Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-95-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-95-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Central Himalayan tree-ring isotopes reveal increasing regional heterogeneity and enhancement in ice mass loss since the 1960s
Nilendu Singh
Centre for Glaciology, Wadia Institute of Himalayan Geology, Dehradun
248001, India
Mayank Shekhar
Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India
Jayendra Singh
Wadia Institute of Himalayan Geology, Dehradun 248001, India
Anil K. Gupta
Department of Geology and Geophysics, IIT Kharagpur, Kharagpur 721302, India
Institute of Geography, University of Erlangen–Nuremberg,
91058 Erlangen, Germany
Christoph Mayr
Institute of Geography, University of Erlangen–Nuremberg,
91058 Erlangen, Germany
Mohit Singhal
Centre for Glaciology, Wadia Institute of Himalayan Geology, Dehradun
248001, India
Related authors
Nilendu Singh, Mayank Shekhar, Bikash Ranjan Parida, Anil K. Gupta, Kalachand Sain, Santosh K. Rai, Achim Bräuning, Vikram Sharma, and Reet Kamal Tiwari
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-53, https://doi.org/10.5194/cp-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
Tree-ring isotope records from central Himalaya provided a basis for century-scale approximation on hydroclimate and glacier interaction. Multi-species isotopic coherencies specify an abrupt phase-shift since the 1960s and the governing role of winter-westerlies in regional ice-mass variability. Radiative forcing and glacier valley-scale vegetation trend analyses indicate that attribution of ice-mass to large-scale dynamics is likely to be modulated by local vegetation changes.
Thomas Mölg, Jan C. Schubert, Annette Debel, Steffen Höhnle, Kathy Steppe, Sibille Wehrmann, and Achim Bräuning
Geosci. Commun., 7, 215–225, https://doi.org/10.5194/gc-7-215-2024, https://doi.org/10.5194/gc-7-215-2024, 2024
Short summary
Short summary
We examine the understanding of weather and climate impacts on forest health in high school students. Climate physics, tree ring science, and educational research collaborate to provide an online platform that captures the students’ observations, showing they translate the measured weather and basic tree responses well. However, students hardly ever detect the causal connections. This result will help refine future classroom concepts and public climate change communication on changing forests.
Lilian Reiss, Christian Stüwe, Thomas Einwögerer, Marc Händel, Andreas Maier, Stefan Meng, Kerstin Pasda, Ulrich Simon, Bernd Zolitschka, and Christoph Mayr
E&G Quaternary Sci. J., 71, 23–43, https://doi.org/10.5194/egqsj-71-23-2022, https://doi.org/10.5194/egqsj-71-23-2022, 2022
Short summary
Short summary
We aim at testing and evaluating geochemical proxies and material for radiocarbon dating for their reliability and consistency at the Palaeolithic site Kammern-Grubgraben (Lower Austria). While carbonate and organic carbon contents are interpreted in terms of palaeoclimate variability, pedogenic carbonates turned out to be of Holocene age. As a consequence, the proxy data assessed here are differentially suitable for environmental reconstructions.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Nilendu Singh, Mayank Shekhar, Bikash Ranjan Parida, Anil K. Gupta, Kalachand Sain, Santosh K. Rai, Achim Bräuning, Vikram Sharma, and Reet Kamal Tiwari
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-53, https://doi.org/10.5194/cp-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
Tree-ring isotope records from central Himalaya provided a basis for century-scale approximation on hydroclimate and glacier interaction. Multi-species isotopic coherencies specify an abrupt phase-shift since the 1960s and the governing role of winter-westerlies in regional ice-mass variability. Radiative forcing and glacier valley-scale vegetation trend analyses indicate that attribution of ice-mass to large-scale dynamics is likely to be modulated by local vegetation changes.
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Kerstin Pasda, Matthias López Correa, Philipp Stojakowits, Bernhard Häck, Jérôme Prieto, Najat al-Fudhaili, and Christoph Mayr
E&G Quaternary Sci. J., 69, 187–200, https://doi.org/10.5194/egqsj-69-187-2020, https://doi.org/10.5194/egqsj-69-187-2020, 2020
Short summary
Short summary
The radiocarbon dating of Late Iron Age origin and anthropogenic traces such as cut marks on bones of a male elk skeleton found by a local resident in a pit cave prove an archaeological origin. So far known archaeological settlements are several tens of kilometres apart from the finds. The location and the dating are unique in that they are the first evidence of elk hunting during the Late Iron Age in the Bavarian Alps.
