Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of runoff temporal distribution on ice dynamics
Basile de Fleurian
CORRESPONDING AUTHOR
Department of Earth Science, University of Bergen, Bjerknes Centre for Climate Research, Bergen, Norway
Richard Davy
Nansen Environmental and Remote Sensing Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Petra M. Langebroek
NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022, https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Short summary
The shape of a fjord can promote or inhibit glacier retreat in response to climate change. We conduct experiments with a synthetic setup under idealized conditions in a numerical model to study and quantify the processes involved. We find that friction between ice and fjord is the most important factor and that it is possible to directly link ice discharge and grounding line retreat to fjord topography in a quantitative way.
Tian Tian, Richard Davy, Leandro Ponsoni, and Shuting Yang
The Cryosphere, 19, 2751–2768, https://doi.org/10.5194/tc-19-2751-2025, https://doi.org/10.5194/tc-19-2751-2025, 2025
Short summary
Short summary
We introduced a modulating factor to the surface heat flux in the EC-Earth3 model to address the lack of parameterization for turbulent exchange over sea ice leads and correct the bias in Arctic sea ice. Three pairwise experiments showed that the amplified heat flux effectively reduces the overestimated sea ice, especially during cold periods, thereby improving agreement with observed and reanalysis data for sea ice area, volume, and ice edge, particularly in the North Atlantic sector.
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2192, https://doi.org/10.5194/egusphere-2025-2192, 2025
Short summary
Short summary
We present a method to better simulate how Greenland’s ice sheet may change over thousands of years in response to climate change. Using a stand-alone ice sheet model, we adjust snowfall and melting patterns based on changes in the ice sheet’s shape. This approach avoids complex coupled models and enables faster testing of many future scenarios to understand the long-term stability of Greenland’s ice.
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025, https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary
Short summary
Mass loss from the Greenland ice sheet significantly contributes to rising sea levels, threatening coastal communities globally. To improve future sea-level projections, we simulated ice sheet behavior until 2100, initializing the model with observed geometry and using various climate models. Predictions indicate a sea-level rise of 32 to 228 mm by 2100, with climate model uncertainty being the main source of variability in projections.
Chloe A. Brashear, Tyler R. Jones, Valerie Morris, Bruce H. Vaughn, William H. G. Roberts, William B. Skorski, Abigail G. Hughes, Richard Nunn, Sune Olander Rasmussen, Kurt M. Cuffey, Bo M. Vinther, Todd Sowers, Christo Buizert, Vasileios Gkinis, Christian Holme, Mari F. Jensen, Sofia E. Kjellman, Petra M. Langebroek, Florian Mekhaldi, Kevin S. Rozmiarek, Jonathan W. Rheinlænder, Margit H. Simon, Giulia Sinnl, Silje Smith-Johnsen, and James W. C. White
Clim. Past, 21, 529–546, https://doi.org/10.5194/cp-21-529-2025, https://doi.org/10.5194/cp-21-529-2025, 2025
Short summary
Short summary
We use a series of spectral techniques to quantify the strength of high-frequency climate variability in northeastern Greenland to 50 000 ka before present. Importantly, we find that variability consistently decreases hundreds of years prior to Dansgaard–Oeschger warming events. Model simulations suggest a change in North Atlantic sea ice behavior contributed to this pattern, thus providing new information on the conditions which preceded abrupt climate change during the Last Glacial Period.
Lise Seland Graff, Jerry Tjiputra, Ada Gjermundsen, Andreas Born, Jens Boldingh Debernard, Heiko Goelzer, Yan-Chun He, Petra Margaretha Langebroek, Aleksi Nummelin, Dirk Olivié, Øyvind Seland, Trude Storelvmo, Mats Bentsen, Chuncheng Guo, Andrea Rosendahl, Dandan Tao, Thomas Toniazzo, Camille Li, Stephen Outten, and Michael Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-472, https://doi.org/10.5194/egusphere-2025-472, 2025
Short summary
Short summary
The magnitude of future Arctic amplification is highly uncertain. Using the Norwegian Earth system model, we explore the effect of improving the representation of clouds, ocean eddies, the Greenland ice sheet, sea ice, and ozone on the projected Arctic winter warming in a coordinated experiment set. These improvements all lead to enhanced projected Arctic warming, with the largest changes found in the sea-ice retreat regions and the largest uncertainty on the Atlantic side.
Einar Ólason, Guillaume Boutin, Timothy Williams, Anton Korosov, Heather Regan, Jonathan Rheinlænder, Pierre Rampal, Daniela Flocco, Abdoulaye Samaké, Richard Davy, Timothy Spain, and Sean Chua
EGUsphere, https://doi.org/10.5194/egusphere-2024-3521, https://doi.org/10.5194/egusphere-2024-3521, 2025
Short summary
Short summary
This paper introduces a new version of the neXtSIM sea-ice model. NeXtSIM is unique among sea-ice models in how it represents sea-ice dynamics, focusing on features such as cracks and ridges and how these impact interactions between the atmosphere and ocean where sea ice is present. The new version introduces some physical parameterisations and model options detailed and explained in the paper. Following the paper's publication, the neXtSIM code will be released publicly for the first time.
Heiko Goelzer, Petra M. Langebroek, Andreas Born, Stefan Hofer, Konstanze Haubner, Michele Petrini, Gunter Leguy, William H. Lipscomb, and Katherine Thayer-Calder
EGUsphere, https://doi.org/10.5194/egusphere-2024-3045, https://doi.org/10.5194/egusphere-2024-3045, 2025
Short summary
Short summary
On the backdrop of observed accelerating ice sheet mass loss over the last few decades, there is growing interest in the role of ice sheet changes in global climate projections. In this regard, we have coupled an Earth system model with an ice sheet model and have produced an initial set of climate projections including an interactive coupling with a dynamic Greenland ice sheet.
David M. Chandler and Petra M. Langebroek
Clim. Past, 20, 2055–2080, https://doi.org/10.5194/cp-20-2055-2024, https://doi.org/10.5194/cp-20-2055-2024, 2024
Short summary
Short summary
Sea level rise and global climate change caused by ice melt in Antarctica represent a puzzle of feedbacks between the climate, ocean, and ice sheets over tens to thousands of years. Antarctic Ice Sheet melting is caused mainly by warm deep water from the Southern Ocean. Here, we analyse close relationships between deep water temperatures and global climate over the last 800 000 years. This knowledge can help us to better understand how climate and sea level are likely to change in the future.
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024, https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Short summary
The North Atlantic Oscillation is linked to wintertime weather events over Europe. One feature often overlooked is how much the climate variability explained by the NAO has changed over time. We show that there has been a considerable increase in the percentage variance explained by the NAO over the 20th century and that this is not reproduced by 50 CMIP6 climate models, which are generally biased too high. This has implications for projections and prediction of weather events in the region.
Emily A. Hill, Benoît Urruty, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere, 17, 3739–3759, https://doi.org/10.5194/tc-17-3739-2023, https://doi.org/10.5194/tc-17-3739-2023, 2023
Short summary
Short summary
The grounding lines of the Antarctic Ice Sheet could enter phases of irreversible retreat or advance. We use three ice sheet models to show that the present-day locations of Antarctic grounding lines are reversible with respect to a small perturbation away from their current position. This indicates that present-day retreat of the grounding lines is not yet irreversible or self-enhancing.
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023, https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary
Short summary
We use an ice sheet model to test where current climate conditions in Antarctica might lead. We find that present-day ocean and atmosphere conditions might commit an irreversible collapse of parts of West Antarctica which evolves over centuries to millennia. Importantly, this collapse is not irreversible yet.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022, https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Short summary
The shape of a fjord can promote or inhibit glacier retreat in response to climate change. We conduct experiments with a synthetic setup under idealized conditions in a numerical model to study and quantify the processes involved. We find that friction between ice and fjord is the most important factor and that it is possible to directly link ice discharge and grounding line retreat to fjord topography in a quantitative way.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Cited articles
Ahlstrøm, A. P., Petersen, D., Langen, P. L., Citterio, M., and Box, J. E.:
Abrupt shift in the observed runoff from the southwestern Greenland ice
sheet, Science Advances, 3, e1701169, https://doi.org/10.1126/sciadv.1701169, 2017. a
Anderson, R., Anderson, S., MacGregor, K., Waddington, E., O'Neel, S.,
Riihimaki, C., and Loso, M.: Strong feedbacks between hydrology and sliding
of a small alpine glacier, J. Geophys. Res., 109, 1–17,
https://doi.org/10.1029/2004JF000120, 2004. a
Bartholomaus, T. C., Anderson, R. S., and Anderson, S. P.: Response of glacier
basal motion to transient water storage, Nat. Geosci., 1, 33–37,
https://doi.org/10.1038/ngeo.2007.52, 2008. a
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.:
Seasonal evolution of subglacial drainage and acceleration in a Greenland
outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/NGEO863, 2010. a
Bartholomew, I., Peter, N., Andrew, S., Douglas, M., Thomas, C., and A., K. M.:
Short-term variability in Greenland Ice Sheet motion forced by time-varying
meltwater drainage: Implications for the relationship between subglacial
drainage system behavior and ice velocity, J. Geophys. Res., 117, F03002,
https://doi.org/10.1029/2011JF002220, 2012. a
Bindschadler, R.: The importance of pressurized subglacial water in separation
and sliding at the glacier bed, J. Glaciol., 29, 3–19, 1983. a
Catania, G. A., Neumann, T. A., and Price, S. F.: Characterizing englacial
drainage in the ablation zone of the Greenland ice sheet, J. Glaciol., 54,
567–578, https://doi.org/10.3189/002214308786570854, 2008. a
Colosio, P., Tedesco, M., Ranzi, R., and Fettweis, X.: Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019), The Cryosphere, 15, 2623–2646, https://doi.org/10.5194/tc-15-2623-2021, 2021. a
Cowton, T., Nienow, P., Sole, A., Wadham, J., Lis, G., Bartholomew, I., Mair,
D., and Chandler, D.: Evolution of drainage system morphology at a
land-terminating Greenlandic outlet glacier, J. Geophys. Res., 118, 29–41, https://doi.org/10.1029/2012jf002540, 2013. a
Cowton, T., Nienow, P., Sole, A., Bartholomew, I., and Mair, D.: Variability
in ice motion at a land-terminating Greenlandic outlet glacier: the role of
channelized and distributed drainage systems, J. Glaciol., 62, 451–466, https://doi.org/10.1017/jog.2016.36, 2016. a
de Fleurian, B., Gagliardini, O., Zwinger, T., Durand, G., Le Meur, E., Mair, D., and Råback, P.: A double continuum hydrological model for glacier applications, The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014, 2014. a
de Fleurian, B., Morlighem, M., Seroussi, H., Rignot, E., van den Broeke,
M. R., Munneke, P. K., Mouginot, J., Smeets, P. C. J. P., and Tedstone,
A. J.: A modeling study of the effect of runoff variability on the effective
pressure beneath Russell Glacier, West Greenland, J. Geophys. Res., 121, 1834–1848, https://doi.org/10.1002/2016JF003842, 2016. a, b, c
de Fleurian, B., Werder, M. A., Beyer, S., Brinkerhoff, D. J., Delaney, I.,
Dow, C. F., Downs, J., Gagliardini, O., Hoffman, M. J., and Hooke, R. L.:
SHMIP, The subglacial hydrology model intercomparison Project, J. Glaciol.,
64, 897–916, https://doi.org/10.1017/jog.2018.78, 2018. a, b, c
de Fleurian, B., Davy, R., and Langebroek, P. M.: Impact of runoff temporal distribution on ice dynamics, Zenodo [data set], https://doi.org/10.5281/zenodo.5959181, 2022. a
Doyle, S. H., Hubbard, A., Fitzpatrick, A. A. W., van As, D., Mikkelsen, A. B.,
Pettersson, R., and Hubbard, B.: Persistent flow acceleration within the
interior of the Greenland ice sheet, Geophys. Res. Lett., 41, 899–905,
https://doi.org/10.1002/2013GL058933, 2014. a
Doyle, S. H., Hubbard, A., van de Wal, R. S. W., Box, J. E., van As, D.,
Scharrer, K., Meierbachtol, T. W., Smeets, P. C. J. P., Harper, J. T.,
Johansson, E., Mottram, R. H., Mikkelsen, A. B., Wilhelms, F., Patton, H.,
Christoffersen, P., and Hubbard, B.: Amplified melt and flow of the
Greenland ice sheet driven by late-summer cyclonic rainfall, Nat. Geosci.,
8, 647–653, https://doi.org/10.1038/ngeo2482, 2015. a
Fürst, J. J., Goelzer, H., and Huybrechts, P.: Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming, The Cryosphere, 9, 1039–1062, https://doi.org/10.5194/tc-9-1039-2015, 2015. a, b
Gagliardini, O. and Werder, M. A.: Influence of increasing surface melt over
decadal timescales on land-terminating Greenland-type outlet glaciers, J.
Glaciol., 64, 700–710, https://doi.org/10.1017/jog.2018.59, 2018. a, b, c, d
Gagliardini, O., Cohen, D., Raback, P., and Zwinger, T.: Finite-element
modeling of subglacial cavities and related friction law, J. Geophys. Res.,
112, 1–11, https://doi.org/10.1029/2006JF000576, 2007. a
Gordon, S., Sharp, M., Hubbard, B., Smart, C., Ketterling, B., and Willis, I.:
Seasonal reorganization of subglacial drainage inferred from measurements in
boreholes, Hydrol. Process., 12, 105–133,
https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<105::AID-HYP566>3.3.CO;2-R, 1998. a
Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C.,
Irvine-Fynn, T., Wise, S., and Griffiths, M.: Increased runoff from melt
from the Greenland Ice Sheet: A response to global warming, J. Clim.,
21, 331–341, https://doi.org/10.1175/2007JCLI1964.1, 2008. a
Harper, J. T., Humphrey, N. F., Pfeffer, W. T., and Lazar, B.: Two modes of
accelerated glacier sliding related to water, Geophys. Res. Lett., 34, 2–5, https://doi.org/10.1029/2007GL030233, 2007. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. R. Meteorolog. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a
Hewitt, I. J.: Seasonal changes in ice sheet motion due to melt water
lubrication, Earth Planet. Sci. Lett., 371–372, 16–25,
https://doi.org/10.1016/j.epsl.2013.04.022, 2013. a
Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C., and Rumrill,
J. A.: Links between acceleration, melting, and supraglacial lake drainage
of the western Greenland Ice Sheet, J. Geophys. Res., 116, F04035,
https://doi.org/10.1029/2010JF001934, 2011. a
Iken, A.: The effect of the subglacial water pressure on the sliding velocity
of a glacier in an idealized numerical Model, J. Glaciol., 27, 407–421,
https://doi.org/10.3189/s0022143000011448, 1981. a, b
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale,
high order, high spatial resolution, ice sheet modeling using the Ice Sheet
System Model (ISSM), J. Geophys. Res., 117, 1–20,
https://doi.org/10.1029/2011JF002140, 2012. a, b, c
MacAyeal, D.: Large-scale ice flow over a viscous basal sediment: Theory and
application to Ice Stream B, Antarctica, J. Geophys. Res., 94,
4071–4087, https://doi.org/10.1029/jb094ib04p04071, 1989. a
Mair, D., Nienow, P., Sharp, M., Wohlleben, T., and Willis, I.: Influence of
subglacial drainage system evolution on glacier surface motion: Haut
Glacier d'Arolla, Switzerland, J. Geophys. Res., 107, 1–8,
https://doi.org/10.1029/2001JB000514, 2002. a
Mernild, S. H., Liston, G. E., Hiemstra, C. A., and Steffen, K.: Record
2007 Greenland Ice Sheet Surface Melt Extent and Runoff, EOS. Trans. AGU, 90, 13–14, https://doi.org/10.1029/2009EO020002, 2009. a
Morland, L.: Unconfined ice shelf flow, Proceedings of Workshop on the Dynamics
of the West Antarctic Ice Sheet, Glaciology and Quaternary Geology, volume 4, edited by: van der Veen, C. J. and Oerlemans, J., University of Utrecht, May 1985, Published
by Reidel, 99–116, https://doi.org/10.1007/978-94-009-3745-1_6, 1987. a
Mote, T. L.: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007, Geophys. Res. Lett., 34, 1–5,
https://doi.org/10.1029/2007GL031976, 2007. a, b
Nghiem, S. V., Steffen, K., Neumann, G., and Huff, R.: Mapping of ice layer
extent and snow accumulation in the percolation zone of the Greenland ice
sheet, J. Geophys. Res., 110, L20502, https://doi.org/10.1029/2004JF000234, 2005. a
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan,
K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt
across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, 1–6,
https://doi.org/10.1029/2012GL053611, 2012. a
Nye, J.: Water flow in glaciers: jokulhlaups, tunnels and veins, J. Glaciol.,
17, 181–207, https://doi.org/10.3189/S002214300001354X, 1976. a
Röthlisberger, H.: Water pressure in intra- and subglacial channels, J.
Glaciol., 11, 177–203, https://doi.org/10.3189/S0022143000022188, 1972. a
Sasgen, I., van den Broeke, M., Bamber, J. L., Rignot, E., Sorensen, L. S.,
Wouters, B., Martinec, Z., Velicogna, I., and Simonsen, S. B.: Timing and
origin of recent regional ice-mass loss in Greenland, Earth Planet. Sci.
Lett., 333, 293–303, https://doi.org/10.1016/j.epsl.2012.03.033, 2012. a
Scholzen, C., Schuler, T. V., and Gilbert, A.: Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard, The Cryosphere, 15, 2719–2738, https://doi.org/10.5194/tc-15-2719-2021, 2021. a
Schoof, C.: The effect of cavitation on glacier sliding, Proc. R. Soc. A, 461,
609–627, https://doi.org/10.1098/rspa.2004.1350, 2005. a
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature,
468, 803–806, https://doi.org/10.1038/nature09618, 2010. a
Seaberg, S., Seaberg, J., Hooke, R., and Wiberg, D.: Character of the englacial
and subglacial ddrainage system in the lower part of the ablation area of
Storglacieren, Sweden, as revealed by dye trace studies, J. Glaciol., 34, 217–227, https://doi.org/10.3189/s0022143000032263, 1988. a
Shannon, S. R., Payne, A. J., Bartholomew, I. D., van den Broeke, M. R.,
Edwards, T. L., Fettweis, X., Gagliardini, O., Gillet-Chaulet, F., Goelzer,
H., Hoffman, M. J., Huybrechts, P., Mair, D. W. F., Nienow, P. W., Perego,
M., Price, S. F., Smeets, C. J. P. P., Sole, A. J., van de Wal, R. S. W., and
Zwinger, T.: Enhanced basal lubrication and the contribution of the Greenland
ice sheet to future sea-level rise, P. Natl. Acad. Sci., 110, 14156–14161, https://doi.org/10.1073/pnas.1212647110, 2013. a, b
Slater, D. A., Nienow, P. W., Cowton, T. R., Goldberg, D. N., and Sole, A. J.:
Effect of near-terminus subglacial hydrology on tidewater glacier submarine
melt rates, Geophys. Res. Lett., 42, 2861–2868,
https://doi.org/10.1002/2014GL062494, 2015. a
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H., Rennermalm,
A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T., Moustafa, S. E.,
Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D. C., Sheng, Y., and
Balog, J.: Efficient meltwater drainage through supraglacial streams and
rivers on the southwest Greenland ice sheet, Proc. Natl. Acad. Sci., 112,
1001–1006, https://doi.org/10.1073/pnas.1413024112, 2015. a
Sole, A., Nienow, P., Bartholomew, I., Mair, D., Cowton, T., Tedstone, A., and
King, M. A.: Winter motion mediates dynamic response of the Greenland Ice
Sheet to warmer summers, Geophys. Res. Lett., 40, 3940–3944,
https://doi.org/10.1002/grl.50764, 2013. a, b, c
Sole, A. J., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., King, M. A.,
Burke, M. J., and Joughin, I.: Seasonal speedup of a Greenland
marine-terminating outlet glacier forced by surface melt-induced changes in
subglacial hydrology, J. Geophys. Res., 116, 1–11,
https://doi.org/10.1029/2010JF001948, 2011. a
Steffen, K., Nghiem, S., Huff, R., and Neumann, G.: The melt anomaly of
2002 on the Greenland Ice Sheet from active and passive microwave
satellite observations, Geophys. Res. Lett., 31, 1–5,
https://doi.org/10.1029/2004GL020444, 2004. a
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and Huybrechts,
P.: Melt-induced speed-up of Greenland ice sheet offset by efficient
subglacial drainage, Nature, 469, 522–524, https://doi.org/10.1038/nature09740, 2011. a
Tedesco, M. and Fettweis, X.: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet, The Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020, 2020. a
Tedesco, M., Fettweis, X., van den Broeke, M. R., van de Wal, R. S. W., Smeets,
C. J. P. P., van de Berg, W. J., Serreze, M. C., and Box, J. E.: The role
of albedo and accumulation in the 2010 melting record in Greenland,
Environ. Res. Lett., 6, 014005, https://doi.org/10.1088/1748-9326/6/1/014005, 2011. a, b
Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E., and Wouters, B.: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data, The Cryosphere, 7, 615–630, https://doi.org/10.5194/tc-7-615-2013, 2013a. a, b
Tedesco, M., Willis, I. C., Hoffman, M. J., Banwell, A. F., Alexander, P., and
Arnold, N. S.: Ice dynamic response to two modes of surface lake drainage on
the Greenland ice sheet, Environ. Res. Lett., 8, 034007, https://doi.org/10.1088/1748-9326/8/3/034007, 2013b. a
Tedstone, A. J., Nienow, P. W., Gourmelen, N., Dehecq, A., Goldberg, D., and
Hanna, E.: Decadal slowdown of a land-terminating sector of the Greenland
Ice Sheet despite warming, Nature, 526, 692–695,
https://doi.org/10.1038/nature15722, 2015. a, b
Truffer, M., Harrison, W. D., and March, R. S.: Record negative glacier
balances and low velocities during the 2004 heatwave in Alaska, USA:
implications for the interpretation of observations by Zwally and others
inGreenland, J. Glaciol., 51, 663–664, https://doi.org/10.3189/172756505781829016,
2005.
a
Ugelvig, S. V., Egholm, D. L., Anderson, R. S., and Iverson, N. R.: Glacial
Erosion Driven by Variations in Meltwater Drainage, J. Geophys. Res.-Earth, 123, 2863–2877, https://doi.org/10.1029/2018JF004680, 2018. a
van de Wal, R. S. W., Smeets, C. J. P. P., Boot, W., Stoffelen, M., van Kampen, R., Doyle, S. H., Wilhelms, F., van den Broeke, M. R., Reijmer, C. H., Oerlemans, J., and Hubbard, A.: Self-regulation of ice flow varies across the ablation area in south-west Greenland, The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, 2015. a, b
Vincent, C. and Moreau, L.: Sliding velocity fluctuations and subglacial
hydrology over the last two decades on Argentiere glacier, Mont Blanc area,
J. Glaciol., 62, 805–815, https://doi.org/10.1017/jog.2016.35, 2016. a
Walder, J. S. and Fowler, A.: Channelized subglacial drainage over a deformable
bed, J. Glaciol., 40, 3–15, https://doi.org/10.3189/S0022143000003750, 1994. a
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen,
K.: Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow, Science,
297, 218–222, https://doi.org/10.1126/science.1072708, 2002. a
Zwally, H. J., Li, J., Brenner, A. C., Beckley, M., Cornejo, H. G., Dimarzio,
J., Giovinetto, M. B., Neumann, T. A., Robbins, J., Saba, J. L., Yi, D., and
Wang, W.: Greenland ice sheet mass balance: distribution of increased mass
loss with climate warming; 2003-07 versus 1992-2002, J. Glaciol., 57,
88–102, 2011. a
Short summary
As temperature increases, more snow and ice melt at the surface of ice sheets. Here we use an ice dynamics and subglacial hydrology model with simplified geometry and climate forcing to study the impact of variations in meltwater on ice dynamics. We focus on the variations in length and intensity of the melt season. Our results show that a longer melt season leads to faster glaciers, but a more intense melt season reduces glaciers' seasonal velocities, albeit leading to higher peak velocities.
As temperature increases, more snow and ice melt at the surface of ice sheets. Here we use an...