Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-3005-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3005-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reversal of ocean gyres near ice shelves in the Amundsen Sea caused by the interaction of sea ice and wind
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich NR4 7TJ, UK
David P. Stevens
Centre for Ocean and Atmospheric Sciences, School of Mathematics,
University of East Anglia, Norwich NR4 7TJ, UK
Karen J. Heywood
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich NR4 7TJ, UK
Benjamin G. M. Webber
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich NR4 7TJ, UK
Bastien Y. Queste
Department of Marine Sciences, University of Gothenburg, Box 461, 405
30 Gothenburg, Sweden
Related authors
No articles found.
Meredith G. Meyer, Esther Portela, Walker O. Smith Jr., and Karen J. Heywood
EGUsphere, https://doi.org/10.5194/egusphere-2024-3830, https://doi.org/10.5194/egusphere-2024-3830, 2024
Short summary
Short summary
During the annual phytoplankton bloom, rates of primary production and carbon export in the Ross Sea, Antarctica are uncoupled from each other and from oxygen and carbon stocks. These biogeochemical rates support the high productivity, low export classification of the region and suggest that environmental factors influence these stocks and rates differently and make projections under future climate change scenarios difficult.
Peter M. F. Sheehan, Benjamin G. M. Webber, Alejandra Sanchez-Franks, and Bastien Y. Queste
EGUsphere, https://doi.org/10.5194/egusphere-2024-3681, https://doi.org/10.5194/egusphere-2024-3681, 2024
Short summary
Short summary
Using measurements and computer models, we identify a large flux of oxygen within the Southwest Monsoon Current, which flows north into the Bay of Bengal between June and September each year. Oxygen levels in the Bay are very low, but not quite low enough for key nutrient cycles to be as dramatically altered as in other low-oxygen regions. We suggest that the flux we identify contributes to keeping oxygen levels in the Bay above the threshold below which dramatic changes would occur.
Blandine Jacob, Bastien Y. Queste, and Marcel D. du Plessis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2076, https://doi.org/10.5194/egusphere-2024-2076, 2024
Short summary
Short summary
Few observations exist in the Amundsen Sea. Consequently, studies rely on models (e.g. ERA5) to investigate how the atmosphere affects ocean variability (e.g. sea-ice formation). We use data collected along ice shelves to show that cold, dry air blowing from Antarctica triggers large ocean heat loss which is underestimated by ERA5. We then use an ocean model to show that this bias has an important impact on the ocean with implications for ice formation forecasts.
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023, https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Short summary
At the southern boundary of the Antarctic Circumpolar Current, relatively warm waters encounter the colder waters surrounding Antarctica. Observations from underwater vehicles and altimetry show that medium-sized cold-core eddies influence the southern boundary's barrier properties by strengthening the slopes of constant density lines across it and amplifying its associated jet. As a result, the ability of exchanging properties, such as heat, across the southern boundary is reduced.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Peter M. F. Sheehan, Gillian M. Damerell, Philip J. Leadbitter, Karen J. Heywood, and Rob A. Hall
Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023, https://doi.org/10.5194/os-19-77-2023, 2023
Short summary
Short summary
We calculate the rate of turbulent kinetic energy dissipation, i.e. the mixing driven by small-scale ocean turbulence, in the western tropical Atlantic Ocean via two methods. We find good agreement between the results of both. A region of elevated mixing is found between 200 and 500 m, and we calculate the associated heat and salt fluxes. We find that double-diffusive mixing in salt fingers, a common feature of the tropical oceans, drives larger heat and salt fluxes than the turbulent mixing.
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022, https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Short summary
Using an underwater buoyancy-powered autonomous glider, we collected profiles of temperature and salinity from the ocean north-east of Barbados. Most of the temperature and salinity profiles contained staircase-like structures of alternating constant values and large gradients. We wrote an algorithm to identify these staircases. We hypothesise that these staircases are prevented from forming where background gradients in temperature and salinity are too great.