Cited articles
An, W., Liu, X., Leavitt, S. W., Xu, G., Zeng, X., Wang, W., Qin, D., and
Ren, J.: Relative humidity history on the Batang–Litang Plateau of western
China since 1755 reconstructed from tree-ring δ 18 O and δD,
Clim. Dynam., 42, 2639–2654, 2014.
Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., and Kargel,
J. S.: Review of the status and mass changes of Himalayan-Karakoram glaciers, J. Glaciology, 64, 61–74, 2018.
Bandyopadhyay, D., Singh, G., and Kulkarni, A. V.: Spatial distribution of
decadal ice-thickness change and glacier stored water loss in the Upper
Ganga basin, India during 2000–2014, Sci. Rep., 9, 1–9, 2019.
Basistha, A., Arya, D. S., and Goel, N. K.: Analysis of historical changes in
rainfall in the Indian Himalayas, Int. J. Climatol., 29,
555–572, 2009.
Benn, D. I. and Owen, L. A.: The role of the Indian summer monsoon and the
mid-latitude westerlies in Himalayan glaciation: review and speculative
discussion, J. Geol. Soc., 155, 353–363, 1998.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic aerosols and the
weakening of the South Asian Summer Monsoon, Science, 334, 502–505, 2011.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley,
J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., and Bajracharya, S.:
The state and fate of Himalayan glaciers, Science, 336, 310–314,
2012.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: Spatiotemporal distribution of snowmelt and rainfall and their
impact on river discharge, J. Geophys. Res.-Earth Surf.,
115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Borgaonkar, H. P., Gandhi, N., Ram, S., and Krishnan, R.: Tree-ring
reconstruction of late summer temperatures in northern Sikkim (eastern
Himalayas), Palaeogeogr. Palaeocl., 504,
125–135, 2018.
Borgaonkar, H. P., Ram, S., and Sikder, A. B.: Assessment of tree-ring
analysis of high-elevation Cedrus deodara D. Don from Western Himalaya (India) in relation
to climate and glacier fluctuations, Dendrochronologia, 27, 59–69, 2009.
Bräuning, A.: Tree-ring evidence of “Little Ice Age” glacier advances in
southern Tibet, The Holocene, 16, 369–380, 2006.
Briffa, K. R. and Jones, P. D.: Basic chronology statistics and assessment
in: Methods of dendrochronology: applications in the environmental
sciences, edited by: Cook, E. R. and Kairiukstis, L. A., Springer Netherlands, Dordrecht, the Netherlands, 1–8, 1990.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from
2000 to 2016, Nat. Geosci., 10, 668–673, 2017.
Bunn, A. G., Salzer, M. W., Anchukaitis, K. J., Bruening, J. M., and Hughes,
M. K.: Spatiotemporal variability in the climate growth response of high
elevation bristlecone pine in the White Mountains of California, Geophys.
Res. Lett., 45, 13–312, 2018.
Carl, P., Peterson, B. G., and Peterson, M. B. G.: Package
“PerformanceAnalytics”, available at: https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html (last access: 29 March 2011), 2010.
Chakraborty, T. and Lee, X.: Land cover regulates the spatial variability
of temperature response to the direct radiative effect of aerosols,
Geophys. Res. Lett., 46, 8995–9003, 2019.
Cook, E. R., Krusic, P. J., and Jones, P. D.: Dendroclimatic signals in long
tree-ring chronologies from the Himalayas of Nepal, Int. J. Climatol., 23,
707–732, 2003.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C.,
and Wright, W. E.: Asian monsoon failure and megadrought during the last
millennium, Science, 328, 486–489, 2010.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in
dendroclimatology: a review and comparison of two techniques, Int.
J. Climatol, 14, 379–402, 1994.
Divecha Centre for Climate Change (DCCC): State of Himalayan Glaciers and
Future Projections, Science Brief: March & September 2018, Divecha Centre
for Climate Change, Indian Institute of Science (IISc.), India, 2018.
Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow,
P. W., Berthier, E., Vincent, C., Wagnon, P., and Trouvé, E.:
Twenty-first century glacier slowdown driven by mass loss in High Mountain
Asia, Nat. Geosci., 12, 22–27, 2019.
Denniston, R. F., González, L. A., Asmerom, Y., Sharma, R. H., and Reagan,
M. K.: Speleothem evidence for changes in Indian summer monsoon precipitation
over the last ∼ 2300 years, Quatern. Res., 53, 196–202, 2000.
Duan, J., Wang, L., Li, L., and Sun, Y.: Tree-ring-inferred glacier mass balance variation in southeastern Tibetan Plateau and its linkage with climate variability, Clim. Past, 9, 2451–2458, https://doi.org/10.5194/cp-9-2451-2013, 2013.
Dumka, U. C., Saheb, S. D., Kaskaoutis, D. G., Kant, Y., and Mitra, D.: Columnar
aerosol characteristics and radiative forcing over the Doon Valley in the
Shivalik range of northwestern Himalayas, Environ. Sci.
Pollut. Res., 23, 25467–25484, 2016.
Fritts, H. C.: Tree-Rings and Climate, Academic Press, London, 567 pp., 1976.
Garg, P. K., Shukla, A., and Jasrotia, A. S.: Influence of topography on
glacier changes in the central Himalaya, India, Global Planet. Change,
155, 196–212, 2017.
Garg, P. K., Shukla, A., and Jasrotia, A. S.: Dynamics of the four major
central Himalayan glaciers: spatio-temporal trends, influencing factors and
glacier health, Himalayan Geol., 40, 141–148, 2019.
Gautam, R., Hsu, N. C., and Lau, K. M.: Premonsoon aerosol characterization
and radiative effects over the Indo-Gangetic Plains: Implications for
regional climate warming, J. Geophys. Res.-Atmos.,
115, D17208, https://doi.org/10.1029/2010JD013819, 2010.
Gautam, R., Hsu, N. C., Lau, K. M., Tsay, S. C., and Kafatos, M.: Enhanced
pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007,
Geophys. Res. Lett., 36, L07704, https://doi.org/10.1029/2009GL037641, 2009.
Gou, X., Chen, F., Yang, M., Jacoby, G., Peng, J., and Zhang, Y.: A
comparison of tree-ring records and glacier variations over the past 700
years, northeastern Tibetan Plateau, Ann. Glaciol., 43, 86–90, 2006.
Grießinger, J., Bräuning, A., Helle, G., Thomas, A., and Schleser,
G.: Late Holocene Asian summer monsoon variability reflected by δ18O
in tree-rings from Tibetan junipers, Geophys. Res. Lett., 38, L03701, https://doi.org/10.1029/2010GL045988, 2011.
Grießinger, J., Bräuning, A., Helle, G., Schleser, G. H., Hochreuther,
P., Meier, W. J. H., and Zhu, H.: A dual stable isotope approach unravels common
climate signals and species-specific responses to environmental change
stored in multi-century tree-ring series from the Tibetan plateau,
Geosciences, 9, 151, https://doi.org/10.3390/geosciences9040151, 2019.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Harris, I. P. D. J., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations–the CRU TS3. 10
Dataset, Int. J. Climatol., 34, 623–664, 2014.
Hochreuther, P., Loibl, D., Wernicke, J., Zhu, H., Grießinger, J., and
Bräuning, A.: Ages of major Little Ice Age glacier fluctuations on the
southeast Tibetan Plateau derived from tree-ring-based moraine dating.
Palaeogeogr. Palaeocl., 422, 1–10, 2015.
Hochreuther, P., Wernicke, J., Grießinger, J., Mölg, T., Zhu, H.,
Wang, L., and Bräuning, A.: Influence of the Indian Ocean Dipole on
tree-ring δ18O of monsoonal Southeast Tibet, Clim. Change,
137, 217–230, 2016.
Holmes, R. L.: Computer-assisted quality control in tree-ring dating and
measurement, Tree-Ring Bull., 43, 69–78, 1983.
Hou, J., D'Andrea, W. J., Wang, M., He, Y., and Liang, J.: Influence of the
Indian monsoon and the subtropical jet on climate change on the Tibetan
Plateau since the late Pleistocene, Quatern. Sci. Rev., 163, 84–94,
2017.
Huang, R., Zhu, H., Liang, E., Liu, B., Shi, J., Zhang, R., Yuan, Y., and
Grießinger, J.: A tree ring-based winter temperature reconstruction for
the southeastern Tibetan Plateau since 1340 CE, Clim. Dynam., 53, 3221–3233,
2019a.
Huang, R., Zhu, H., Liang, E., Grießinger, J., Wernicke, J., Yu, W.,
Hochreuther, P., Risi, C., Zeng, Y., Fremme, A., Sodemann, H., and
Bräuning, A.: Temperature signals in tree-ring oxygen isotope series
from the northern slope of the Himalaya, Earth Planet. Sci.
Lett., 506, 455–465, 2019b.
Hunt, K. M., Turner, A. G., and Shaffrey, L. C.: Falling trend of western
disturbances in future climate simulations, J. Climate, 32,
5037–5051, 2019.
Joswiak, D. R., Yao, T., Wu, G., Tian, L., and Xu, B.: Ice-core evidence of
westerly and monsoon moisture contributions in the central Tibetan Plateau, J. Glaciol., 59, 56–66, 2013.
Jury, M. W., Mendlik, T., Tani, S., Truhetz, H., Maraun, D., Immerzeel, W. W.,
and Lutz, A. F.: Climate projections for glacier change modelling over the
Himalayas, Int. J. Climatol., 40, 1738–1754, 2019.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in
the Himalayas, Nature, 488, 495–498, 2012.
Kargel, J. S., Cogley, J. G., Leonard, G. J., Haritashya, U., and Byers, A.:
Himalayan glaciers: The big picture is a montage, P. Natl. Acad. Sci. USA, 108, 14709–14710, 2011.
Kaspari, S., Hooke, R. L., Mayewski, P. A., Kang, S., Hou, S., and Qin, D.:
Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: synchroneity
with sites across the Tibetan Plateau on 50–100 year timescales, J.
Glaciol., 54, 343–352, 2008.
Khan, A., Chen, F., Ahmed, M., and Zafar, M.: Rainfall reconstruction for the
Karakoram region in Pakistan since 1540 CE reveals out-of-phase relationship
in rainfall between the southern and northern slopes of the
Hindukush-Karakorum-Western Himalaya Region, Int. J.
Climatol., 40, 52–62, 2019.
Kotlia, B. S., Ahmad, S. M., Zhao, J. X., Raza, W., Collerson, K. D., Joshi,
L. M., and Sanwal, J.: Climatic fluctuations during the LIA and post-LIA in
the Kumaun Lesser Himalaya, India: evidence from a 400 y old stalagmite
record, Quatern. Int., 263, 129–138, 2012.
Kotlia, B. S., Singh, A. K., Joshi, L. M., and Dhaila, B. S.: Precipitation
variability in the Indian Central Himalaya during last ca. 4,000 years
inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and
Westerlies, Quatern. Int., 371, 244–253, 2015.
Kuhn, M., Wing, J., and Weston, S.: Package “caret”, Classification and
regression training, available at: https://cran.r-project.org/web/packages/caret (last access: 19 December 2019, 2015
Larocque, S. J. and Smith, D. J.: “Little Ice Age” proxy glacier mass balance
records reconstructed from tree rings in the Mt Waddington area, British
Columbia Coast Mountains, Canada, The Holocene, 15, 748–757, 2005.
Lau, W. K., Kim, M. K., Kim, K. M., and Lee, W. S.: Enhanced surface warming and
accelerated snow melt in the Himalayas and Tibetan Plateau induced by
absorbing aerosols, Environ. Res. Lett., 5, 025204, https://doi.org/10.1088/1748-9326/5/2/025204, 2010.
Laumer, W., Andreu, L., Helle, G., Schleser, G. H., Wieloch, T., and Wissel,
H.: A novel approach for the homogenization of cellulose to use
micro-amounts for stable isotope analyses, Rapid Commun. Mass. Sp., 23, 1934–1940, 2009.
Levesque, M., Andreu-Hayles, L., Smith, W. K., Williams, A. P., Hobi, M. L.,
Allred, B. W., and Pederson, N.: Tree-ring isotopes capture interannual
vegetation productivity dynamics at the biome scale, Nat. Commun.,
10, 742, https://doi.org/10.1038/s41467-019-08634-y, 2019.
Li, X., Kang, S., Zhang, G., Qu, B., Tripathee, L., Paudyal, R., Jing, Z.,
Zhang, Y., Yan, F., Li, G., and Cui, X.: Light-absorbing impurities in a
southern Tibetan Plateau glacier: Variations and potential impact on snow
albedo and radiative forcing, Atmos. Res., 200, 77–87, 2018.
Liang, F., Brook, G. A., Kotlia, B. S., Railsback, L. B., Hardt, B., Cheng, H., Edwards, R. L., and Kandasamy, S.: Panigarh cave stalagmite evidence of
climate change in the Indian Central Himalaya since AD 1256: Monsoon breaks
and winter southern jet depressions, Quatern. Sci. Rev., 124,
145–161, 2015.
Linderholm, H. W., Jansson, P., and Chen, D.: A high-resolution reconstruction
of Storglaciären mass balance back to 1780/81 using tree-ring data and
circulation indices, Quatern. Res., 67, 12–20, 2007.
Liu, X., Xu, G., Grießinger, J., An, W., Wang, W., Zeng, X., Wu, G., and
Qin, D.: A shift in cloud cover over the southeastern Tibetan Plateau since
1600: evidence from regional tree-ring δ18O and its linkages to
tropical oceans, Quatern. Sci. Rev., 88, 55–68, 2014.
Liu, X., Zeng, X., Leavitt, S. W., Wang, W., An, W., Xu, G., Sun, W., Wang,
Y., Qin, D., and Ren, J.: A 400-year tree-ring δ18O chronology for
the southeastern Tibetan Plateau: Implications for inferring variations of
the regional hydroclimate, Global Planet. Change, 104, 23–33, 2013.
Lyu, L., Büntgen, U., Treydte, K., Yu, K., Liang, H., Reinig, F.,
Nievergelt, D., Li, M. H., and Cherubini, P.: Tree rings reveal hydroclimatic
fingerprints of the Pacific Decadal Oscillation on the Tibetan Plateau, Clim. Dynam., 53, 1023–1103, 2019.
Negi, G. C. S.: Leaf and bud demography and shoot growth in evergreen and
deciduous trees of central Himalaya, India, Trees, 20, 416–429, 2006.
Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L., and Jagoutz,
O.: Arc-continent collisions in the tropics set Earth's climate state,
Science, 364, 181–184, 2019.
Mann, M. E. and Lees, J. M.: Robust estimation of background noise and signal
detection in climatic time series, Clim. Change, 33, 409–445, 1996.
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of
ice loss across the Himalayas over the past 40 years, Sci. Adv.,
5, eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019.
Mayewski, P. A. and Jeschke, P. A.: Himalayan and Trans-Himalayan glacier
fluctuations since AD 1812, Arctic Alpine Res., 11, 267–287,
1979.
Mayewski, P. A., Pregent, G. P., Jeschke, P. A., and Ahmad, N.: Himalayan and
Trans-Himalayan glacier fluctuations and the south Asian monsoon record,
Arctic Alpine Res., 12, 171–182, 1980.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quatern. Sci. Rev., 23, 771–801, 2004.
McCarroll, D., Gagen, M. H., Loader, N. J., Robertson, I., Anchukaitis, K. J.,
Los, S., Young, G. H., Jalkanen, R., Kirchhefer, A., and Waterhouse, J. S.:
Correction of tree ring stable carbon isotope chronologies for changes in
the carbon dioxide content of the atmosphere, Geochim. Cosmochim.
Acta, 73, 1539–1547, 2009.
Michaelsen, J.: Cross-validation in statistical climate forecast models, J. Climate Appl. Meteorol., 26, 1589–1600, 1987.
Misra, A. K., Dwivedi, S., and Das, S.: Role of Arabian Sea Warming on the
Indian Summer Monsoon Rainfall in a Regional Climate Model, Int.
J. Climatol., 40, 2226–2238, 2019.
Mölg, T., Maussion, F., and Scherer, D.: Mid-latitude westerlies as a
driver of glacier variability in monsoonal High Asia, Nat. Clim. Change,
4, 68–73, 2014.
Mortin, J., Svensson, G., Graversen, R. G., Kapsch, M. L., Stroeve, J. C., and
Boisvert, L. N.: Melt onset over Arctic sea ice controlled by atmospheric
moisture transport, Geophys. Res. Lett., 43, 6636–6642, 2016.
Murari, M. K., Owen, L. A., Dortch, J. M., Caffee, M. W., Dietsch, C., Fuchs,
M., Haneberg, W. C., Sharma, M. C., and Townsend-Small, A.: Timing and
climatic drivers for glaciation across monsoon-influenced regions of the
Himalayan–Tibetan orogen, Quatern. Sci. Rev., 88, 159–182, 2014.
Nicolussi, K. and Patzelt, G.: Reconstructing glacier history in Tyrol by
means of tree-ring investigations, Z. Gletscherkunde
Glazialgeol., 32, 207–215, 1996.
Owen, L. A., Caffee, M. W., Finkel, R. C., and Seong, Y. B.: Quaternary
glaciation of the Himalayan–Tibetan orogen, J. Quatern. Sci., 23, 513–531, 2008.
Peings, Y., Cattiaux, J., and Magnusdottir, G.: The Polar Stratosphere as an
Arbiter of the Projected Tropical Versus Polar Tug of War, Geophys.
Res. Lett., 46, 9261–9270, 2019.
Prasad, A. K., Yang, K.-H. S., El-Askary, H. M., and Kafatos, M.: Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008), Ann. Geophys., 27, 4505–4519, https://doi.org/10.5194/angeo-27-4505-2009, 2009.
Pratap, B., Dobhal, D. P., Bhambri, R., Mehta, M., and Tewari, V. C.: Four
decades of glacier mass balance observations in the Indian Himalaya,
Reg. Environ. Change, 16, 643–658, 2016.
Qin, D., Mayewski, P. A., Wake, C. P., Shichang, K., Jiawen, R., Shugui, H.,
Tandong, Y., Qinzhao, Y., Zhefan, J., and Desheng, M.: Evidence for recent
climate change from ice cores in the central Himalaya, Ann. Glaciol.,
31, 153–158, 2000.
Raina, V. K. and Srivastava, D.: Glacier atlas of India, Geological Society of India, Bangalore, 316 pp., 2008.
Ridley, H. E., Asmerom, Y., Baldini, J. U., Breitenbach, S. F., Aquino, V. V.,
Prufer, K. M., Culleton, B. J., Polyak, V., Lechleitner, F. A., Kennett, D. J.,
and Zhang, M.: Aerosol forcing of the position of the intertropical
convergence zone since AD 1550, Nat. Geosci., 8, 195–200, 2015.
Rowan, A. V.: The “Little Ice Age” in the Himalaya: A review of glacier
advance driven by Northern Hemisphere temperature change, The Holocene,
27, 292–308, 2017.
Roxy, M. K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde,
R., Terray, P., and Rajeevan, M.: A threefold rise in widespread extreme rain
events over central India, Nat. Commun., 8, 708, https://doi.org/10.1038/s41467-017-00744-9, 2017.
Roxy, M. K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K., and Goswami,
B. N.: Drying of Indian subcontinent by rapid Indian Ocean warming and a
weakening land-sea thermal gradient, Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423, 2015.
Saikranthi, K., Radhakrishna, B., Narayana Rao, T., and Satheesh, S. K.: Variability in vertical structure of precipitation with sea surface temperature over the Arabian Sea and the Bay of Bengal as inferred by Tropical Rainfall Measuring Mission precipitation radar measurements, Atmos. Chem. Phys., 19, 10423–10432, https://doi.org/10.5194/acp-19-10423-2019, 2019.
Saha, S., Owen, L. A., Orr, E. N., and Caffee, M. W.: High-frequency Holocene
glacier fluctuations in the Himalayan-Tibetan orogen, Quatern. Sci. Rev., 220, 372–400, 2019.
Sakai, A. and Fujita, K.: Contrasting glacier responses to recent climate
change in high-mountain Asia, Sci. Rep., 7, 13717, https://doi.org/10.1038/s41598-017-14256-5, 2017.
Sano, M., Dimri, A. P., Ramesh, R., Xu, C., Li, Z., and Nakatsuka, T.:
Moisture source signals preserved in a 242-year tree-ring δ18O
chronology in the western Himalaya, Global Planet. Change, 157,
73–82, 2017.
Sano, M., Ramesh, R., Sheshshayee, M. S., and Sukumar, R.: Increasing aridity
over the past 223 years in the Nepal Himalaya inferred from a tree-ring
δ18O chronology, The Holocene, 22, 809–817, 2012.
Sano, M., Tshering, P., Komori, J., Fujita, K., Xu, C., and Nakatsuka, T.:
May–September precipitation in the Bhutan Himalaya since 1743 as
reconstructed from tree ring cellulose δ18O, J. Geophys. Res.-Atmos., 118, 8399–8410, 2013.
Shah, S. K., Bhattacharyya, A., and Shekhar, M.: Reconstructing discharge of
Beas river basin, Kullu valley, western Himalaya, based on tree-ring data,
Quatern. Int., 286, 138–147, 2013.
Shekhar, M., Bhardwaj, A., Singh, S., Ranhotra, P. S., Bhattacharyya, A.,
Pal, A. K., Roy, I., Martín-Torres, F. J., and Zorzano, M. P.: Himalayan
glaciers experienced significant mass loss during later phases of little ice
age, Sci. Rep., 7, 10305, https://doi.org/10.1038/s41598-017-09212-2, 2017.
Shi, C., Daux, V., Zhang, Q.-B., Risi, C., Hou, S.-G., Stievenard, M., Pierre, M., Li, Z., and Masson-Delmotte, V.: Reconstruction of southeast Tibetan Plateau summer climate using tree ring δ18O: moisture variability over the past two centuries, Clim. Past, 8, 205–213, https://doi.org/10.5194/cp-8-205-2012, 2012.
Shukla, T., Sundriyal, S., Stachnik, L., and Mehta, M.: Carbonate and
silicate weathering in glacial environments and its relation to atmospheric
CO2 cycling in the Himalaya, Ann. Glaciol., 59, 159–170, 2018.
Singh, D., Seager, R., Cook, B. I., Cane, M., Ting, M., Cook, E., and Davis,
M.: Climate and the Global Famine of 1876–78, J. Climate, 31,
9445–9467, 2018.
Singh, J. and Yadav, R. R.: Tree-ring-based seven century long flow records
of Satluj River, western Himalaya, India, Quatern. Int., 304,
156–162, 2013.
Singh, J., Park, W. K., and Yadav, R. R.: Tree-ring-based hydrological records
for western Himalaya, India, since AD 1560, Clim. Dynam., 26,
295–303, 2006.
Singh, J., Singh, N., Chauhan, P., Yadav, R. R., Bräuning, A., Mayr, C.,
and Rastogi, T.: Tree-ring δ18O records of abating June-July
monsoon rainfall over the Himalayan region in the last 273 years, Quatern. Int., 532, 48–56, 2019.
Singh, N., Singhal M., Chhikara, S., Karakoti, I., Chauhan, P., and Dobhal,
D. P.: Radiation and energy balance dynamics over a rapidly receding glacier
in the central Himalaya, Int. J. Climatol., 40, 400–420, 2020.
Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S. F., Berkelhammer, M.,
Mudelsee, M., Biswas, J., and Edwards, R. L.: Trends and oscillations in the
Indian summer monsoon rainfall over the last two millennia, Nat. Commun., 6, 6309, https://doi.org/10.1038/ncomms7309, 2015.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D. S.,
Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., and Nicolussi,
K.: Glacier fluctuations during the past 2000 years, Quatern. Sci. Rev., 149, 61–90, 2016.
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A.,
and Lin, P. N.: A high-resolution millennial record of the South Asian
monsoon from Himalayan ice cores, Science, 289, 1916–1919, 2000.
Tomkins, J. D., Lamoureux, S. F., and Sauchyn, D. J.: Reconstruction of climate
and glacial history based on a comparison of varve and tree-ring records
from Mirror Lake, Northwest Territories, Canada, Quatern. Sci. Rev.,
27, 1426–1441, 2008.
UNEP: Recent Trends in Melting
Glaciers, Tropospheric Temperatures over the Himalayas and Summer Monsoon
Rainfall over India, United Nations Environment Programme, 2009.
Vehtari, A., Gelman, A., and Gabry, J.: Practical Bayesian model evaluation
using leave-one-out cross-validation and WAIC, Stat. Comput.,
27, 1413–1432, 2017.
Wang, R., Liu, S., Shangguan, D., Radić, V., and Zhang, Y.: Spatial
Heterogeneity in Glacier Mass-Balance Sensitivity across High Mountain Asia,
Water, 11, 776, https://doi.org/10.3390/w11040776, 2019.
Watanabe, M., Yanagawa, A., Watanabe, S., Hirabayashi, Y., and Kanae, S.:
Quantifying the range of future glacier mass change projections caused by
differences among observed past-climate datasets, Clim. Dynam., 53, 2425–2435,
2019.
Watson, E. and Luckman, B. H.: Tree-ring-based mass-balance estimates for the
past 300 years at Peyto Glacier, Alberta, Canada, Quatern. Res.,
62, 9–18, 2004.
Wernicke, J., Hochreuther, P., Grießinger, J., Zhu, H., Wang, L., and
Bräuning, A.: Multi-century humidity reconstructions from the
southeastern Tibetan Plateau inferred from tree-ring δ18O, Global Planet. Change, 149, 26–35, 2017.
Wickham, H.: ggplot2: elegant graphics for data analysis, Springer, https://doi.org/10.1007/978-0-387-98141-3, 2016.
Wieloch, T., Helle, G., Heinrich, I., Voigt, M., and Schyma, P.: A novel
device for batch-wise isolation of α-cellulose from small-amount
wholewood samples, Dendrochronologia, 29, 115–117, 2011.
Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V.: Mid-Pleistocene
transition in glacial cycles explained by declining CO2 and regolith
removal, Sci. Adv., 5, eaav7337, https://doi.org/10.1126/sciadv.aav7337, 2019.
Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., Wu, G., Wang,
M., Zhao, H., Yang, W., and Liu, X.: Black soot and the survival of Tibetan
glaciers, P. Natl. Acad. Sci. USA, 106,
22114–22118, 2009.
Xu, C., Sano, M., Dimri, A. P., Ramesh, R., Nakatsuka, T., Shi, F., and Guo, Z.: Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: evidence from five tree-ring cellulose oxygen isotope chronologies, Clim. Past, 14, 653–664, https://doi.org/10.5194/cp-14-653-2018, 2018.
Xu, P., Zhu, H., Shao, X., and Yin, Z.: Tree ring-dated fluctuation history
of Midui glacier since the little ice age in the southeastern Tibetan
plateau, Sci. China Earth Sci., 55, 521–529, 2012.
Yadav, R. R. and Bhutiyani, M. R.: Tree-ring-based snowfall record for cold
arid western Himalaya, India since AD 1460, J. Geophys. Res.-Atmos., 118, 7516–7522, 2013.
Yadav, R. R.: Tree ring evidence of a 20th century precipitation surge in
the monsoon shadow zone of the western Himalaya, India, J.
Geophys. Res.-Atmos., 116, D02112, https://doi.org/10.1029/2010JD014647, 2011.
Yadav, R. R., Bräuning, A., and Singh, J.: Tree ring inferred summer
temperature variations over the last millennium in western Himalaya, India, Clim. Dynam., 36, 1545–1554, 2011.
Yang, B., Bräuning, A., Dong, Z., Zhang, Z., and Jiao, K.: Late Holocene
monsoonal temperate glacier fluctuations on the Tibetan Plateau, Global Planet. Change, 60, 126–140, 2008.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan,
K., Zhao, H., Xu, B., and Pu, J.: Different glacier status with atmospheric
circulations in Tibetan Plateau and surroundings, Nat. Clim. Change,
2, 663–667, 2012.
Zech, W., Glaser, B., Abramowski, U., Dittmar, C., and Kubik, P. W.:
Reconstruction of the Late Quaternary Glaciation of the Macha Khola valley
(Gorkha Himal, Nepal) using relative and absolute (14C, 10Be,
dendrochronology) dating techniques, Quatern. Sci. Rev., 22,
2253–2265, 2003.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I. and
Thomson, L.: Global glacier mass changes and their contributions to
sea-level rise from 1961 to 2016, Nature, 568, 382–386, 2019.
Zeng, X., Liu, X., Treydte, K., Evans, M. N., Wang, W., An, W., Sun, W., Xu,
G., Wu, G., and Zhang, X.: Climate signals in tree-ring δ18O and
δ13C from southeastern Tibet: insights from observations and forward
modelling of intra-to interdecadal variability, New Phytologist, 216,
1104–1118, 2017.
Zhang, R., Wei, W., Shang, H., Yu, S., Gou, X., Qin, L., Bolatov, K., and
Mambetov, B. T.: A tree ring-based record of annual mass balance changes for
the TS. Tuyuksuyskiy Glacier and its linkages to climate change in the
Tianshan Mountains, Quatern. Sci. Rev., 205, 10–21, 2019.
Zhang, T., Wang, T., Krinner, G., Wang, X., Gasser, T., Peng, S., Piao, S.,
and Yao, T.: The weakening relationship between Eurasian spring snow cover
and Indian summer monsoon rainfall, Sci. Adv., 5, eaau8932, https://doi.org/10.1126/sciadv.aau8932,
2019.
Zhang, Y., Kang, S., Cong, Z., Schmale, J., Sprenger, M., Li, C., Yang, W.,
Gao, T., Sillanpää, M., Li, X., and Liu, Y.: Light-absorbing
impurities enhance glacier albedo reduction in the southeastern Tibetan
plateau, J. Geophys. Res.-Atmos., 122, 6915–6933,
2017.
Zhao, Z., Wang, Q., Xu, B., Shen, Z., Huang, R., Zhu, C., Su, X., Zhao, S.,
Long, X., Liu, S., and Cao, J.: Black carbon aerosol and its radiative impact
at a high-altitude remote site on the southeastern Tibet Plateau, J.
Geophys. Res.-Atmos., 122, 5515–5530, 2017.
Zhu, H. F., Shao, X. M., Yin, Z. Y., and Huang, L.: Early summer temperature
reconstruction in the eastern Tibetan Plateau since AD 1440 using tree-ring
width of Sabina tibetica, Theor. Appl. Climatol., 106, 45–53, 2011.
Short summary
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking regional multi-century glacier mass balance (MB) reconstruction. Isotopic and climate coherency analyses specify an eastward-declining influence of the westerlies, an increase in east–west climate heterogeneity, and an increase in ice mass loss since the 1960s. Reasons for this are attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulation patterns.
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking...