Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2265-2022
https://doi.org/10.5194/tc-16-2265-2022
Research article
 | 
15 Jun 2022
Research article |  | 15 Jun 2022

Impact of runoff temporal distribution on ice dynamics

Basile de Fleurian, Richard Davy, and Petra M. Langebroek

Related authors

Geometric controls of tidewater glacier dynamics
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022,https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream
Silje Smith-Johnsen, Basile de Fleurian, Nicole Schlegel, Helene Seroussi, and Kerim Nisancioglu
The Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020,https://doi.org/10.5194/tc-14-841-2020, 2020
Short summary
Simulated retreat of Jakobshavn Isbræ since the Little Ice Age controlled by geometry
Nadine Steiger, Kerim H. Nisancioglu, Henning Åkesson, Basile de Fleurian, and Faezeh M. Nick
The Cryosphere, 12, 2249–2266, https://doi.org/10.5194/tc-12-2249-2018,https://doi.org/10.5194/tc-12-2249-2018, 2018
Short summary
A double continuum hydrological model for glacier applications
B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback
The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014,https://doi.org/10.5194/tc-8-137-2014, 2014
Capabilities and performance of Elmer/Ice, a new-generation ice sheet model
O. Gagliardini, T. Zwinger, F. Gillet-Chaulet, G. Durand, L. Favier, B. de Fleurian, R. Greve, M. Malinen, C. Martín, P. Råback, J. Ruokolainen, M. Sacchettini, M. Schäfer, H. Seddik, and J. Thies
Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013,https://doi.org/10.5194/gmd-6-1299-2013, 2013

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Modeling the timing of Patagonian Ice Sheet retreat in the Chilean Lake District from 22–10 ka
Joshua Cuzzone, Matias Romero, and Shaun A. Marcott
The Cryosphere, 18, 1381–1398, https://doi.org/10.5194/tc-18-1381-2024,https://doi.org/10.5194/tc-18-1381-2024, 2024
Short summary
Using specularity content to evaluate eight geothermal heat flow maps of Totten Glacier
Yan Huang, Liyun Zhao, Michael Wolovick, Yiliang Ma, and John C. Moore
The Cryosphere, 18, 103–119, https://doi.org/10.5194/tc-18-103-2024,https://doi.org/10.5194/tc-18-103-2024, 2024
Short summary
Surging of a Hudson Strait-scale ice stream: subglacial hydrology matters but the process details mostly do not
Matthew Drew and Lev Tarasov
The Cryosphere, 17, 5391–5415, https://doi.org/10.5194/tc-17-5391-2023,https://doi.org/10.5194/tc-17-5391-2023, 2023
Short summary
Regularization and L-curves in ice sheet inverse models: a case study in the Filchner–Ronne catchment
Michael Wolovick, Angelika Humbert, Thomas Kleiner, and Martin Rückamp
The Cryosphere, 17, 5027–5060, https://doi.org/10.5194/tc-17-5027-2023,https://doi.org/10.5194/tc-17-5027-2023, 2023
Short summary
Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023,https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary

Cited articles

Ahlstrøm, A. P., Petersen, D., Langen, P. L., Citterio, M., and Box, J. E.: Abrupt shift in the observed runoff from the southwestern Greenland ice sheet, Science Advances, 3, e1701169, https://doi.org/10.1126/sciadv.1701169, 2017. a
Anderson, R., Anderson, S., MacGregor, K., Waddington, E., O'Neel, S., Riihimaki, C., and Loso, M.: Strong feedbacks between hydrology and sliding of a small alpine glacier, J. Geophys. Res., 109, 1–17, https://doi.org/10.1029/2004JF000120, 2004. a
Bartholomaus, T. C., Anderson, R. S., and Anderson, S. P.: Response of glacier basal motion to transient water storage, Nat. Geosci., 1, 33–37, https://doi.org/10.1038/ngeo.2007.52, 2008. a
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/NGEO863, 2010. a
Bartholomew, I., Peter, N., Andrew, S., Douglas, M., Thomas, C., and A., K. M.: Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity, J. Geophys. Res., 117, F03002, https://doi.org/10.1029/2011JF002220, 2012. a
Download
Short summary
As temperature increases, more snow and ice melt at the surface of ice sheets. Here we use an ice dynamics and subglacial hydrology model with simplified geometry and climate forcing to study the impact of variations in meltwater on ice dynamics. We focus on the variations in length and intensity of the melt season. Our results show that a longer melt season leads to faster glaciers, but a more intense melt season reduces glaciers' seasonal velocities, albeit leading to higher peak velocities.