Elise S. Droste, Mario Hoppema, Melchor González-Dávila, Juana Magdalena Santana-Casiano, Bastien Y. Queste, Giorgio Dall'Olmo, Hugh J. Venables, Gerd Rohardt, Sharyn Ossebaar, Daniel Schuller, Sunke Trace-Kleeberg, and Dorothee C. E. Bakker
Ocean Sci., 18, 1293–1320, https://doi.org/10.5194/os-18-1293-2022, https://doi.org/10.5194/os-18-1293-2022, 2022
Short summary
Short summary
Tides affect the marine carbonate chemistry of a coastal polynya neighbouring the Ekström Ice Shelf by movement of seawater with different physical and biogeochemical properties. The result is that the coastal polynya in the summer can switch between being a sink or a source of CO2 multiple times a day. We encourage consideration of tides when collecting in polar coastal regions to account for tide-driven variability and to avoid overestimations or underestimations of air–sea CO2 exchange.
Benjamin R. Loveday, Timothy Smyth, Anıl Akpinar, Tom Hull, Mark E. Inall, Jan Kaiser, Bastien Y. Queste, Matt Tobermann, Charlotte A. J. Williams, and Matthew R. Palmer
Earth Syst. Sci. Data, 14, 3997–4016, https://doi.org/10.5194/essd-14-3997-2022, https://doi.org/10.5194/essd-14-3997-2022, 2022
Short summary
Short summary
Using a new approach to combine autonomous underwater glider data and satellite Earth observations, we have generated a 19-month time series of North Sea net primary productivity – the rate at which phytoplankton absorbs carbon dioxide minus that lost through respiration. This time series, which spans 13 gliders, allows for new investigations into small-scale, high-frequency variability in the biogeochemical processes that underpin the carbon cycle and coastal marine ecosystems in shelf seas.
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
Yanxin Wang, Karen J. Heywood, David P. Stevens, and Gillian M. Damerell
Ocean Sci., 18, 839–855, https://doi.org/10.5194/os-18-839-2022, https://doi.org/10.5194/os-18-839-2022, 2022
Short summary
Short summary
It is important that climate models give accurate projections of future extremes in summer and winter sea surface temperature because these affect many features of the global climate system. Our results demonstrate that some models would give large errors if used for future projections of these features, and models with more detailed representation of vertical structure in the ocean tend to have a better representation of sea surface temperature, particularly in summer.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Venugopal Thushara, Puthenveettil Narayana Menon Vinayachandran, Adrian J. Matthews, Benjamin G. M. Webber, and Bastien Y. Queste
Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, https://doi.org/10.5194/bg-16-1447-2019, 2019
Short summary
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and a model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Peter M. F. Sheehan, Barbara Berx, Alejandro Gallego, Rob A. Hall, Karen J. Heywood, Sarah L. Hughes, and Bastien Y. Queste
Ocean Sci., 14, 225–236, https://doi.org/10.5194/os-14-225-2018, https://doi.org/10.5194/os-14-225-2018, 2018
Short summary
Short summary
We calculate tidal velocities using observations of ocean currents collected by an underwater glider. We use these velocities to investigate the location of sharp boundaries between water masses in shallow seas. Narrow currents along these boundaries are important transport pathways around shallow seas for pollutants and organisms. Tides are an important control on boundary location in summer, but seawater salt concentration can also influence boundary location, especially in winter.
Michaela Knoll, Ines Borrione, Heinz-Volker Fiekas, Andreas Funk, Michael P. Hemming, Jan Kaiser, Reiner Onken, Bastien Queste, and Aniello Russo
Ocean Sci., 13, 889–904, https://doi.org/10.5194/os-13-889-2017, https://doi.org/10.5194/os-13-889-2017, 2017
Short summary
Short summary
The hydrography and circulation west of Sardinia, observed in June 2014 during REP14-MED by means of various measuring platforms, are presented and compared with previous knowledge. So far, the circulation of this area is not well-known and the hydrography is subject to long-term changes. The different water masses are characterized and temporal changes are emphasized. The observed eddies are specified and geostrophic transports in the upper ocean are presented.
Michael P. Hemming, Jan Kaiser, Karen J. Heywood, Dorothee C.E. Bakker, Jacqueline Boutin, Kiminori Shitashima, Gareth Lee, Oliver Legge, and Reiner Onken
Ocean Sci., 13, 427–442, https://doi.org/10.5194/os-13-427-2017, https://doi.org/10.5194/os-13-427-2017, 2017
Short summary
Short summary
Underwater gliders are useful platforms for monitoring the world oceans at a high resolution. An experimental pH sensor was attached to an underwater glider in the Mediterranean Sea, which is an important carbon sink region. Comparing measurements from the glider with those obtained from a ship indicated that there were issues with the experimental pH sensor. Correcting for these issues enabled us to look at pH variability in the area related to biomass abundance and physical water properties.
Imke Grefe, Sophie Fielding, Karen J. Heywood, and Jan Kaiser
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-73, https://doi.org/10.5194/bg-2017-73, 2017
Revised manuscript not accepted
Bastien Y. Queste, Liam Fernand, Timothy D. Jickells, Karen J. Heywood, and Andrew J. Hind
Biogeosciences, 13, 1209–1222, https://doi.org/10.5194/bg-13-1209-2016, https://doi.org/10.5194/bg-13-1209-2016, 2016
Short summary
Short summary
In stratified shelf seas, physical and biological conditions can lead to seasonal oxygen depletion when consumption exceeds supply. An ocean glider obtained a high-resolution 3-day data set of biochemical and physical properties in the central North Sea. The data revealed very high oxygen consumption rates, far exceeding previously reported rates. A consumption–supply oxygen budget indicates a localized or short-lived resuspension event causing rapid remineralization of benthic organic matter.
C. Heuzé, J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood
Geosci. Model Dev., 8, 3119–3130, https://doi.org/10.5194/gmd-8-3119-2015, https://doi.org/10.5194/gmd-8-3119-2015, 2015
Short summary
Short summary
Most ocean models, including NEMO, have unrealistic Southern Ocean deep convection. That is, through extensive areas of the Southern Ocean, they exhibit convection from the surface of the ocean to the sea floor. We find this convection to be an issue as it impacts the whole ocean circulation, notably strengthening the Antarctic Circumpolar Current. Using sensitivity experiments, we show that counter-intuitively the vertical mixing needs to be enhanced to reduce this spurious convection.
Related subject area
Discipline: Other | Subject: Ocean Interactions
The macronutrient and micronutrient (iron and manganese) content of icebergs
Ice mélange melt changes observed water column stratification at a tidewater glacier in Greenland
Subglacial discharge effects on basal melting of a rotating, idealized ice shelf
Ice-shelf freshwater triggers for the Filchner–Ronne Ice Shelf melt tipping point in a global ocean–sea-ice model
Fjord circulation induced by melting icebergs
Modeling seasonal-to-decadal ocean–cryosphere interactions along the Sabrina Coast, East Antarctica
Impact of icebergs on the seasonal submarine melt of Sermeq Kujalleq
Impact of freshwater runoff from the southwest Greenland Ice Sheet on fjord productivity since the late 19th century
Modeling intensive ocean–cryosphere interactions in Lützow-Holm Bay, East Antarctica
Drivers for Atlantic-origin waters abutting Greenland
Impact of West Antarctic ice shelf melting on Southern Ocean hydrography
Ice island thinning: rates and model calibration with in situ observations from Baffin Bay, Nunavut
Quantifying iceberg calving fluxes with underwater noise
Modeling the effect of Ross Ice Shelf melting on the Southern Ocean in quasi-equilibrium
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Nicole Abib, David A. Sutherland, Rachel Peterson, Ginny Catania, Jonathan D. Nash, Emily L. Shroyer, Leigh A. Stearns, and Timothy C. Bartholomaus
The Cryosphere, 18, 4817–4829, https://doi.org/10.5194/tc-18-4817-2024, https://doi.org/10.5194/tc-18-4817-2024, 2024
Short summary
Short summary
The melting of ice mélange, or dense packs of icebergs and sea ice in glacial fjords, can influence the water column by releasing cold fresh water deep under the ocean surface. However, direct observations of this process have remained elusive. We use measurements of ocean temperature, salinity, and velocity bookending an episodic ice mélange event to show that this meltwater input changes the density profile of a glacial fjord and has implications for understanding tidewater glacier change.
Irena Vaňková, Xylar Asay-Davis, Carolyn Branecky Begeman, Darin Comeau, Alexander Hager, Matthew Hoffman, Stephen F. Price, and Jonathan Wolfe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2297, https://doi.org/10.5194/egusphere-2024-2297, 2024
Short summary
Short summary
We study the effect of subglacial discharge on basal melting for Antarctic Ice Shelves. We find that the results from previous studies of vertical ice fronts and two-dimensional ice tongues do not translate to the rotating ice-shelf framework. The melt rate dependence on discharge is stronger in the rotating framework. Further, there is a substantial melt-rate sensitivity to the location of the discharge along the grounding line relative to the directionality of the Coriolis force.
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024, https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary
Short summary
The Filchner–Ronne Ice Shelf in Antarctica is susceptible to the intrusion of deep, warm ocean water that could increase the melting at the ice-shelf base by a factor of 10. We show that representing this potential melt regime switch in a low-resolution climate model requires careful treatment of iceberg melting and ocean mixing. We also demonstrate a possible ice-shelf melt domino effect where increased melting of nearby ice shelves can lead to the melt regime switch at Filchner–Ronne.
Kenneth G. Hughes
The Cryosphere, 18, 1315–1332, https://doi.org/10.5194/tc-18-1315-2024, https://doi.org/10.5194/tc-18-1315-2024, 2024
Short summary
Short summary
A mathematical and conceptual model of how the melting of hundreds of icebergs generates currents within a fjord.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, Takeshi Tamura, Kohei Mizobata, Guy D. Williams, and Shigeru Aoki
The Cryosphere, 18, 43–73, https://doi.org/10.5194/tc-18-43-2024, https://doi.org/10.5194/tc-18-43-2024, 2024
Short summary
Short summary
This study focuses on the Totten and Moscow University ice shelves, East Antarctica. We used an ocean–sea ice–ice shelf model to better understand regional interactions between ocean, sea ice, and ice shelf. We found that a combination of warm ocean water and local sea ice production influences the regional ice shelf basal melting. Furthermore, the model reproduced the summertime undercurrent on the upper continental slope, regulating ocean heat transport onto the continental shelf.
Karita Kajanto, Fiammetta Straneo, and Kerim Nisancioglu
The Cryosphere, 17, 371–390, https://doi.org/10.5194/tc-17-371-2023, https://doi.org/10.5194/tc-17-371-2023, 2023
Short summary
Short summary
Many outlet glaciers in Greenland are connected to the ocean by narrow glacial fjords, where warm water melts the glacier from underneath. Ocean water is modified in these fjords through processes that are poorly understood, particularly iceberg melt. We use a model to show how iceberg melt cools down Ilulissat Icefjord and causes circulation to take place deeper in the fjord than if there were no icebergs. This causes the glacier to melt less and from a smaller area than without icebergs.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, and Takeshi Tamura
The Cryosphere, 15, 1697–1717, https://doi.org/10.5194/tc-15-1697-2021, https://doi.org/10.5194/tc-15-1697-2021, 2021
Short summary
Short summary
We used an ocean–sea ice–ice shelf model with a 2–3 km horizontal resolution to investigate ocean–ice shelf/glacier interactions in Lützow-Holm Bay, East Antarctica. The numerical model reproduced the observed warm water intrusion along the deep trough in the bay. We examined in detail (1) water mass changes between the upper continental slope and shelf regions and (2) the fast-ice role in the ocean conditions and basal melting at the Shirase Glacier tongue.
Laura C. Gillard, Xianmin Hu, Paul G. Myers, Mads Hvid Ribergaard, and Craig M. Lee
The Cryosphere, 14, 2729–2753, https://doi.org/10.5194/tc-14-2729-2020, https://doi.org/10.5194/tc-14-2729-2020, 2020
Short summary
Short summary
Greenland's glaciers in contact with the ocean drain the majority of the ice sheet (GrIS). Deep troughs along the shelf branch into fjords, connecting glaciers with ocean waters. The heat from the ocean entering deep troughs may then accelerate the mass loss. Onshore heat transport through troughs was investigated with an ocean model. Processes that drive the delivery of ocean heat respond differently by region to increasing GrIS meltwater, mean circulation, and filtering out of storms.
Yoshihiro Nakayama, Ralph Timmermann, and Hartmut H. Hellmer
The Cryosphere, 14, 2205–2216, https://doi.org/10.5194/tc-14-2205-2020, https://doi.org/10.5194/tc-14-2205-2020, 2020
Short summary
Short summary
Previous studies have shown accelerations of West Antarctic glaciers, implying that basal melt rates of these glaciers were small and increased in the middle of the 20th century. We conduct coupled sea ice–ice shelf–ocean simulations with different levels of ice shelf melting from West Antarctic glaciers. This study reveals how far and how quickly glacial meltwater from ice shelves in the Amundsen and Bellingshausen seas propagates downstream into the Ross Sea and along the East Antarctic coast.
