses for ice-sheet modeling, J.
Glaciol., 38, 245–256, https://doi.org/10.3189/S0022143000003658, 1992. a
Bailey, C. M. and Eyster, E. L.: General shear deformation in the Pinaleño
Mountains metamorphic core complex, Arizona, J. Struct. Geol., 25, 1883–1892, https://doi.org/10.1016/S0191-8141(03)00044-0, 2003. a
Bargmann, S., Seddik, H., and Greve, R.: Computational modeling of flow-induced
anisotropy of polar ice for the EDML deep drilling site, Antarctica:
The effect of rotation recrystallization and grain boundary migration,
International Journal for Numerical and Analytical Methods in Geomechanics,
36, 892–917, https://doi.org/10.1002/nag.1034, 2012. a
Booth, A. D., Christoffersen, P., Schoonman, C., Clarke, A., Hubbard, B., Law,
R., Doyle, S. H., Chudley, T. R., and Chalari, A.: Distributed Acoustic
Sensing of Seismic Properties in a Borehole Drilled on a
Fast-Flowing Greenlandic Outlet Glacier, Geophys. Res.
Lett., 47, e2020GL088148, https://doi.org/10.1029/2020GL088148, 2020. a
Bunge, H.: Texture Analysis in Materials Science: Mathematical
Models, Butterworths, London, https://doi.org/10.1016/C2013-0-11769-2, ISBN 978-0-408-10642-9, 1982. a
Castelnau, O., Shoji, H., Mangeney, A., Milsch, H., Duval, P., Miyamoto, A.,
Kawada, K., and Watanabe, O.: Anisotropic behavior of GRIP ices and flow in
Central Greenland, Earth Planet. Sc. Lett., 154, 307–322,
https://doi.org/10.1016/S0012-821X(97)00193-3, 1998. a
Craw, L., Qi, C., Prior, D. J., Goldsby, D. L., and Kim, D.: Mechanics and
microstructure of deformed natural anisotropic ice, J. Struct. Geol., 115, 152–166, https://doi.org/10.1016/j.jsg.2018.07.014, 2018. a, b
Dansgaard, W., Johnsen, S., Møller, J., and Langway Jr., C.: One thousand
centuries of climatic record from Camp Century on the Greenland ice
sheet, Science, 166, 377–381, https://doi.org/10.1126/science.166.3903.377, 1969. a
Doherty, R., Hughes, D., Humphreys, F., Jonas, J., Jensen, D., Kassner, M.,
King, W., McNelley, T., McQueen, H., and Rollett, A.: Current issues in
recrystallization: a review, Mater. Sci. Eng. A, 238,
219–274, https://doi.org/10.1016/S0921-5093(97)00424-3, 1997. a, b
Drury, M. and Urai, J.: Deformation-related recrystallization process,
Tectonophysics, 172, 235–253, https://doi.org/10.1016/0040-1951(90)90033-5, 1990. a
Drury, M., Humphreys, F., and White, S.: Large strain deformation studies using
polycrystalline magnesium as a rock analogue. Part II: dynamic
recrystallisation mechanisms at high temperatures, Special Issue Experiments
in Solid State Physics Relevant to Lithospheric Dynamics, 40, 208–222,
https://doi.org/10.1016/0031-9201(85)90131-1, 1985. a, b
Duval, P.: Creep and Fabrics of Polycrystalline Ice Under Shear and
Compression, J. Glaciol., 27, 129–140,
https://doi.org/10.3189/S002214300001128X, 1981. a, b
Duval, P., Ashby, M. F., and Anderman, I.: Rate-controlling processes in the
creep of polycrystalline ice, J. Phys. Chem., 87,
4066–4074, https://doi.org/10.1021/j100244a014, 1983. a
Duval, P., Montagnat, M., Grennerat, F., Weiss, J., Meyssonnier, J., and
Philip, A.: Creep and plasticity of glacier ice: a material science
perspective, J. Glaciol., 56, 1059–1068,
https://doi.org/10.3189/002214311796406185, 2010. a
Fan, S., Hager, T. F., Prior, D. J., Cross, A. J., Goldsby, D. L., Qi, C., Negrini, M., and Wheeler, J.: Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at −10, −20 and −30 ∘C, The Cryosphere, 14, 3875–3905, https://doi.org/10.5194/tc-14-3875-2020, 2020. a, b, c, d
Faria, S.: Mixtures with continuous diversity: general theory and application
to polymer solutions, Continuum Mech. Therm., 13, 91–120,
https://doi.org/10.1007/s001610100043, 2001. a, b
Faria, S., Kipfstuhl, S., Azuma, N., Freitag, J., Weikusat, I., Murshed, M.,
and Kuhs, W.: The Multiscale Structure of Antarctica Part I:
Inland Ice, Low Temperature Science, vol. 68 supplement, Institute of Low Temperature Science, Hokkaido University, 1880-7593, http://hdl.handle.net/2115/45430 (last access: 22 October 2022), 2009. a
Faria, S. H.: Creep and recrystallization of large polycrystalline masses. I.
General continuum theory, P. Roy. Soc. A, 462, 1493, https://doi.org/10.1098/rspa.2005.1610,
2006. a, b, c, d
Faria, S. H., Kremer, G. M., and Hutter, K.: Reply to Gagliardini's comment
on “Creep and recrystallization of large polycrystalline masses” by
Faria and co-authors, P. Roy. Soc. A, 464, 2803–2809, https://doi.org/10.1098/rspa.2008.0181, 2008. a, b
Fossen, H. and Tikoff, B.: The deformation matrix for simultaneous simple
shearing, pure shearing and volume change, and its application to
transpression-transtension tectonics, The Geometry of Naturally Deformed
Rocks, 15, 413–422, https://doi.org/10.1016/0191-8141(93)90137-Y, 1993. a
Fujita, S., Maeno, H., and Matsuoka, K.: Radio-wave depolarization and
scattering within ice sheets: a matrix-based model to link radar and ice-core
measurements and its application, J. Glaciol., 52, 407–424,
https://doi.org/10.3189/172756506781828548, 2006. a
Gagliardini, O.: Comment on the papers “Creep and recrystallization of
large polycrystalline masses” by Faria and co-authors, P.
Roy. Soc. A, 464,
289–291, https://doi.org/10.1098/rspa.2007.0187, 2008. a, b
Gagliardini, O., Gillet-Chaulet, F., and Montagnat, M.: A Review of
Anisotropic Polar Ice Models: from Crystal to Ice-Sheet Flow
Models, Physics of Ice Core Records II, Low Temperature Science, Institute of Low Temperature Science, Hokkaido University, vol. 68 supplement, 1880-7593, http://hdl.handle.net/2115/45447 (last access: 24 October 2022),
2009. a
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a
Gillet-Chaulet, F., Gagliardini, O., Meyssonnier, J., Montagnat, M., and
Castelnau, O.: A user-friendly anisotropic flow law for ice-sheet modeling,
J. Glaciol., 51, 3–14, https://doi.org/10.3189/172756505781829584, 2005. a
Gödert, G.: A mesoscopic approach for modelling texture evolution of polar ice
including recrystallization phenomena, Ann. Glaciol., 37, 23–28,
https://doi.org/10.3189/172756403781815375, 2003. a
Gottstein, G. and Shvindlerman, L. S.: Grain Boundary Migration in
Metals: Thermodynamics, Kinetics and Applications, 2nd Edn., CRC Press, https://doi.org/10.1201/9781420054361, 2009. a
Gow, A. J.: Deep core studies of the accumulation and densification of snow at
Byrd Station and Little America V, Antarctica, CRREL Research
Report, https://hdl.handle.net/11681/5803, 1961. a
Graham, F. S., Morlighem, M., Warner, R. C., and Treverrow, A.: Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models, The Cryosphere, 12, 1047–1067, https://doi.org/10.5194/tc-12-1047-2018, 2018. a
Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H., Suquet,
P., and Duval, P.: Experimental characterization of the intragranular strain
field in columnar ice during transient creep, Acta Mater., 60,
3655–3666, https://doi.org/10.1016/j.actamat.2012.03.025, 2012. a
Gusmeroli, A., Pettit, E. C., Kennedy, J. H., and Ritz, C.: The crystal fabric
of ice from full-waveform borehole sonic logging, J. Geophys.
Res.-Earth Surf., 117, F03021, https://doi.org/10.1029/2012JF002343, 2012. a
Halfpenny, A., Prior, D. J., and Wheeler, J.: Analysis of dynamic
recrystallization and nucleation in a quartzite mylonite, Tectonophysics,
427, 3–14, 2006. a
Hindmarsh, R. C. A.: Thermoviscous stability of ice-sheet flows, J.
Fluid Mech., 502, 17–40, https://doi.org/10.1017/S0022112003007390, 2004. a
Holtzscherer, J. J., G. de Q. Robin, and Glen, J. W.: Depth of Polar Ice
Caps, The Geographical Journal, 120, 193–202, https://doi.org/10.2307/1791535, 1954. a
Hondoh, T.: Nature and behavior of dislocations in ice, Physics of Ice Core
Records, http://hdl.handle.net/2115/32459, 2000. a
Humphreys, F. and Hatherly, M.: Recrystallization and Related Annealig
Phenomena, Pergamon, Oxford, ISBN 0 08 044164 5, 2004. a
Jacka, T. and Li, J.: Flow rates and crystal orientation fabrics in compression
of polycrystalline ice at low temperatures and stresses, Hokkaido University Press, 2000. a
Jacka, T. and Maccagnan, M.: Ice crystallographic and strain rate changes with
strain in compression and extension, Cold Reg. Sci. Technol., 8,
269–286, https://doi.org/10.1016/0165-232X(84)90058-2, 1984. a
Jiang, D.: Vorticity determination, distribution, partitioning and the
heterogeneity and non-steadiness of natural deformations, J. Struct. Geol., 16, 121–130, https://doi.org/10.1016/0191-8141(94)90023-X, 1994. a
Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: Greenland
palaeotemperatures derived from GRIP bore hole temperature and ice core
isotope profiles, Tellus B, 47, 624–629,
https://doi.org/10.3402/tellusb.v47i5.16077, 1995. a
Jordan, T. M., Schroeder, D. M., Elsworth, C. W., and Siegfried, M. R.:
Estimation of ice fabric within Whillans Ice Stream using polarimetric
phase-sensitive radar sounding, Ann. Glaciol., 61, 74–83,
https://doi.org/10.1017/aog.2020.6, 2020. a
Joughin, I., Shapero, D., Smith, B., Dutrieux, P., and Barham, M.: Ice-shelf
retreat drives recent Pine Island Glacier speedup, Sci. Adv., 7,
eabg3080, https://doi.org/10.1126/sciadv.abg3080, 2021. a, b
Journaux, B., Chauve, T., Montagnat, M., Tommasi, A., Barou, F., Mainprice, D., and Gest, L.: Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear, The Cryosphere, 13, 1495–1511, https://doi.org/10.5194/tc-13-1495-2019, 2019. a, b, c, d
Kennedy, J. H. and Pettit, E. C.: The response of fabric variations to simple
shear and migration recrystallization, J. Glaciol., 61, 537–550,
https://doi.org/10.3189/2015JoG14J156, 2015. a
Kipfstuhl, S., Hamann, I., Lambrecht, A., Freitag, J., Faria, S. H., Grigoriev,
D., and Azuma, N.: Microstructure mapping: a new method for imaging
deformation-induced microstructural features of ice on the grain scale,
J. Glaciol., 52, 398–406, https://doi.org/10.3189/172756506781828647, 2006. a
Kipfstuhl, S., Faria, S. H., Azuma, N., Freitag, J., Hamann, I., Kaufmann, P.,
Miller, H., Weiler, K., and Wilhelms, F.: Evidence of dynamic
recrystallization in polar firn, J. Geophys. Res.-Sol.
Ea., 114, B05204, https://doi.org/10.1029/2008JB005583,
2009. a
Kluskiewicz, D., WADDINGTON, E., Anandakrishnan, S., Voigt, D., Matsuoka, K.,
and McCARTHY, M.: Sonic methods for measuring crystal orientation fabric in
ice, and results from the West Antarctic ice sheet (WAIS) Divide,
J. Glaciol., 63, 1–15, https://doi.org/10.1017/jog.2017.20, 2017. a
Li, J., Jacka, T., and Budd, W.: Deformation rates in combined compression and
shear for ice which is initially isotropic and after the development of
strong anisotropy, Ann. Glaciol., 23, 247–252,
https://doi.org/10.3189/S0260305500013501, 1996. a
Llorens, M.-G., Griera, A., Bons, P. D., Lebensohn, R. A., Evans, L. A.,
Jansen, D., and Weikusat, I.: Full-field predictions of ice dynamic
recrystallisation under simple shear conditions, Earth Planet. Sc.
Lett., 450, 233–242, https://doi.org/10.1016/j.epsl.2016.06.045, 2016. a, b
Llorens, M.-G., Griera, A., Steinbach, F., Bons, P. D., Gomez-Rivas, E.,
Jansen, D., Roessiger, J., Lebensohn, R. A., and Weikusat, I.: Dynamic
recrystallization during deformation of polycrystalline ice: insights from
numerical simulations, Philosophical Transactions of the Royal Society A:
Mathematical, Phys. Eng. Sci., 375, 20150346,
https://doi.org/10.1098/rsta.2015.0346, 2017. a
Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin
Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie E
Rognes, and Garth N Wells: The FEniCS Project Version 1.5, Archive
of Numerical Software, 3, 9–23, https://doi.org/10.11588/ans.2015.100.20553, 2015. a
Matsuoka, K., Furukawa, T., Fujita, S., Maeno, H., Uratsuka, S., Naruse, R.,
and Watanabe, O.: Crystal orientation fabrics within the Antarctic ice
sheet revealed by a multipolarization plane and dual-frequency radar survey,
J. Geophys. Res.-Sol. Earth, 108, 2499,
https://doi.org/10.1029/2003JB002425, 2003. a, b
Montagnat, M., Löwe, H., Calonne, N., Schneebeli, M., Matzl, M., and Jaggi,
M.: On the Birth of Structural and Crystallographic Fabric Signals
in Polar Snow: A Case Study From the EastGRIP Snowpack,
Front. Earth Sci., 8, 365,
https://doi.org/10.3389/feart.2020.00365,
2020. a
Montgomery-Smith, S., Jack, D. A., and Smith, D. E.: A systematic approach to
obtaining numerical solutions of Jeffery's type equations using
Spherical Harmonics, Composites Part A: Applied Science and
Manufacturing, 41, 827–835, https://doi.org/10.1016/j.compositesa.2010.02.010, 2010. a
Mouginot, J., Rignot, E., and Scheuchl, B.: Continent-Wide, Interferometric
SAR Phase, Mapping of Antarctic Ice Velocity, Geophys.
Res. Lett., 46, 9710–9718, https://doi.org/10.1029/2019GL083826, 2019a. a, b, c
Mouginot, J., Rignot, E., and Scheuchl, B.: MEaSUREs Phase-Based Antarctica Ice Velocity Map, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/PZ3NJ5RXRH10, 2019b. a
Passchier, C.: The classification of dilatant flow types, J. Struct.
Geol., 13, 101–104, https://doi.org/10.1016/0191-8141(91)90105-R, 1991. a
Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt, B., Gagliardini, O., Gudmundsson, G. H., Hindmarsh, R. C. A., Hubbard, A., Johnson, J. V., Kleiner, T., Konovalov, Y., Martin, C., Payne, A. J., Pollard, D., Price, S., Rückamp, M., Saito, F., Souček, O., Sugiyama, S., and Zwinger, T.: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM), The Cryosphere, 2, 95–108, https://doi.org/10.5194/tc-2-95-2008, 2008. a
Pegler, S. S.: The dynamics of confined extensional flows, J. Fluid
Mech., 804, 24–57, https://doi.org/10.1017/jfm.2016.516, 2016. a
Piazolo, S., Bons, P., and Passchier, C.: The influence of matrix rheology and
vorticity on fabric development of populations of rigid objects during plane
strain deformation, Tectonophysics, 351, 315–329,
https://doi.org/10.1016/S0040-1951(02)00220-2, 2002. a
Piazolo, S., Jessell, M. W., Prior, D. J., and Bons, P. D.: The integration of
experimental in-situ EBSD observations and numerical simulations: a novel
technique of microstructural process analysis, J. Microsc., 213,
273–284, https://doi.org/10.1111/j.0022-2720.2004.01304.x, 2004. a
Piazolo, S., Wilson, C. J. L., Luzin, V., Brouzet, C., and Peternell, M.:
Dynamics of ice mass deformation: Linking processes to rheology, texture,
and microstructure, Geochem. Geophys. Geosyst., 14, 4185–4194,
https://doi.org/10.1002/ggge.20246, 2013. a, b
Piazolo, S., Montagnat, M., Grennerat, F., Moulinec, H., and Wheeler, J.:
Effect of local stress heterogeneities on dislocation fields, examples from
transient creep in polycrystalline ice, Acta Materialia, 90, 303–309,
https://doi.org/10.1016/j.actamat.2015.02.046, 2015. a
Qi, C., Goldsby, D. L., and Prior, D. J.: The down-stress transition from
cluster to cone fabrics in experimentally deformed ice, Earth Planet.
Sc. Lett., 471, 136–147, https://doi.org/10.1016/j.epsl.2017.05.008, 2017. a, b
Qi, C., Prior, D. J., Craw, L., Fan, S., Llorens, M.-G., Griera, A., Negrini, M., Bons, P. D., and Goldsby, D. L.: Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures, The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, 2019. a, b, c, d, e, f, g, h
Richards, D.: danrichards678/SpecCAF: Major revision September 2022 (v1.3), Zenodo [code], https://doi.org/10.5281/zenodo.7086132, 2022. a
Richards, D. H., Pegler, S. S., Piazolo, S., and Harlen, O. G.: The evolution
of ice fabrics: A continuum modelling approach validated against laboratory
experiments, Earth Planet. Sc. Lett., 556, 116718,
https://doi.org/10.1016/j.epsl.2020.116718, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Schytt, V.: Snow and ice studies in Antarctica, Norwegian-British-Swedish
antarctic expedition, 1949–52, Scientific results, 4, 9–148, 3 pl.–bl.,
6, 8 pl.–s., 1 diagr.–bl., vol. 4., Oslo, Norsk Polarsinstitutt,
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-75505 (last access: 24 October 2022), 1958. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna,
I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne,
T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G.,
Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson,
D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh,
A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M.,
Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis,
B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y.,
Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G.,
Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N.,
Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen, I., Save, H.,
Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S., Slater,
T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J.,
van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., Wouters, B.,
and The IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992
to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Skemer, P., Katayama, I., Jiang, Z., and Karato, S.-I.: The misorientation
index: Development of a new method for calculating the strength of
lattice-preferred orientation, Tectonophysics, 411, 157–167,
https://doi.org/10.1016/j.tecto.2005.08.023, 2005. a
Smith, B. E., Gourmelen, N., Huth, A., and Joughin, I.: Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica, The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, 2017. a
Steinemann, S.: Experimentelle Untersuchungen zur Plastizität von Eis,
PhD thesis, ETH Zurich,
https://doi.org/10.3929/ethz-a-000096707, 1958. a
Stoll, N., Weikusat, I., Kerch, J., Kleitz, I., Eichler, J., Shigeyama, W.,
Homma, T., Jansen, D., Bayer-Giraldi, M., Kuiper, E.-J., Westhoff, J.,
Saruya, T., Faria, S. H., Kipfstuhl, S., and Dahl-Jensen, D.: Physical
properties of the NEGIS ice core – The upper 1700 m in EGRIP, in: The
Ninth Symposium on Polar Science, National Institute of Polar
Research (NIPR), Tokyo, Japan,
https://epic.awi.de/id/eprint/48741/ (last access: 24 October 2022), 2018. a, b
Ten Grotenhuis, S. M., Piazolo, S., Pakula, T., Passchier, C. W., and Bons,
P. D.: Are polymers suitable rock analogs?, Tectonophysics, 350, 35–47,
https://doi.org/10.1016/S0040-1951(02)00080-X, 2002. a
Tikoff, B. and Fossen, H.: The limitations of three-dimensional kinematic
vorticity analysis, J. Struct. Geol., 17, 1771–1784,
https://doi.org/10.1016/0191-8141(95)00069-P, 1995.
a
Treverrow, A., Warner, R. C., Budd, W. F., and Craven, M.: Meteoric and marine
ice crystal orientation fabrics from the Amery Ice Shelf, East
Antarctica, J. Glaciol., 56, 877–890,
https://doi.org/10.3189/002214310794457353, 2010. a
Short summary
Understanding the orientation of ice grains is key for predicting ice flow. We explore the evolution of these orientations using a new efficient model. We present an exploration of the patterns produced under a range of temperatures and 2D deformations, including for the first time a universal regime diagram. We do this for deformations relevant to ice sheets but not studied in experiments. These results can be used to understand drilled ice cores and improve future modelling of ice sheets.
Understanding the orientation of ice grains is key for predicting ice flow. We explore the...