Anna J. Crawford, Derek Mueller, Gregory Crocker, Laurent Mingo, Luc Desjardins, Dany Dumont, and Marcel Babin
The Cryosphere, 14, 1067–1081, https://doi.org/10.5194/tc-14-1067-2020, https://doi.org/10.5194/tc-14-1067-2020, 2020
Short summary
Short summary
Large tabular icebergs (
ice islands) are symbols of climate change as well as marine hazards. We measured thickness along radar transects over two visits to a 14 km2 Arctic ice island and left automated equipment to monitor surface ablation and thickness over 1 year. We assess variation in thinning rates and calibrate an ice–ocean melt model with field data. Our work contributes to understanding ice island deterioration via logistically complex fieldwork in a remote environment.
Oskar Glowacki and Grant B. Deane
The Cryosphere, 14, 1025–1042, https://doi.org/10.5194/tc-14-1025-2020, https://doi.org/10.5194/tc-14-1025-2020, 2020
Short summary
Short summary
Marine-terminating glaciers are shrinking rapidly in response to the warming climate and thus provide large quantities of fresh water to the ocean system. However, accurate estimates of ice loss at the ice–ocean boundary are difficult to obtain. Here we demonstrate that ice mass loss from iceberg break-off (calving) can be measured by analyzing the underwater noise generated as icebergs impact the sea surface.
Xiying Liu
The Cryosphere, 12, 3033–3044, https://doi.org/10.5194/tc-12-3033-2018, https://doi.org/10.5194/tc-12-3033-2018, 2018
Short summary
Short summary
Numerical experiments have been performed to study the effect of basal melting of the Ross Ice Shelf on the ocean southward of 35° S. It is shown that the melt rate averaged over the entire Ross Ice Shelf is 0.253 m year-1, which is associated with a freshwater flux of 3150 m3 s-1. The extra freshwater flux decreases the salinity in the Southern Ocean substantially, leading to anomalies in circulation, sea ice, and heat transport in certain parts of the ocean.
Cited articles
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R.
M.: Ice sheet contributions to future sea-level rise from structured expert
judgment, P. Natl. Acad. Sci. USA, 116, 11195–11200,
https://doi.org/10.1073/pnas.1817205116, 2019.
Biddle, L. C., Loose, B., and Heywood, K. J.: Upper ocean distribution of
glacial meltwater in the Amundsen Sea, Antarctica, J. Geophys. Res.-Oceans,
124, 6854–6870, https://doi.org/10.1029/2019JC015133,
2019.
Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz,
N.: Geographical variability of the first baroclinic Rossby radius of
deformation, J. Phys. Oceanogr., 28, 433–460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez,
N., Sadai, S., Condron, A., Gilford, D. M., Ashe, E. L., and Kopp, R. E.: The
Paris Climate Agreement and future sea-level rise from Antarctica, Nature,
593, 83–89,
https://doi.org/10.1038/s41586-021-03427-0, 2021.
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S.
H., Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schröder, M.: Strong
sensitivity of Pine Island ice-shelf melting to climatic variability,
Science, 343, 174–178,
https://doi.org/10.1126/science.1244341, 2014.
Elvidge, A. D., Renfrew, I. A., Weiss, A. I., Brooks, I. M., Lachlan-Cope, T. A., and King, J. C.: Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation, Atmos. Chem. Phys., 16, 1545–1563, https://doi.org/10.5194/acp-16-1545-2016, 2016.
Foldvik, A., Gammelsrød, T., and Tørresen, T.: Circulation and water
masses on the southern Weddell Sea shelf,
Oceanology of the Antarctic continental shelf, 43, 5–20,
https://doi.org/10.1029/AR043p0005, 1985.
Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J.,
Trusel, L. D., and Edwards, T. L.: Global environmental consequences of
twenty-first-century ice-sheet melt, Nature, 566, 65–72, https://doi.org/10.1038/s41586-019-0889-9, 2019.
Heimbach, P. and Losch, M.: Adjoint sensitivities of sub-ice-shelf melt
rates to ocean circulation under the Pine Island Ice Shelf, West Antarctica,
Ann. Glaciol., 53, 59–69, https://doi.org/10.3189/2012/AoG60A025, 2012.
Heywood, K. J., Biddle, L. C., Boehme, L., Dutrieux, P., Fedak, M., Jenkins,
A., Jones, R. W., Kaiser, J., Mallett, H., Naveira Garabato, A. C., and
Renfrew, I. A.: Between the devil and the deep blue sea: The role of the
Amundsen Sea continental shelf in exchanges between ocean and ice shelves,
Oceanography, 29, 118–129, https://doi.org/10.5670/oceanog.2016.104, 2016.
Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.: Stronger ocean
circulation and increased melting under Pine Island Glacier ice shelf, Nat.
Geosci., 4, 519–523, https://doi.org/10.1038/ngeo1188,
2011.
Jenkins, A.: The impact of melting ice on ocean waters, J. Phys. Oceanogr.,
29, 2370–2381, https://doi.org/10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2, 1999.
Jourdain, N. C., Molines, J. M., Le Sommer, J., Mathiot, P., Chanut, J., de
Lavergne, C., and Madec, G.: Simulating or prescribing the influence of tides
on the Amundsen Sea ice shelves, Ocean Model., 133, 44–55, https://doi.org/10.1016/j.ocemod.2018.11.001, 2019.
Mathis, J. T., Hansell, D. A., Kadko, D., Bates, N. R., and Cooper, L. W.:
Determining net dissolved organic carbon production in the hydrographically
complex western Arctic Ocean, Limnol. Oceanogr., 52, 1789–1799,
https://doi.org/10.4319/lo.2007.52.5.1789, 2007.
Mathiot, P., Jenkins, A., Harris, C., and Madec, G.: Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6, Geosci. Model Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, 2017.
Martin, T., Steele, M., and Zhang, J.: Seasonality and long-term trend of
Arctic Ocean surface stress in a model, J. Geophys. Res.-Oceans, 119,
1723–1738, https://doi.org/10.1002/2013jc009425, 2014.
Mankoff, K. D., Jacobs, S. S., Tulaczyk, S. M., and Stammerjohn, S. E.: The
role of Pine Island Glacier ice shelf basal channels in deep-water
upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica,
Ann. Glaciol., 53, 123–128, https://doi.org/10.3189/2012aog60a062, 2012.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the
Gibbs Seawater (GSW) oceanographic toolbox, SCOR/IAPSO WG [code], http://www.teos-10.org/pubs/gsw/v3_04/pdf/Getting_Started.pdf (last access: 22 June 2022), 2011.
Meneghello, G., Marshall, J., Campin, J. M., Doddridge, E., and Timmermans,
M. L.: The ice-ocean governor: Ice-ocean stress feedback limits Beaufort
Gyre spin-up, Geophys. Res. Lett., 45, 11–293,
https://doi.org/10.1029/2018gl080171, 2018.
Meneghello, G., Marshall, J., Lique, C., Isachsen, P. E., Doddridge, E.,
Campin, J. M., Regan, H., and Talandier, C.: Genesis and decay of mesoscale
baroclinic eddies in the seasonally ice-covered interior Arctic Ocean, J.
Phys. Oceanogr., 51, 115–129, https://doi.org/10.1175/jpo-d-20-0054.1, 2021.
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein,
P., Seroussi, H., Schodlok, M., Rignot E., and Menemenlis, D.: Pathways of
ocean heat towards Pine Island and Thwaites grounding lines, Sci. Rep.-UK, 9,
16649, https://doi.org/10.1038/s41598-019-53190-6, 2019.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331, https://doi.org/10.1126/science.aaa0940, 2015.
Pritchard, H., Ligtenberg, S. R., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, 2012.
Queste, B. Y. and Wåhlin, A. K.: CTD data from the NBP 19/02 cruise as part of the NERC-NSF ITGC TARSAN project in the Amundsen Sea, campaign during austral summer 2018/2019, NERC EDS British Oceanographic Data Centre (NOC) [data set], https://doi.org/10.5285/e338af5d-8622-05de-e053-6c86abc06489, 2022.
Regan, H., Lique, C., Talandier, C., and Meneghello, G.: Response of total
and eddy kinetic energy to the recent spinup of the Beaufort Gyre, J. Phys.
Oceanogr., 50, 575–594, https://doi.org/10.1175/jpo-d-19-0234.1, 2020.
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103,
https://doi.org/10.1073/pnas.1812883116, 2019.
Robel, A. A., Wilson, E., and Seroussi, H.: Layered seawater intrusion and melt under grounded ice, The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, 2022.
Schodlok, M. P., Menemenlis, D., Rignot, E., and Studinger, M.: Sensitivity
of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by
NASA IceBridge in Pine Island Glacier, West Antarctica, Ann.
Glaciol., 53, 156–162, https://doi.org/10.3189/2012aog60a073, 2012.
St-Laurent, P., Klinck, J. M., and Dinniman, M. S.: Impact of local winter
cooling on the melt of Pine Island G lacier, Antarctica, J. Geophys.
Res.-Oceans, 120, 6718–6732, https://doi.org/10.1002/2015jc010709, 2015.
Stommel, H.: The westward intensification of wind-driven ocean
currents, EOS T. Am. Geophys. Union, 29, 202–206,
https://doi.org/10.1029/tr029i002p00202, 1948.
Smith, N. R., Zhaoqian, D., Kerry, K. R., and Wright, S.: Water masses and
circulation in the region of Prydz Bay, Antarctica, Deep-Sea Res. Pt. 1,
31, 1121–1147, https://doi.org/10.1016/0198-0149(84)90016-5, 1984.
Thurnherr, A. M., Jacobs, S. S., Dutrieux, P., and Giulivi, C. F.: Export and
circulation of ice cavity water in Pine Island Bay, West Antarctica, J.
Geophys. Res.-Oceans, 119, 1754–1764, https://doi.org/10.1002/2013jc009307, 2014.
Tortell, P. D., Long, M. C., Payne, C. D., Alderkamp, A. C., Dutrieux, P.,
and Arrigo, K. R.: Spatial distribution of pCO2, ΔO2/Ar and
dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen
Sea, Antarctica, Deep-Sea Res. Pt. II, 71, 77–93, https://doi.org/10.1016/j.dsr2.2012.03.010, 2012.
Wåhlin, A. K., Graham, A. G. C., Hogan, K.A., Queste, B. Y., Boehme, L.,
Larter, R. D., Pettit, E. C., Wellner, J., and Heywood, K. J.: Pathways and
modification of warm water flowing beneath Thwaites Ice Shelf, West
Antarctica, Sci. Adv., 7, eabd7254, https://doi.org/10.1126/sciadv.abd7254, 2021.
Webber, B. G., Heywood, K. J., Stevens, D. P., Dutrieux, P., Abrahamsen, E.
P., Jenkins, A., Jacobs, S. S., Ha, H. K., Lee, S. H., and Kim, T. W.:
Mechanisms driving variability in the ocean forcing of Pine Island
Glacier, Nat. Commun., 8, 1–8,
https://doi.org/10.1038/ncomms14507, 2017.
Yoon, S. T., Lee, W.S., Nam, S., Lee, C.K., Yun, S., Heywood, K., Boehme, L.,
Zheng, Y., Lee, I., Choi, Y., and Jenkins, A.: Ice front retreat reconfigures
meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice
shelf, Nat. Commun., 13, 1–8, https://doi.org/10.1038/s41467-022-27968-8, 2022.
Zheng, Y., Heywood, K. J., Webber, B. G., Stevens, D. P., Biddle, L. C.,
Boehme, L., and Loose, B.: Winter seal-based observations reveal glacial
meltwater surfacing in the southeastern Amundsen Sea, Communications: Earth
& Environment, 2, 1–9, https://doi.org/10.1038/s43247-021-00111-z, 2021.
Zheng, Y., Stevens, D. P., Heywood, K. J., Webber, B. G. M., and Queste, B. Y.: An Idealised Barotropic Ocean Gyre Model Code, Based on MITgcm, Zenodo [code], https://doi.org/10.5281/zenodo.6757626, 2022a.
Zheng, Y., Stevens, D. P., Heywood, K. J., Webber, B. G. M., and Queste, B. Y.: Shipborne ADCP data in the Thwaites Gyre region 2019, Zenodo [data set], https://doi.org/10.5281/zenodo.6757570, 2022b.
Short summary
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea for the first time. This gyre rotates anticlockwise, despite the wind here favouring clockwise gyres like the Pine Island Bay gyre – the only other ocean gyre reported in the Amundsen Sea. We use an ocean model to suggest that sea ice alters the wind stress felt by the ocean and hence determines the gyre direction and strength. These processes may also be applied to other gyres in polar oceans.
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea...