Articles | Volume 15, issue 2
https://doi.org/10.5194/tc-15-793-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-793-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of small-scale snow surface roughness on snow albedo and reflectance
Terhikki Manninen
CORRESPONDING AUTHOR
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Kati Anttila
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Emmihenna Jääskeläinen
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Aku Riihelä
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Jouni Peltoniemi
Finnish Geospatial Research Institute, National Land Survey,
Geodeetinrinne 2, 02430 Masala, Finland
Petri Räisänen
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Panu Lahtinen
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Niilo Siljamo
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Laura Thölix
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Outi Meinander
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Anna Kontu
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Hanne Suokanerva
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Roberta Pirazzini
Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101,
Finland
Juha Suomalainen
Finnish Geospatial Research Institute, National Land Survey,
Geodeetinrinne 2, 02430 Masala, Finland
Teemu Hakala
Finnish Geospatial Research Institute, National Land Survey,
Geodeetinrinne 2, 02430 Masala, Finland
Sanna Kaasalainen
Finnish Geospatial Research Institute, National Land Survey,
Geodeetinrinne 2, 02430 Masala, Finland
Harri Kaartinen
Finnish Geospatial Research Institute, National Land Survey,
Geodeetinrinne 2, 02430 Masala, Finland
Department of Geography and Geology, University of Turku, 20500
Turku, Finland
Antero Kukko
Finnish Geospatial Research Institute, National Land Survey,
Geodeetinrinne 2, 02430 Masala, Finland
Department of Built Environment, Aalto University, 02150 Espoo,
Finland
Olivier Hautecoeur
Météo-France, Toulouse, France
currently at: Exostaff GmbH/EUMETSAT, Darmstadt, Germany
Jean-Louis Roujean
Centre d'Etudes Spatiales de la BIOsphère (CESBIO) – UMR 5126 –
31401 Toulouse, France
Related authors
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022, https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary
Short summary
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data. Instead of a binary cloud mask, it applies cloud probability values smaller than 20% of the A3 edition of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record provided by the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT. According to simulations, the 90% quantile was 1.1% for the absolute albedo error and 2.2% for the relative error.
Terhikki Manninen, Tuula Aalto, Tiina Markkanen, Mikko Peltoniemi, Kristin Böttcher, Sari Metsämäki, Kati Anttila, Pentti Pirinen, Antti Leppänen, and Ali Nadir Arslan
Biogeosciences, 16, 223–240, https://doi.org/10.5194/bg-16-223-2019, https://doi.org/10.5194/bg-16-223-2019, 2019
Short summary
Short summary
The surface albedo time series CLARA-A2 SAL was used to study trends in the timing of the melting season of snow and preceding albedo value in Finland during 1982–2016 to assess climate change. The results were in line with operational snow depth data, JSBACH land ecosystem model, SYKE fractional snow cover and greening-up data. In the north a clear trend to earlier snowmelt onset, increasing melting season length, and decrease in pre-melt albedo (related to increased stem volume) was observed.
Emmihenna Jääskeläinen, Terhikki Manninen, Johanna Tamminen, and Marko Laine
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-180, https://doi.org/10.5194/amt-2016-180, 2016
Revised manuscript not accepted
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014, https://doi.org/10.5194/tc-8-991-2014, 2014
A. Riihelä, T. Manninen, V. Laine, K. Andersson, and F. Kaspar
Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013, https://doi.org/10.5194/acp-13-3743-2013, 2013
Letícia F. Castanheiro, Antonio M. G. Tommaselli, Heikki Hyyti, and Antero Kukko
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 57–62, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-57-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-57-2024, 2024
Emma Turkulainen, Janne Hietala, Jiri Jormakka, Johanna Tuviala, Raquel Alves de Oliveira, Niko Koivumäki, Kirsi Karila, Roope Näsi, Juha Suomalainen, Mikko Pelto-Arvo, Päivi Lyytikäinen-Saarenmaa, and Eija Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 559–564, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-559-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-559-2024, 2024
Emmihenna Jääskeläinen, Kerttu Kouki, and Aku Riihelä
Hydrol. Earth Syst. Sci., 28, 3855–3870, https://doi.org/10.5194/hess-28-3855-2024, https://doi.org/10.5194/hess-28-3855-2024, 2024
Short summary
Short summary
Snow cover is an important variable when studying the effect of climate change in the Arctic. Therefore, the correct detection of snowfall is important. In this study, we present methods to detect snowfall accurately using satellite observations. The snowfall event detection results of our limited area are encouraging. We find that further development could enable application over the whole Arctic, providing necessary information on precipitation occurrence over remote areas.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, Luke Smallmann, Susan Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zähle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek El-Madany, Mirco Migliavacca, Marika Honkanen, Yann Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaetan Pique, Amanda Ojasalo, Shaun Quegan, Peter Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
EGUsphere, https://doi.org/10.5194/egusphere-2024-1534, https://doi.org/10.5194/egusphere-2024-1534, 2024
Short summary
Short summary
When it comes to climate change, the land surfaces are where the vast majority of impacts happen. The task of monitoring those across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us see what changes on our lands.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-1453, https://doi.org/10.5194/egusphere-2024-1453, 2024
Short summary
Short summary
Cities seek carbon neutrality and are interested in the sinks of urban vegetation. Measurements are difficult to do which leads to the need for modeling carbon cycle. In this study, we examined the performance of models in estimating carbon sequestration rates in lawns, park trees, and urban forests in Helsinki, Finland. We found that models simulated seasonal and annual variations well. Trees had larger carbon sequestration rates compared with lawns and irrigation often increased carbon sink.
Väinö Karjalainen, Niko Koivumäki, Teemu Hakala, Anand George, Jesse Muhojoki, Eric Hyyppa, Juha Suomalainen, and Eija Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 167–172, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-167-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-167-2024, 2024
Adriano Lemos and Aku Riihelä
EGUsphere, https://doi.org/10.5194/egusphere-2024-869, https://doi.org/10.5194/egusphere-2024-869, 2024
Short summary
Short summary
Here we used satellite imagery to measure snow depth in northern Finland and compared to on-site weather stations from 2019–2022. We correlated snow depths and vegetation coverage, and found thicker snow over non-vegetated areas and frozen water bodies due to the satellite's sensitivity. Our estimates showed underestimated results of snow depth and need further investigation, but they highlight the potential in monitoring seasonal snow changes, particularly where direct measurements are lacking.
Mariana Batista Campos, Leticia Ferrari Castanheiro, Dipal Shah, Yunsheng Wang, Antero Kukko, and Eetu Puttonen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 43–50, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-43-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-43-2024, 2024
Tommi Ekholm, Nadine-Cyra Freistetter, Aapo Rautiainen, and Laura Thölix
Geosci. Model Dev., 17, 3041–3062, https://doi.org/10.5194/gmd-17-3041-2024, https://doi.org/10.5194/gmd-17-3041-2024, 2024
Short summary
Short summary
CLASH is a numerical model that portrays land allocation between different uses, land carbon stocks, and agricultural and forestry production globally. CLASH can help in examining the role of land use in mitigating climate change, providing food and biogenic raw materials for the economy, and conserving primary ecosystems. Our demonstration with CLASH confirms that reduction of animal-based food, shifting croplands and storing carbon in forests are effective ways to mitigate climate change.
Aku Riihelä, Emmihenna Jääskeläinen, and Viivi Kallio-Myers
Earth Syst. Sci. Data, 16, 1007–1028, https://doi.org/10.5194/essd-16-1007-2024, https://doi.org/10.5194/essd-16-1007-2024, 2024
Short summary
Short summary
We describe a new climate data record describing the surface albedo, or reflectivitity, of Earth's surface (called CLARA-A3 SAL). The climate data record spans over 4 decades of satellite observations, beginning in 1979. We conduct a quality assessment of the generated data, comparing them against other satellite data and albedo observations made on the ground. We find that the new data record in general matches surface observations well and is stable through time.
Shannon M. Hibbard, Gordon R. Osinski, Etienne Godin, Antero Kukko, Chimira Andres, Shawn Chartrand, Anna Grau Galofre, A. Mark Jellinek, and Wendy Boucher
EGUsphere, https://doi.org/10.5194/egusphere-2024-227, https://doi.org/10.5194/egusphere-2024-227, 2024
Short summary
Short summary
This study investigates a new landform found on Axel Heiberg Island in Nunavut, Canada. Vermicular Ridge Features (VRFs) are comprised of a series of ridges and troughs creating a unique brain-like pattern. We aim to identify how VRFs form and assess the past climate conditions necessary for their formation. We use surface elevation and subsurface data to infer a formation mechanism. We propose VRFs were formed from the burial and removal of glacier ice as the glaciers were retreating.
Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen
Atmos. Chem. Phys., 24, 869–890, https://doi.org/10.5194/acp-24-869-2024, https://doi.org/10.5194/acp-24-869-2024, 2024
Short summary
Short summary
Our results show that the global model is stable and it provides meaningful results. This way we can include a physics-based presentation of sub-grid physics (physics which happens on a 100 m scale) in the global model, whose resolution is on a 100 km scale.
A.-M. Raita-Hakola, S. Rahkonen, J. Suomalainen, L. Markelin, R. Oliveira, T. Hakala, N. Koivumäki, E. Honkavaara, and I. Pölönen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1771–1778, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023, 2023
R. A. Oliveira, R. Näsi, P. Korhonen, A. Mustonen, O. Niemeläinen, N. Koivumäki, T. Hakala, J. Suomalainen, J. Kaivosoja, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1861–1866, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1861-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1861-2023, 2023
V. Karjalainen, T. Hakala, A. George, N. Koivumäki, J. Suomalainen, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 597–603, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-597-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-597-2023, 2023
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023, https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE, and albedo are mostly negative in 1982–2018, and the negative trends become more apparent when spring advances.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
L. F. Castanheiro, A. M. G. Tommaselli, T. A. C. Garcia, M. B. Campos, and A. Kukko
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 71–77, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-71-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-71-2023, 2023
T. Faitli, T. Hakala, H. Kaartinen, J. Hyyppä, and A. Kukko
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 145–150, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-145-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-145-2023, 2023
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022, https://doi.org/10.5194/acp-22-11579-2022, 2022
Short summary
Short summary
A climate model is used to evaluate how the radiative forcing (RF) associated with black carbon (BC) emissions depends on the latitude, longitude, and seasonality of emissions. It is found that both the direct RF (BC absorption of solar radiation in air) and snow RF (BC absorption in snow/ice) depend strongly on the emission region and season. The results suggest that, for a given mass of BC emitted, climatic impacts are likely to be largest for high-latitude emissions due to the large snow RF.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
J. Suomalainen, R. A. Oliveira, T. Hakala, N. Koivumäki, L. Markelin, R. Näsi, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 67–72, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-67-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-67-2022, 2022
P. Rönnholm, S. Wittke, M. Ingman, P. Putkiranta, H. Kauhanen, H. Kaartinen, and M. T. Vaaja
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 633–639, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-633-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-633-2022, 2022
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022, https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Short summary
Clouds are important for the climate, and cloud droplets have a significant role in cloud properties. Cloud droplets form when air rises and cools and water vapour condenses on small particles that can be natural or of anthropogenic origin. Currently, the updraft velocity, meaning how fast the air rises, is poorly represented in global climate models. In our study, we show three methods that will improve the depiction of updraft velocity and which properties are vital to updrafts.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022, https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary
Short summary
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data. Instead of a binary cloud mask, it applies cloud probability values smaller than 20% of the A3 edition of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record provided by the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT. According to simulations, the 90% quantile was 1.1% for the absolute albedo error and 2.2% for the relative error.
Bin Cheng, Yubing Cheng, Timo Vihma, Anna Kontu, Fei Zheng, Juha Lemmetyinen, Yubao Qiu, and Jouni Pulliainen
Earth Syst. Sci. Data, 13, 3967–3978, https://doi.org/10.5194/essd-13-3967-2021, https://doi.org/10.5194/essd-13-3967-2021, 2021
Short summary
Short summary
Climate change strongly impacts the Arctic, with clear signs of higher air temperature and more precipitation. A sustainable observation programme has been carried out in Lake Orajärvi in Sodankylä, Finland. The high-quality air–snow–ice–water temperature profiles have been measured every winter since 2009. The data can be used to investigate the lake ice surface heat balance and the role of snow in lake ice mass balance and parameterization of snow-to-ice transformation in snow/ice models.
Joonas Merikanto, Kalle Nordling, Petri Räisänen, Jouni Räisänen, Declan O'Donnell, Antti-Ilari Partanen, and Hannele Korhonen
Atmos. Chem. Phys., 21, 5865–5881, https://doi.org/10.5194/acp-21-5865-2021, https://doi.org/10.5194/acp-21-5865-2021, 2021
Short summary
Short summary
Human-induced aerosols concentrate around their emission sources, yet their climate effects span far and wide. Here, we use two climate models to robustly identify the mechanisms of how Asian anthropogenic aerosols impact temperatures across the globe. A total removal of Asian anthropogenic aerosols increases the global temperatures by 0.26 ± 0.04 °C in the models, with the strongest warming taking place over the Arctic due to increased atmospheric transport of energy towards the high north.
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-158, https://doi.org/10.5194/acp-2021-158, 2021
Revised manuscript not accepted
Short summary
Short summary
Snow darkening in the Himalaya results from the deposition of different particles. Here we assess the change in the seasonal snow cover duration due to the presence of mineral dust and black carbon particles in the snow of Sunderdhunga valley, Central Himalaya, India. With the use of in situ weather station data, the snow melt-out date is estimated to be shifted ~13 days earlier due to the presence of the particles in the snow.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
E. Honkavaara, R. Näsi, R. Oliveira, N. Viljanen, J. Suomalainen, E. Khoramshahi, T. Hakala, O. Nevalainen, L. Markelin, M. Vuorinen, V. Kankaanhuhta, P. Lyytikäinen-Saarenmaa, and L. Haataja
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 429–434, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-429-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-429-2020, 2020
L. Yan, Y. Li, H. Mortimer, R. Zhang, J. Peltoniemi, X. Liu, and F. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 593–598, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-593-2020, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-593-2020, 2020
J. I. Peltoniemi, M. Gritsevich, J. Markkanen, T. Hakala, J. Suomalainen, N. Zubko, O. Wilkman, and K. Muinonen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 375–382, https://doi.org/10.5194/isprs-annals-V-1-2020-375-2020, https://doi.org/10.5194/isprs-annals-V-1-2020-375-2020, 2020
A. Kukko, H. Kaartinen, G. Osinski, and J. Hyyppä
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 749–756, https://doi.org/10.5194/isprs-annals-V-2-2020-749-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-749-2020, 2020
Margit Aun, Kaisa Lakkala, Ricardo Sanchez, Eija Asmi, Fernando Nollas, Outi Meinander, Larisa Sogacheva, Veerle De Bock, Antti Arola, Gerrit de Leeuw, Veijo Aaltonen, David Bolsée, Klara Cizkova, Alexander Mangold, Ladislav Metelka, Erko Jakobson, Tove Svendby, Didier Gillotay, and Bert Van Opstal
Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, https://doi.org/10.5194/acp-20-6037-2020, 2020
Short summary
Short summary
In 2017, new measurements of UV radiation started in Marambio, Antarctica, by the Finnish Meteorological Institute in collaboration with the Argentinian Servicio Meteorológico Nacional. The paper presents the results of UV irradiance measurements from March 2017 to March 2019, and it
compares them with those from 2000–2008 and also with UV measurements at other Antarctic stations. In 2017/2018, below average UV radiation levels were recorded due to favourable ozone and cloud conditions.
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, https://doi.org/10.5194/tc-14-1497-2020, 2020
Short summary
Short summary
Surface albedo is an essential variable of snow-covered areas. The measurement of this variable over a tilted terrain with levelled sensors is affected by artefacts that need to be corrected. Here we develop a theory of spectral albedo measurement over slopes from which we derive four correction algorithms. The comparison to in situ measurements taken in the Alps shows the adequacy of the theory, and the application of the algorithms shows systematic improvements.
Kaisa Lakkala, Margit Aun, Ricardo Sanchez, Germar Bernhard, Eija Asmi, Outi Meinander, Fernando Nollas, Gregor Hülsen, Tomi Karppinen, Veijo Aaltonen, Antti Arola, and Gerrit de Leeuw
Earth Syst. Sci. Data, 12, 947–960, https://doi.org/10.5194/essd-12-947-2020, https://doi.org/10.5194/essd-12-947-2020, 2020
Short summary
Short summary
A GUV multi-filter radiometer was set up at Marambio, 64° S, 56° W, Antarctica, in 2017. The instrument continuously measures ultraviolet (UV) radiation, visible (VIS) radiation and photosynthetically active radiation (PAR). The measurements are designed for providing high-quality long-term time series that can be used to assess the impact of global climate change in the Antarctic region. The data from the last 5 d are plotted and updated daily.
Silvan Leinss, Henning Löwe, Martin Proksch, and Anna Kontu
The Cryosphere, 14, 51–75, https://doi.org/10.5194/tc-14-51-2020, https://doi.org/10.5194/tc-14-51-2020, 2020
Short summary
Short summary
The anisotropy of the snow microstructure, given by horizontally aligned ice crystals and vertically interlinked crystal chains, is a key quantity to understand mechanical, dielectric, and thermodynamical properties of snow. We present a model which describes the temporal evolution of the anisotropy. The model is driven by snow temperature, temperature gradient, and the strain rate. The model is calibrated by polarimetric radar data (CPD) and validated by computer tomographic 3-D snow images.
Aku Riihelä, Michalea D. King, and Kati Anttila
The Cryosphere, 13, 2597–2614, https://doi.org/10.5194/tc-13-2597-2019, https://doi.org/10.5194/tc-13-2597-2019, 2019
Short summary
Short summary
We used a 1982–2015 time series of satellite observations to examine changes in surface reflectivity (albedo) of the Greenland Ice Sheet. We found notable decreases in albedo over most of the ice sheet margins in July and August, particularly over the west coast and between 2000 and 2015. The results indicate that significant melt now occurs in areas 50 to 100 m higher up the ice sheet relative to the early 1980s. The albedo decrease is consistent and covarying with modelled ice sheet mass loss.
Emilio Cuevas, Pedro Miguel Romero-Campos, Natalia Kouremeti, Stelios Kazadzis, Petri Räisänen, Rosa Delia García, Africa Barreto, Carmen Guirado-Fuentes, Ramón Ramos, Carlos Toledano, Fernando Almansa, and Julian Gröbner
Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019, https://doi.org/10.5194/amt-12-4309-2019, 2019
Short summary
Short summary
A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD) data from 3 Global Atmosphere Watch precision filter radiometers (GAW-PFR) and 15 Aerosol Robotic Network Cimel radiometers (AERONET-Cimel) was performed for the four
nearwavelengths (380, 440, 500 and 870 nm) in the period 2005–2015. The goal of this study is to assess whether their long term AOD data are comparable and consistent.
Kalle Nordling, Hannele Korhonen, Petri Räisänen, Muzaffer Ege Alper, Petteri Uotila, Declan O'Donnell, and Joonas Merikanto
Atmos. Chem. Phys., 19, 9969–9987, https://doi.org/10.5194/acp-19-9969-2019, https://doi.org/10.5194/acp-19-9969-2019, 2019
Short summary
Short summary
We carry out long equilibrium climate simulations with two modern climate models and show that the climate model dynamic response contributes strongly to the anthropogenic aerosol response. We demonstrate that identical aerosol descriptions do not improve climate model skill to estimate regional anthropogenic aerosol impacts. Our experiment utilized two independent climate models (NorESM and ECHAM6) with an identical description for aerosols optical properties and indirect effect.
Shima Bahramvash Shams, Von P. Walden, Irina Petropavlovskikh, David Tarasick, Rigel Kivi, Samuel Oltmans, Bryan Johnson, Patrick Cullis, Chance W. Sterling, Laura Thölix, and Quentin Errera
Atmos. Chem. Phys., 19, 9733–9751, https://doi.org/10.5194/acp-19-9733-2019, https://doi.org/10.5194/acp-19-9733-2019, 2019
Short summary
Short summary
The Arctic plays a very important role in the global ozone cycle. We use balloon-borne sampling and satellite data to create a high-quality dataset of the vertical profile of ozone from 2005 to 2017 to analyze ozone variations over four high-latitude Arctic locations. No significant annual trend is found at any of the studied locations. We develop a mathematical model to understand how deseasonalized ozone fluctuations can be influenced by various parameters.
J.-L. Roujean, A. Olioso, E. Ceschia, O. Hagolle, M. Weiss, T. Tallec, A. Brut, and M. Ferlicoq
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 59–61, https://doi.org/10.5194/isprs-archives-XLII-3-W6-59-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-59-2019, 2019
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Short summary
This paper describes long-term meteorological and evaluation datasets from 10 reference sites for use in snow modelling. We demonstrate how data sharing is crucial to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The ease of use, availability, and quality of the datasets will help model developers quantify and reduce model uncertainties and errors.
R. A. Oliveira, R. Näsi, O. Niemeläinen, L. Nyholm, K. Alhonoja, J. Kaivosoja, N. Viljanen, T. Hakala, S. Nezami, L. Markelin, L. Jauhiainen, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 489–494, https://doi.org/10.5194/isprs-archives-XLII-2-W13-489-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-489-2019, 2019
Stephanie Fiedler, Stefan Kinne, Wan Ting Katty Huang, Petri Räisänen, Declan O'Donnell, Nicolas Bellouin, Philip Stier, Joonas Merikanto, Twan van Noije, Risto Makkonen, and Ulrike Lohmann
Atmos. Chem. Phys., 19, 6821–6841, https://doi.org/10.5194/acp-19-6821-2019, https://doi.org/10.5194/acp-19-6821-2019, 2019
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Terhikki Manninen, Tuula Aalto, Tiina Markkanen, Mikko Peltoniemi, Kristin Böttcher, Sari Metsämäki, Kati Anttila, Pentti Pirinen, Antti Leppänen, and Ali Nadir Arslan
Biogeosciences, 16, 223–240, https://doi.org/10.5194/bg-16-223-2019, https://doi.org/10.5194/bg-16-223-2019, 2019
Short summary
Short summary
The surface albedo time series CLARA-A2 SAL was used to study trends in the timing of the melting season of snow and preceding albedo value in Finland during 1982–2016 to assess climate change. The results were in line with operational snow depth data, JSBACH land ecosystem model, SYKE fractional snow cover and greening-up data. In the north a clear trend to earlier snowmelt onset, increasing melting season length, and decrease in pre-melt albedo (related to increased stem volume) was observed.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Kaisa Lakkala, Alberto Redondas, Outi Meinander, Laura Thölix, Britta Hamari, Antonio Fernando Almansa, Virgilio Carreno, Rosa Delia García, Carlos Torres, Guillermo Deferrari, Hector Ochoa, Germar Bernhard, Ricardo Sanchez, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 16019–16031, https://doi.org/10.5194/acp-18-16019-2018, https://doi.org/10.5194/acp-18-16019-2018, 2018
Short summary
Short summary
Solar UV irradiances were measured at Ushuaia (54° S) and Marambio (64° S) during 2000–2013. The measurements were part of the Antarctic NILU-UV network, which was maintained as a cooperation between Spain, Argentina and Finland. The time series of the network were analysed for the first time in this study. At both stations maximum UV indices and daily doses were measured when spring-time ozone loss episodes occurred. The maximum UV index was 13 and 12 in Ushuaia and Marambio, respectively.
Laura Thölix, Alexey Karpechko, Leif Backman, and Rigel Kivi
Atmos. Chem. Phys., 18, 15047–15067, https://doi.org/10.5194/acp-18-15047-2018, https://doi.org/10.5194/acp-18-15047-2018, 2018
Short summary
Short summary
We analyse the impact of water vapour (WV) on Arctic ozone loss and find the strongest impact during intermediately cold stratospheric winters when chlorine activation increases with increasing PSCs and WV. In colder winters the impact is limited because chlorine activation becomes complete at relatively low WV values, so further addition of WV does not affect ozone loss. Our results imply that improved simulations of WV are needed for more reliable projections of ozone layer recovery.
L. Markelin, J. Suomalainen, T. Hakala, R. A. Oliveira, N. Viljanen, R. Näsi, B. Scott, T. Theocharous, C. Greenwell, N. Fox, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 283–288, https://doi.org/10.5194/isprs-archives-XLII-1-283-2018, https://doi.org/10.5194/isprs-archives-XLII-1-283-2018, 2018
T. Hakala, I. Pölönen, E. Honkavaara, R. Näsi, T. Hakala, and A. Lindfors
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 411–417, https://doi.org/10.5194/isprs-archives-XLII-2-411-2018, https://doi.org/10.5194/isprs-archives-XLII-2-411-2018, 2018
R. A. Oliveira, E. Khoramshahi, J. Suomalainen, T. Hakala, N. Viljanen, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 789–795, https://doi.org/10.5194/isprs-archives-XLII-2-789-2018, https://doi.org/10.5194/isprs-archives-XLII-2-789-2018, 2018
R. Näsi, N. Viljanen, R. Oliveira, J. Kaivosoja, O. Niemeläinen, T. Hakala, L. Markelin, S. Nezami, J. Suomalainen, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1305–1310, https://doi.org/10.5194/isprs-archives-XLII-3-1305-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1305-2018, 2018
Anna Grau Galofre, A. Mark Jellinek, Gordon R. Osinski, Michael Zanetti, and Antero Kukko
The Cryosphere, 12, 1461–1478, https://doi.org/10.5194/tc-12-1461-2018, https://doi.org/10.5194/tc-12-1461-2018, 2018
Short summary
Short summary
Water accumulated at the base of ice sheets is the main driver of glacier acceleration and loss of ice mass in Arctic regions. Previously glaciated landscapes sculpted by this water carry information about how ice sheets collapse and ultimately disappear. The search for these landscapes took us to the high Arctic, to explore channels that formed under kilometers of ice during the last ice age. In this work we describe how subglacial channels look and how they helped to drain an ice sheet.
Joni-Pekka Pietikäinen, Tiina Markkanen, Kevin Sieck, Daniela Jacob, Johanna Korhonen, Petri Räisänen, Yao Gao, Jaakko Ahola, Hannele Korhonen, Ari Laaksonen, and Jussi Kaurola
Geosci. Model Dev., 11, 1321–1342, https://doi.org/10.5194/gmd-11-1321-2018, https://doi.org/10.5194/gmd-11-1321-2018, 2018
Short summary
Short summary
The regional climate model REMO was coupled with the FLake lake model to include an interactive treatment of lakes. Using this new version, the Fenno-Scandinavian climate and lake characteristics were studied. Our results show that overall the new model version improves the representation of the Fenno-Scandinavian climate in terms of 2 m temperature and precipitation and that the model can reproduce surface water temperature, ice depth and ice season length with reasonably high accuracy.
Jonas Svensson, Johan Ström, Niku Kivekäs, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Arttu Jutila, John Backman, Aki Virkkula, Meri Ruppel, Antti Hyvärinen, Anna Kontu, Henna-Reetta Hannula, Matti Leppäranta, Rakesh K. Hooda, Atte Korhola, Eija Asmi, and Heikki Lihavainen
Atmos. Meas. Tech., 11, 1403–1416, https://doi.org/10.5194/amt-11-1403-2018, https://doi.org/10.5194/amt-11-1403-2018, 2018
Short summary
Short summary
Receding glaciers in the Himalayas are of concern. Here we present measurements of light-absorbing impurities, known to contribute to the ongoing glacier decrease, in snow from Indian Himalayas and compare them to snow samples from the Finnish Arctic. The soot particles in the snow are shown to have lower light absorbing efficiency, possibly affecting their radiative forcing potential in the snow. Further, dust influences the snow in the Himalayas to a much greater extent than in Finland.
Eliisa S. Lotsari, Mikel Calle, Gerardo Benito, Antero Kukko, Harri Kaartinen, Juha Hyyppä, Hannu Hyyppä, and Petteri Alho
Earth Surf. Dynam., 6, 163–185, https://doi.org/10.5194/esurf-6-163-2018, https://doi.org/10.5194/esurf-6-163-2018, 2018
Short summary
Short summary
This paper analyses the timing of topographical changes of a gravel bed ephemeral river channel during consecutive and moderate- and low-magnitude floods by applying a morphodynamic model calibrated with pre- and post-event surveys using RTK-GPS and mobile laser scanning. The channel acted as a braided river during lower flows but as a meandering river during higher flows. The channel changes can be greater during the long-lasting receding phase than during the rising phase of the floods.
Petri Räisänen, Risto Makkonen, Alf Kirkevåg, and Jens B. Debernard
The Cryosphere, 11, 2919–2942, https://doi.org/10.5194/tc-11-2919-2017, https://doi.org/10.5194/tc-11-2919-2017, 2017
Short summary
Short summary
While snow grains are non-spherical, spheres are often assumed in radiation calculations. Here, we replace spherical snow grains with non-spherical snow grains in a climate model. This leads to a somewhat higher snow albedo (by 0.02–0.03), increased snow and sea ice cover, and a distinctly colder climate (by over 1 K in the global mean). It also impacts the radiative effects of aerosols in snow. Overall, this work highlights the important role of snow albedo parameterization for climate models.
Marinka E. B. van Puijenbroek, Corjan Nolet, Alma V. de Groot, Juha M. Suomalainen, Michel J. P. M. Riksen, Frank Berendse, and Juul Limpens
Biogeosciences, 14, 5533–5549, https://doi.org/10.5194/bg-14-5533-2017, https://doi.org/10.5194/bg-14-5533-2017, 2017
Short summary
Short summary
Understanding the contribution of the vegetation and dune size to nebkha dune growth could improve model predictions on coastal dune development. We monitored a natural nebkha dune field with a drone with camera. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation. In our study area the growth of exposed dunes was restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply.
N. Saarinen, M. Vastaranta, R. Näsi, T. Rosnell, T. Hakala, E. Honkavaara, M. A. Wulder, V. Luoma, A. M. G. Tommaselli, N. N. Imai, E. A. W. Ribeiro, R. B. Guimarães, M. Holopainen, and J. Hyyppä
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 171–175, https://doi.org/10.5194/isprs-archives-XLII-3-W3-171-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-171-2017, 2017
S. Junttila, M. Vastaranta, R. Linnakoski, J. Sugano, H. Kaartinen, A. Kukko, M. Holopainen, H. Hyyppä, and J. Hyyppä
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 81–85, https://doi.org/10.5194/isprs-archives-XLII-3-W3-81-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-81-2017, 2017
W. Liu, J. Atherton, M. Mõttus, A. MacArthur, H. Teemu, K. Maseyk, I. Robinson, E. Honkavaara, and A. Porcar-Castell
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 107–111, https://doi.org/10.5194/isprs-archives-XLII-3-W3-107-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-107-2017, 2017
L. Markelin, E. Honkavaara, R. Näsi, N. Viljanen, T. Rosnell, T. Hakala, M. Vastaranta, T. Koivisto, and M. Holopainen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 113–118, https://doi.org/10.5194/isprs-archives-XLII-3-W3-113-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-113-2017, 2017
R. Näsi, N. Viljanen, J. Kaivosoja, T. Hakala, M. Pandžić, L. Markelin, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 137–141, https://doi.org/10.5194/isprs-archives-XLII-3-W3-137-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-137-2017, 2017
M. H. D. Franceschini, H. Bartholomeus, D. van Apeldoorn, J. Suomalainen, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 109–112, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, 2017
Laura Rontu, Emily Gleeson, Petri Räisänen, Kristian Pagh Nielsen, Hannu Savijärvi, and Bent Hansen Sass
Adv. Sci. Res., 14, 195–215, https://doi.org/10.5194/asr-14-195-2017, https://doi.org/10.5194/asr-14-195-2017, 2017
Short summary
Short summary
This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the NWP model, without compromising on computational efficiency. Fast physically based radiation parametrizations are also valuable for high-resolution ensemble forecasting.
Päivi Haapanala, Petri Räisänen, Greg M. McFarquhar, Jussi Tiira, Andreas Macke, Michael Kahnert, John DeVore, and Timo Nousiainen
Atmos. Chem. Phys., 17, 6865–6882, https://doi.org/10.5194/acp-17-6865-2017, https://doi.org/10.5194/acp-17-6865-2017, 2017
Short summary
Short summary
The dependence of solar-disk and circumsolar radiances on ice cloud
properties is studied with a Monte Carlo radiative transfer model. Ice
crystal roughness (or more generally, non-ideality) is found to be the
most important parameter influencing the circumsolar radiance, and ice
crystal sizes and shapes also play significant roles. When comparing
with radiances measured with the SAM instrument, rough ice crystals
reproduce the measurements better than idealized smooth ice crystals do.
Karl-Göran Karlsson, Kati Anttila, Jörg Trentmann, Martin Stengel, Jan Fokke Meirink, Abhay Devasthale, Timo Hanschmann, Steffen Kothe, Emmihenna Jääskeläinen, Joseph Sedlar, Nikos Benas, Gerd-Jan van Zadelhoff, Cornelia Schlundt, Diana Stein, Stefan Finkensieper, Nina Håkansson, and Rainer Hollmann
Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, https://doi.org/10.5194/acp-17-5809-2017, 2017
Short summary
Short summary
The paper presents the second version of a global climate data record based on satellite measurements from polar orbiting weather satellites. It describes the global evolution of cloudiness, surface albedo and surface radiation during the time period 1982–2015. The main improvements of algorithms are described together with some validation results. In addition, some early analysis is presented of some particularly interesting climate features (Arctic albedo and cloudiness + global cloudiness).
Craig D. Smith, Anna Kontu, Richard Laffin, and John W. Pomeroy
The Cryosphere, 11, 101–116, https://doi.org/10.5194/tc-11-101-2017, https://doi.org/10.5194/tc-11-101-2017, 2017
Short summary
Short summary
One of the objectives of the WMO Solid Precipitation Intercomparison Experiment (SPICE) was to assess the performance of automated instruments that measure snow water equivalent and make recommendations on the best measurement practices and data interpretation. This study assesses the Campbell Scientific CS725 and the Sommer SSG100 for measuring SWE. Different measurement principals of the instruments as well as site characteristics influence the way that the SWE data should be interpreted.
Anu Heikkilä, Jakke Sakari Mäkelä, Kaisa Lakkala, Outi Meinander, Jussi Kaurola, Tapani Koskela, Juha Matti Karhu, Tomi Karppinen, Esko Kyrö, and Gerrit de Leeuw
Geosci. Instrum. Method. Data Syst., 5, 531–540, https://doi.org/10.5194/gi-5-531-2016, https://doi.org/10.5194/gi-5-531-2016, 2016
Short summary
Short summary
Lamp measurements used for the UV irradiance calibration of two Brewer spectrophotometers operated for 20 years in Jokioinen and Sodankylä, Finland, were examined. Temporal development of the responsivity after fixing the irradiance measurements into a specific scale was studied. Both long-term gradual decrease and abrupt changes in responsiveness were detected. Frequent-enough measurements of working standard lamps were found necessary to detect the short-term variations in responsiveness.
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016, https://doi.org/10.5194/gi-5-403-2016, 2016
Henna-Reetta Hannula, Juha Lemmetyinen, Anna Kontu, Chris Derksen, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 347–363, https://doi.org/10.5194/gi-5-347-2016, https://doi.org/10.5194/gi-5-347-2016, 2016
Short summary
Short summary
The paper described an extensive in situ data set of bulk snow depth, snow water equivalent, and snow density collected as a support of SnowSAR-2 airborne campaign in northern Finland. The spatial and temporal variability of these snow properties was analyzed in different land cover types. The success of the chosen measurement protocol to provide an accurate reference for the simultaneous SAR data products was analyzed in the context of spatial scale, sample size, and uncertainty.
Kaisa Lakkala, Hanne Suokanerva, Juha Matti Karhu, Antti Aarva, Antti Poikonen, Tomi Karppinen, Markku Ahponen, Henna-Reetta Hannula, Anna Kontu, and Esko Kyrö
Geosci. Instrum. Method. Data Syst., 5, 315–320, https://doi.org/10.5194/gi-5-315-2016, https://doi.org/10.5194/gi-5-315-2016, 2016
Short summary
Short summary
This paper describes the laboratory facilities at the Finnish Meteorological Institute – Arctic Research Centre (FMI-ARC). They comprise an optical laboratory, a facility for biological studies, and an office. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.
E. Honkavaara, T. Hakala, O. Nevalainen, N. Viljanen, T. Rosnell, E. Khoramshahi, R. Näsi, R. Oliveira, and A. Tommaselli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 77–82, https://doi.org/10.5194/isprs-archives-XLI-B7-77-2016, https://doi.org/10.5194/isprs-archives-XLI-B7-77-2016, 2016
Richard Essery, Anna Kontu, Juha Lemmetyinen, Marie Dumont, and Cécile B. Ménard
Geosci. Instrum. Method. Data Syst., 5, 219–227, https://doi.org/10.5194/gi-5-219-2016, https://doi.org/10.5194/gi-5-219-2016, 2016
Short summary
Short summary
Physically based models that predict the properties of snow on the ground are used in many applications, but meteorological input data required by these models are hard to obtain in cold regions. Monitoring at the Sodankyla research station allows construction of model input and evaluation datasets covering several years for the first time in the Arctic. The data are used to show that a sophisticated snow model developed for warmer and wetter sites can perform well in very different conditions.
Jakke Sakari Mäkelä, Kaisa Lakkala, Tapani Koskela, Tomi Karppinen, Juha Matti Karhu, Vladimir Savastiouk, Hanne Suokanerva, Jussi Kaurola, Antti Arola, Anders Vilhelm Lindfors, Outi Meinander, Gerrit de Leeuw, and Anu Heikkilä
Geosci. Instrum. Method. Data Syst., 5, 193–203, https://doi.org/10.5194/gi-5-193-2016, https://doi.org/10.5194/gi-5-193-2016, 2016
Short summary
Short summary
We describe the steps that are used at the Finnish Meteorological Institute (FMI) to process spectral ultraviolet (UV) radiation measurements made with its three Brewer spectrophotometers, located in Sodankylä (67° N) and Jokioinen (61° N). Multiple corrections are made to the data in near-real time and quality control is also performed automatically. Several data products are produced, including the near-real-time UV index and various daily dosages, and submitted to databases.
Leena Leppänen, Anna Kontu, Henna-Reetta Hannula, Heidi Sjöblom, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 163–179, https://doi.org/10.5194/gi-5-163-2016, https://doi.org/10.5194/gi-5-163-2016, 2016
Short summary
Short summary
The manual snow survey program of Finnish Meteorological Institute consists of numerous observations of natural seasonal snowpack in Sodankylä, in northern Finland. Systematic snow measurements began in 1911 with snow depth and snow water equivalent. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from snow pits. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack.
Emmihenna Jääskeläinen, Terhikki Manninen, Johanna Tamminen, and Marko Laine
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-180, https://doi.org/10.5194/amt-2016-180, 2016
Revised manuscript not accepted
William Maslanka, Leena Leppänen, Anna Kontu, Mel Sandells, Juha Lemmetyinen, Martin Schneebeli, Martin Proksch, Margret Matzl, Henna-Reetta Hannula, and Robert Gurney
Geosci. Instrum. Method. Data Syst., 5, 85–94, https://doi.org/10.5194/gi-5-85-2016, https://doi.org/10.5194/gi-5-85-2016, 2016
Short summary
Short summary
The paper presents the initial findings of the Arctic Snow Microstructure Experiment in Sodankylä, Finland. The experiment observed the microwave emission of extracted snow slabs on absorbing and reflecting bases. Snow parameters were recorded to simulate the emission upon those bases using two different emission models. The smallest simulation errors were associated with the absorbing base at vertical polarization. The observations will be used for the development of snow emission modelling.
Laura Thölix, Leif Backman, Rigel Kivi, and Alexey Yu. Karpechko
Atmos. Chem. Phys., 16, 4307–4321, https://doi.org/10.5194/acp-16-4307-2016, https://doi.org/10.5194/acp-16-4307-2016, 2016
O. Meinander, A. Aarva, A. Poikonen, A. Kontu, H. Suokanerva, E. Asmi, K. Neitola, E. Rodriguez, R. Sanchez, M. Mei, G. de Leeuw, and E. Kyrö
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2015-31, https://doi.org/10.5194/gi-2015-31, 2016
Revised manuscript not accepted
R. Pirazzini, P. Räisänen, T. Vihma, M. Johansson, and E.-M. Tastula
The Cryosphere, 9, 2357–2381, https://doi.org/10.5194/tc-9-2357-2015, https://doi.org/10.5194/tc-9-2357-2015, 2015
Short summary
Short summary
We illustrate a method to measure the size distribution of a snow particle metric from macro photos of snow particles. This snow particle metric corresponds well to the optically equivalent effective radius. Our results evidence the impact of grain shape on albedo, indicate that more than just one particle metric distribution is needed to characterize the snow scattering properties at all optical wavelengths, and suggest an impact of surface roughness on the shortwave infrared albedo.
J. I. Peltoniemi, M. Gritsevich, T. Hakala, P. Dagsson-Waldhauserová, Ó. Arnalds, K. Anttila, H.-R. Hannula, N. Kivekäs, H. Lihavainen, O. Meinander, J. Svensson, A. Virkkula, and G. de Leeuw
The Cryosphere, 9, 2323–2337, https://doi.org/10.5194/tc-9-2323-2015, https://doi.org/10.5194/tc-9-2323-2015, 2015
Short summary
Short summary
Light-absorbing impurities change the reflectance of snow in different ways. Some particles are heated by the Sun and they sink out of sight. During the process, snow may look darker than pure snow when observed by nadir, but at larger view zenith angles the snow may look as white as clean snow. Thus an observer on the ground may overestimate the albedo, while a satellite underestimates the albedo. Climate studies need to examine how the contaminants behave in snow, not only their total amounts.
O. Kemppinen, T. Nousiainen, S. Merikallio, and P. Räisänen
Atmos. Chem. Phys., 15, 11117–11132, https://doi.org/10.5194/acp-15-11117-2015, https://doi.org/10.5194/acp-15-11117-2015, 2015
Short summary
Short summary
Combinations of simple mathematical model shapes called ellipsoids are used in many remote sensing and modeling applications to denote dust particles. In this study we investigate how accurately various physical parameters can be retrieved by using ellipsoids. The results show that using ellipsoids can lead to wrong results, while at the same time seeming like they work well. This means that extreme care should be used when using ellipsoids for dust, and extra validation measures should be used.
P. Räisänen, A. Kokhanovsky, G. Guyot, O. Jourdan, and T. Nousiainen
The Cryosphere, 9, 1277–1301, https://doi.org/10.5194/tc-9-1277-2015, https://doi.org/10.5194/tc-9-1277-2015, 2015
Short summary
Short summary
While snow grains are distinctly non-spherical, spheres are often assumed in radiative transfer calculations. Here, angular scattering measurements for blowing snow are used to select an optically equivalent snow grain shape model. Parameterizations are then developed for the asymmetry parameter, single-scattering co-albedo and phase function of snow. The parameterizations will help to improve the treatment of snow in radiative transfer applications, including remote sensing and climate models.
J. Tonttila, E. J. O'Connor, A. Hellsten, A. Hirsikko, C. O'Dowd, H. Järvinen, and P. Räisänen
Atmos. Chem. Phys., 15, 5873–5885, https://doi.org/10.5194/acp-15-5873-2015, https://doi.org/10.5194/acp-15-5873-2015, 2015
C. Vigouroux, T. Blumenstock, M. Coffey, Q. Errera, O. García, N. B. Jones, J. W. Hannigan, F. Hase, B. Liley, E. Mahieu, J. Mellqvist, J. Notholt, M. Palm, G. Persson, M. Schneider, C. Servais, D. Smale, L. Thölix, and M. De Mazière
Atmos. Chem. Phys., 15, 2915–2933, https://doi.org/10.5194/acp-15-2915-2015, https://doi.org/10.5194/acp-15-2915-2015, 2015
T. Hakala, O. Nevalainen, S. Kaasalainen, and R. Mäkipää
Biogeosciences, 12, 1629–1634, https://doi.org/10.5194/bg-12-1629-2015, https://doi.org/10.5194/bg-12-1629-2015, 2015
Short summary
Short summary
A hyperspectral lidar produces point clouds with multiple spectral channels (colours) for each point. We measured a pine and used the spectral content to estimate chlorophyll content. We validated these results using chemical laboratory analysis of needles taken from the pine. Our prototype has limitations, but still shows the great potential of coloured point clouds. Potential applications include forestry, security, archaeology and city modelling.
J. Svensson, A. Virkkula, O. Meinander, N. Kivekäs, H.-R. Hannula, O. Järvinen, J. I. Peltoniemi, M. Gritsevich, A. Heikkilä, A. Kontu, A.-P. Hyvärinen, K. Neitola, D. Brus, P. Dagsson-Waldhauserova, K. Anttila, T. Hakala, H. Kaartinen, M. Vehkamäki, G. de Leeuw, and H. Lihavainen
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-1227-2015, https://doi.org/10.5194/tcd-9-1227-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Soot's (including black carbon and organics) negative effect on a natural snow pack is experimentally addressed in this paper through a series of experiments. Soot concentrations in the snow in the range of 200-200 000 ppb verify the negative effects on the albedo, the physical snow characteristics, as well as increasing the melt rate of the snow pack. Our experimental data generally agrees when compared with the Snow, Ice and Aerosol Radiation model.
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
J. Tonttila, H. Järvinen, and P. Räisänen
Atmos. Chem. Phys., 15, 703–714, https://doi.org/10.5194/acp-15-703-2015, https://doi.org/10.5194/acp-15-703-2015, 2015
P. Räisänen, A. Luomaranta, H. Järvinen, M. Takala, K. Jylhä, O. N. Bulygina, K. Luojus, A. Riihelä, A. Laaksonen, J. Koskinen, and J. Pulliainen
Geosci. Model Dev., 7, 3037–3057, https://doi.org/10.5194/gmd-7-3037-2014, https://doi.org/10.5194/gmd-7-3037-2014, 2014
Short summary
Short summary
Snowmelt influences greatly the climatic conditions in spring. This study evaluates the timing of springtime end of snowmelt in the ECHAM5 model. A key finding is that, in much of northern Eurasia, snow disappears too early in ECHAM5, in spite of a slight cold bias in spring. This points to the need for a more comprehensive treatment of the surface energy budget. In particular, the surface temperature for the snow-covered and snow-free parts of a climate model grid cell should be separated.
S. V. Henriksson, J.-P. Pietikäinen, A.-P. Hyvärinen, P. Räisänen, K. Kupiainen, J. Tonttila, R. Hooda, H. Lihavainen, D. O'Donnell, L. Backman, Z. Klimont, and A. Laaksonen
Atmos. Chem. Phys., 14, 10177–10192, https://doi.org/10.5194/acp-14-10177-2014, https://doi.org/10.5194/acp-14-10177-2014, 2014
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka
Atmos. Chem. Phys., 14, 8701–8721, https://doi.org/10.5194/acp-14-8701-2014, https://doi.org/10.5194/acp-14-8701-2014, 2014
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014, https://doi.org/10.5194/tc-8-991-2014, 2014
C. E. Chung, H. Cha, T. Vihma, P. Räisänen, and D. Decremer
Atmos. Chem. Phys., 13, 11209–11219, https://doi.org/10.5194/acp-13-11209-2013, https://doi.org/10.5194/acp-13-11209-2013, 2013
J. Tonttila, P. Räisänen, and H. Järvinen
Atmos. Chem. Phys., 13, 7551–7565, https://doi.org/10.5194/acp-13-7551-2013, https://doi.org/10.5194/acp-13-7551-2013, 2013
K.-G. Karlsson, A. Riihelä, R. Müller, J. F. Meirink, J. Sedlar, M. Stengel, M. Lockhoff, J. Trentmann, F. Kaspar, R. Hollmann, and E. Wolters
Atmos. Chem. Phys., 13, 5351–5367, https://doi.org/10.5194/acp-13-5351-2013, https://doi.org/10.5194/acp-13-5351-2013, 2013
A. Riihelä, T. Manninen, V. Laine, K. Andersson, and F. Kaspar
Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013, https://doi.org/10.5194/acp-13-3743-2013, 2013
Related subject area
Discipline: Snow | Subject: Energy Balance Obs/Modelling
Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests
Estimating degree-day factors of snow based on energy flux components
Understanding wind-driven melt of patchy snow cover
An 11-year record of wintertime snow-surface energy balance and sublimation at 4863 m a.s.l. on the Chhota Shigri Glacier moraine (western Himalaya, India)
Sensitivity of modeled snow grain size retrievals to solar geometry, snow particle asphericity, and snowpack impurities
Metamorphism of snow on Arctic sea ice during the melt season: impact on spectral albedo and radiative fluxes through snow
GABLS4 intercomparison of snow models at Dome C in Antarctica
Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing
Modelling surface temperature and radiation budget of snow-covered complex terrain
Snow model comparison to simulate snow depth evolution and sublimation at point scale in the semi-arid Andes of Chile
Brief communication: Evaluation of multiple density-dependent empirical snow conductivity relationships in East Antarctica
Impact of forcing on sublimation simulations for a high mountain catchment in the semiarid Andes
Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces
A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation
Forcing the SURFEX/Crocus snow model with combined hourly meteorological forecasts and gridded observations in southern Norway
Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Muhammad Fraz Ismail, Wolfgang Bogacki, Markus Disse, Michael Schäfer, and Lothar Kirschbauer
The Cryosphere, 17, 211–231, https://doi.org/10.5194/tc-17-211-2023, https://doi.org/10.5194/tc-17-211-2023, 2023
Short summary
Short summary
Fresh water from mountainous catchments in the form of snowmelt and ice melt is of critical importance especially in the summer season for people living in these regions. In general, limited data availability is the core concern while modelling the snow and ice melt components from these mountainous catchments. This research will be helpful in selecting realistic parameter values (i.e. degree-day factor) while calibrating the temperature-index models for data-scarce regions.
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341, https://doi.org/10.5194/tc-16-4319-2022, https://doi.org/10.5194/tc-16-4319-2022, 2022
Short summary
Short summary
Most large-scale hydrological and climate models struggle to capture the spatially highly variable wind-driven melt of patchy snow cover. In the field, we find that 60 %–80 % of the total melt is wind driven at the upwind edge of a snow patch, while it does not contribute at the downwind edge. Our idealized simulations show that the variation is due to a patch-size-independent air-temperature reduction over snow patches and also allow us to study the role of wind-driven snowmelt on larger scales.
Arindan Mandal, Thupstan Angchuk, Mohd Farooq Azam, Alagappan Ramanathan, Patrick Wagnon, Mohd Soheb, and Chetan Singh
The Cryosphere, 16, 3775–3799, https://doi.org/10.5194/tc-16-3775-2022, https://doi.org/10.5194/tc-16-3775-2022, 2022
Short summary
Short summary
Snow sublimation is an important component of glacier surface mass balance; however, it is seldom studied in detail in the Himalayan region owing to data scarcity. We present an 11-year record of wintertime snow-surface energy balance and sublimation characteristics at the Chhota Shigri Glacier moraine site at 4863 m a.s.l. The estimated winter sublimation is 16 %–42 % of the winter snowfall at the study site, which signifies how sublimation is important in the Himalayan region.
Zachary Fair, Mark Flanner, Adam Schneider, and S. McKenzie Skiles
The Cryosphere, 16, 3801–3814, https://doi.org/10.5194/tc-16-3801-2022, https://doi.org/10.5194/tc-16-3801-2022, 2022
Short summary
Short summary
Snow grain size is important to determine the age and structure of snow, but it is difficult to measure. Snow grain size can be found from airborne and spaceborne observations by measuring near-infrared energy reflected from snow. In this study, we use the SNICAR radiative transfer model and a Monte Carlo model to examine how snow grain size measurements change with snow structure and solar zenith angle. We show that improved understanding of these variables improves snow grain size precision.
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary
Short summary
Snow physical properties on Arctic sea ice are monitored during the melt season. As snow grains grow, and the snowpack thickness is reduced, the surface albedo decreases. The extra absorbed energy accelerates melting. Radiative transfer modeling shows that more radiation is then transmitted to the snow–sea-ice interface. A sharp increase in transmitted radiation takes place when the snowpack thins significantly, and this coincides with the initiation of the phytoplankton bloom in the seawater.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis
The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022, https://doi.org/10.5194/tc-16-1765-2022, 2022
Short summary
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.
Alvaro Robledano, Ghislain Picard, Laurent Arnaud, Fanny Larue, and Inès Ollivier
The Cryosphere, 16, 559–579, https://doi.org/10.5194/tc-16-559-2022, https://doi.org/10.5194/tc-16-559-2022, 2022
Short summary
Short summary
Topography controls the surface temperature of snow-covered, mountainous areas. We developed a modelling chain that uses ray-tracing methods to quantify the impact of a few topographic effects on snow surface temperature at high spatial resolution. Its large spatial and temporal variations are correctly simulated over a 50 km2 area in the French Alps, and our results show that excluding a single topographic effect results in cooling (or warming) effects on the order of 1 °C.
Annelies Voordendag, Marion Réveillet, Shelley MacDonell, and Stef Lhermitte
The Cryosphere, 15, 4241–4259, https://doi.org/10.5194/tc-15-4241-2021, https://doi.org/10.5194/tc-15-4241-2021, 2021
Short summary
Short summary
The sensitivity of two snow models (SNOWPACK and SnowModel) to various parameterizations and atmospheric forcing biases is assessed in the semi-arid Andes of Chile in winter 2017. Models show that sublimation is a main driver of ablation and that its relative contribution to total ablation is highly sensitive to the selected albedo parameterization and snow roughness length. The forcing and parameterizations are more important than the model choice, despite differences in physical complexity.
Minghu Ding, Tong Zhang, Diyi Yang, Ian Allison, Tingfeng Dou, and Cunde Xiao
The Cryosphere, 15, 4201–4206, https://doi.org/10.5194/tc-15-4201-2021, https://doi.org/10.5194/tc-15-4201-2021, 2021
Short summary
Short summary
Measurement of snow heat conductivity is essential to establish the energy balance between the atmosphere and firn, but it is still not clear in Antarctica. Here, we used data from three automatic weather stations located in different types of climate and evaluated nine schemes that were used to calculate the effective heat diffusivity of snow. The best solution was proposed. However, no conductivity–density relationship was optimal at all sites, and the performance of each varied with depth.
Marion Réveillet, Shelley MacDonell, Simon Gascoin, Christophe Kinnard, Stef Lhermitte, and Nicole Schaffer
The Cryosphere, 14, 147–163, https://doi.org/10.5194/tc-14-147-2020, https://doi.org/10.5194/tc-14-147-2020, 2020
Cheng Dang, Charles S. Zender, and Mark G. Flanner
The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019, https://doi.org/10.5194/tc-13-2325-2019, 2019
Tingfeng Dou, Cunde Xiao, Jiping Liu, Wei Han, Zhiheng Du, Andrew R. Mahoney, Joshua Jones, and Hajo Eicken
The Cryosphere, 13, 1233–1246, https://doi.org/10.5194/tc-13-1233-2019, https://doi.org/10.5194/tc-13-1233-2019, 2019
Short summary
Short summary
The variability and potential trends of rain-on-snow events over Arctic sea ice and their role in sea-ice losses are poorly understood. This study demonstrates that rain-on-snow events are a critical factor in initiating the onset of surface melt over Arctic sea ice, and onset of spring rainfall over sea ice has shifted to earlier dates since the 1970s, which may have profound impacts on ice melt through feedbacks involving earlier onset of surface melt.
Hanneke Luijting, Dagrun Vikhamar-Schuler, Trygve Aspelien, Åsmund Bakketun, and Mariken Homleid
The Cryosphere, 12, 2123–2145, https://doi.org/10.5194/tc-12-2123-2018, https://doi.org/10.5194/tc-12-2123-2018, 2018
Short summary
Short summary
Knowledge of the snow reservoir is important for energy production and water resource management. In this study, a detailed snow model is run over southern Norway with two different sets of forcing data. The results show that forcing data consisting of post-processed data from a numerical weather model (observations assimilated into the raw weather predictions) are most promising for snow simulations when larger regions are evaluated.
Keith S. Jennings, Timothy G. F. Kittel, and Noah P. Molotch
The Cryosphere, 12, 1595–1614, https://doi.org/10.5194/tc-12-1595-2018, https://doi.org/10.5194/tc-12-1595-2018, 2018
Short summary
Short summary
We show through observations and simulations that cold content, a key part of the snowpack energy budget, develops primarily through new snowfall. We also note that cold content damps snowmelt rate and timing at sub-seasonal timescales, while seasonal melt onset is controlled by the timing of peak cold content and total spring precipitation. This work has implications for how cold content is represented in snow models and improves our understanding of its effect on snowmelt processes.
Cited articles
Anttila, K., Manninen, T., Karjalainen, T., Lahtinen, P., Riihelä, A.,
and Siljamo, N.: The temporal and spatial variability in submeter scale
surface roughness of seasonal snow in Sodankylä Finnish Lapland in
2009–2010, J. Geophys. Res.-Atmos., 119, 9236–9252,
https://doi.org/10.1002/2014JD021597, 2014.
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.:
Physically based snow albedo model for calculating broadband albedos and the
solar heating profile in snowpack for general circulation models,
J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011.
Armstrong, R. L. and Brun, E. (Eds.): Snow and climate, Cambridge University
Press, New York, USA, 2008.
Baldridge, A. M., Hook, S. J., Grove, C. I., and Rivera, G.: The ASTER Spectral
Library Version 2.0, Remote Sens. Environ., 113, 711–715,
https://doi.org/10.1016/j.rse.2008.11.007, 2009.
Beckmann, P. and Spizzicchino, A.: The Scattering of Electromagnetic Waves
from Rough Surfaces, Pergamon Press, Oxford, UK, 497 pp., 1963.
Church, E. L.: Fractal surface finish, Appl. Optics, 27, 1518–1526, 1988.
Cook, J. M., Hodson, A. J., Gardner, A. S., Flanner, M., Tedstone, A. J., Williamson, C., Irvine-Fynn, T. D. L., Nilsson, J., Bryant, R., and Tranter, M.: Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo, The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, 2017.
Domine, F., Gallet, J.-C., Bock, J., and Morin, S.: Structure, specific
surface area and thermal conductivity of the snowpack around Barrow, Alaska,
J. Geophys. Res., 117, D00R14, https://doi.org/10.1029/2011JD016647, 2012.
Essery, R.: A factorial snowpack model (FSM 1.0), Geosci. Model Dev., 8, 3867–3876, https://doi.org/10.5194/gmd-8-3867-2015, 2015.
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung,
D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The International
Classification for Seasonal Snow on the Ground, IHP-VII Technical Documents
in Hydrology No. 83, IACS Contribution No. 1, UNESCO-IHP,
Paris, 2009.
Flanner, M. G. and Zender, C. S.: Linking snowpack microphysics and albedo
evolution, J. Geophys. Res., 111, D12208, https://doi.org/10.1029/2005JD006834, 2006.
Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K., and Tschudi, M. A.: Radiative forcing and albedo feedback from the northern hemisphere
cryosphere between 1979 and 2008, Nat. Geosci., 4, 151–155,
https://doi.org/10.1038/ngeo1062, 2011.
Fung, A. K.: Microwave Scattering and Emission Models and Their Applications,
Artech House, Boston, USA, 573 pp., 1994.
He, C., Takano, Y., and Liou, K.-N.: Close packing effects on clean and dirty
snow albedo and associated climatic implications, Geophys. Res. Lett., 44, 3719–3727, https://doi.org/10.1002/2017GL072916, 2017.
Jämsä, S., Peltoniemi, J. I., and Lumme, K.: Thermal emission from a
rough surface: ray optics approach, Astron. Astrophys., 271, 319–325, 1993.
Kaasalainen, S., Kaartinen, H., Kukko, A., Anttila, K., and Krooks, A.: Brief communication “Application of mobile laser scanning in snow cover profiling”, The Cryosphere, 5, 135–138, https://doi.org/10.5194/tc-5-135-2011, 2011.
Keller, J. M., Crownover, R. M., and Chen, R. Y.: Characteristics of natural
scenes related to the fractal dimension,
IEEE T. Pattern. Anal., 9, 621–627, 1987.
Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J., and Running, S. W.: Synergistic algorithm for estimating vegetation canopy leaf area
index and fraction of absorbed photosynthetically active radiation from
MODIS and MISR data, J. Geophys. Res., 103, 32257–32276, 1998.
Kokhanovsky, A. A.: Spectral reflectance of solar light from dirty snow: a simple theoretical model and its validation, The Cryosphere, 7, 1325–1331, https://doi.org/10.5194/tc-7-1325-2013, 2013.
Kokhanovsky, A. A. and Zege, E. P.: Scattering optics of snow,
Appl. Optics, 43, 1589–1602, https://doi.org/10.1364/AO.43.001589, 2004.
Kokhanovsky, A. A., Lamare, M., Di Mauro, B., Picard, G., Arnaud, L., Dumont, M., Tuzet, F., Brockmann, C., and Box, J. E.: On the reflectance spectroscopy of snow, The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018, 2018.
Komuro, Y. and Suzuki, T.: Relationship between the Concentration of
Impurity and Albedo in Snow Surface, Atmospheric and Climate Sciences, 5,
426–432, https://doi.org/10.4236/acs.2015.54034, 2015.
Kukko, A., Andrei, C.-O., Salminen, V. M., Kaartinen, H., Chen, Y.,
Rönnholm, P., Hyyppä, H., Hyyppä, J., Chen, R., Haggrén, H.,
Kosonen, I., and Čapek, K.: Road Environment Mapping System of the Finnish Geodetic Institute – FGI Roamer, in: ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, ISPRS, Espoo, Finland, 12–24 September 2007, 36, 241–247, 2007.
Kukko, A., Anttila, K., Manninen, T., Kaartinen, H., and Kaasalainen, S.:
Snow surface roughness from mobile laser scanning data,
Cold Reg. Sci. Technol., 96, 23–35, 2013.
Larue, F., Picard, G., Arnaud, L., Ollivier, I., Delcourt, C., Lamare, M., Tuzet, F., Revuelto, J., and Dumont, M.: Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model, The Cryosphere, 14, 1651–1672, https://doi.org/10.5194/tc-14-1651-2020, 2020.
Leppänen, L., Kontu, A., Vehviläinen, J., Lemmetyinen, J., and
Pulliainen, J.: Comparison of traditional and optical grain-size field
measurements with SNOWPACK simulations in a taiga snowpack,
J. Glaciol., 61, 151–162, https://doi.org/10.3189/2015JoG14J026, 2015.
Leroux, C. and Fily, M.: Modeling the effect of sastrugi on snow
reflectance, J. Geophys. Res., 103, 25779–25788, 1998.
Lhermitte, S., Abermann, J., and Kinnard, C.: Albedo over rough snow and ice surfaces, The Cryosphere, 8, 1069–1086, https://doi.org/10.5194/tc-8-1069-2014, 2014.
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013.
Libois, Q., Picard, G., Dumont, M., Arnaud, L., Sergent, C., Pougatch, E.,
and Vial, D.: Experimental determination of the absorption enhancement
parameter of snow, J. Glaciol., 60, 714–724,
https://doi.org/10.3189/2014JoG14J015, 2014.
Löwe, H., Egli, S., Bartlett, S., Guala, J. M. M., and Manes, C.: On the
evolution of the snow surface during snowfall, Geophys. Res. Lett., 34, L21507, https://doi.org/10.1029/2007GL031637, 2007.
Lucht, W., Schaaf, C. B., and Strahler, A. H.: An Algorithm for the Retrieval
of Albedo from Space Using Semiempirical BRDF Models,
IEEE T. Geosci. Remote, 38, 977–998, 2000.
Manninen, A. T.: Multiscale surface roughness description for scattering
modelling of bare soil, Physica A, 319, 535–551, 2003.
Manninen, T. and Stenberg, P.: Simulation of the effect of snow covered
forest floor on the total forest albedo,
Agr. Forest Meteorol., 149, 303–319, 2009.
Manninen, T. and Roujean, J.-L.: SNORTEX, Snow Reflectance Transition
Experiment, Finnish Meteorological Institute Reports, Helsinki, Finland, 68, available at: https://helda.helsinki.fi/bitstream/handle/10138/135970/2014nro7.pdf?sequence=1&isAllowed=y (last access: 10 February 2021), 2014.
Manninen, T., Anttila, K., Karjalainen, T., and Lahtinen, P.: Automatic snow
surface roughness estimation using digital photos, J. Glaciol., 58, 993–1007, 2012.
Manninen, T., Lahtinen, P., Anttila, K., and Riihelä, A.: Detection of
snow surface roughness and hoar at Summit, Greenland, using RADARSAT data,
Int. J. Remote Sens., 37, 2860–2880, https://doi.org/10.1080/01431161.2015.1131873, 2016.
Mätzler, C.: Autocorrelation functions of granular media with free
arrangement of spheres, spherical shells or ellipsoids, J. Appl. Phys., 81,
1509–1517, 1997.
Meinander, O., Kazadzis, S., Arola, A., Riihelä, A., Räisänen, P., Kivi, R., Kontu, A., Kouznetsov, R., Sofiev, M., Svensson, J., Suokanerva, H., Aaltonen, V., Manninen, T., Roujean, J.-L., and Hautecoeur, O.: Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle, Atmos. Chem. Phys., 13, 3793–3810, https://doi.org/10.5194/acp-13-3793-2013, 2013.
Meinander, O., Kontu, A., Virkkula, A., Arola, A., Backman, L., Dagsson-Waldhauserová, P., Järvinen, O., Manninen, T., Svensson, J., de Leeuw, G., and Leppäranta, M.: Brief communication: Light-absorbing impurities can reduce the density of melting snow, The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014, 2014.
Meinander, O., Kontu, A., Kouznetsov, R., and Sofiev, M.: Snow
samples combined with long-range transport modeling to reveal the origin and
temporal variability of black carbon in seasonal snow in Sodankylä (67∘ N), Front. Earth Sci., 8, 153, https://doi.org/10.3389/feart.2020.00153, 2020.
Mialon, A., Fily, M., and Royer, A.: Seasonal snow cover extent from
microwave remote sensing data: comparison with existing ground and satellite
based measurements, EARSeL eProceeding, 4, 215–225, 2005.
Neshyba, S. P., Grenfell, T. C., and Warren, S. G.: Representation of a
nonspherical ice particle by a collection of independent spheres for
scattering and absorption of radiation: 2. Hexagonal columns and plates, J.
Geophys. Res., 108, 4448, https://doi.org/10.1029/2002JD003302, 2003.
Nousiainen, T. and McFarquhar, G. M.: Light Scattering by Quasi-Spherical
Ice Crystals, J. Atmos. Sci., 61, 2229–2248,
https://doi.org/10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2, 2004.
Panferov, O., Knyazikhin, Y., Myneni, R. B., Szarzynski, J., Engwald, S.,
Schnitzler, K. G., and Gravenhorst, G.: The role of canopy structure in the
spectral variation of transmission and absorption of solar radiation in
vegetation canopies, IEEE T. Geosci. Remote, 39, 241–253, 2001.
Peltoniemi, J. I., Kaasalainen, S., Näränen, J., Matikainen, L., and
Piironen, J.: Measurement of directional and spectral signatures of light
reflectance by snow, IEEE T. Geosci. Remote, 43, 2294–2304, 2005.
Peltoniemi, J. I., Suomalainen, J., Hakala, T., Puttonen, E.,
Näränen, J., Kaasalainen, S., Torppa, J., and Hirschmugl, M.:
Reflectance of various snow types: measurements, modelling and potential for
snow melt monitoring, in: Light Scattering Reviews 5: Single Light Scattering
and Radiative Transfer, edited by: Kokhanovsky, A. A., Springer Praxis Books, Heidelberg, Berlin, Germany, chap. 9, 393–450, https://doi.org/10.1016/j.jqsrt.2014.04.011, 2010.
Peltoniemi, J. I., Hakala, T., Suomalainen, J., Honkavaara, E., Markelin,
L., Gritsevich, M., Eskelinen, J., Jaanson, P., and Ikonen, E.: A detailed study for the provision of measurement uncertainty and traceability for
goniospectrometers, J. Quant. Spectrosc. Ra., 146, 376–390,
2014.
Peltoniemi, J. I., Gritsevich, M., Hakala, T., Dagsson-Waldhauserová, P., Arnalds, Ó., Anttila, K., Hannula, H.-R., Kivekäs, N., Lihavainen, H., Meinander, O., Svensson, J., Virkkula, A., and de Leeuw, G.: Soot on Snow experiment: bidirectional reflectance factor measurements of contaminated snow, The Cryosphere, 9, 2323–2337, https://doi.org/10.5194/tc-9-2323-2015, 2015.
Picard, G., Libois, Q., and Arnaud, L.: Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow, The Cryosphere, 10, 2655–2672, https://doi.org/10.5194/tc-10-2655-2016, 2016.
Picard, G., Dumont, M., Lamare, M., Tuzet, F., Larue, F., Pirazzini, R., and Arnaud, L.: Spectral albedo measurements over snow-covered slopes: theory and slope effect corrections, The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, 2020.
Pirazzini, R., Räisänen, P., Vihma, T., Johansson, M., and Tastula, E.-M.: Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet, The Cryosphere, 9, 2357–2381, https://doi.org/10.5194/tc-9-2357-2015, 2015.
Pomeroy, J. W. and Gray, D. M.: Saltation of Snow, Water Resour. Res.,
26, 1583–1594, 1990.
Rautiainen, M. and Stenberg, P.: Application of photon recollision
probability in coniferous canopy reflectance simulations, Remote Sens.
Environ., 96, 98–107, 2005.
Räisänen, P., Kokhanovsky, A., Guyot, G., Jourdan, O., and Nousiainen, T.: Parameterization of single-scattering properties of snow, The Cryosphere, 9, 1277–1301, https://doi.org/10.5194/tc-9-1277-2015, 2015.
Román, M. O., Schaaf, C. B., Lewis, P., Gao, F., Anderson, G. P., Privette, J. L., Strahler, A. H., Woodcock, C. E., and Barnsley, M.: Assessing the coupling
between surface albedo derived from MODIS and the fraction of diffuse
skylight over spatially-characterized landscapes, Remote Sens. Environ., 114, 738–760, 2010.
Roujean, J.-L., Manninen, T., Sukuvaara, T., Peltoniemi, J., Kaasalainen,
S., Hautecoeur, O., Lahtinen, P., Riihelä, A., Siljamo, N.,
Lötjönen, M., Karjalainen, T., Kontu, A., Suokanerva, H., Aulamo,
O., Lemmetyinen, J., Suomalainen, J., Hakala, T., Kaartinen, H., Thölix,
L., Meinander, O., and Karhu, J.: SNORTEX (Snow Reflectance Transition
Experiment): Remote sensing measurement of snowmelt in northern boreal
forest of Europe, iLEAPS Newsletter, 56–58, 2010.
Russ, J. C.: Fractal surfaces, Plenum Press, New York, USA, 167 pp., 1994.
Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., and
Martonchik, J. V.: Reflectance quantities in optical remote
sensing–definitions and case studies, Remote Sens. Environ., 103,
27–42, 2006.
Smolander, S. and Stenberg, P.: Simple parameterizations of the radiation
budget of uniform broadleaved and coniferous canopies, Remote Sens. Environ., 94, 355–363, 2005.
Sommer, C. G., Lehning, M., and Fierz, C.: Wind Tunnel Experiments: Influence
of Erosion and Deposition on Wind-Packing of New Snow, Front. Earth Sci.,
6, 4, https://doi.org/10.3389/feart.2018.00004, 2018.
Stenberg, P. and Manninen, T.: The effect of clumping on canopy scattering
and its directional properties: a model simulation using spectral
invariants, Int. J. Remote Sens., 36, 5178–5191.
https://doi.org/10.1080/01431161.2015.1049383, 2015.
Stenberg, P., Mõttus, M., and Rautiainen, M.: Modeling the spectral
signature of forests: Application of remote sensing models to coniferous
canopies, in: Advances in land remote sensing, edited by: Liang, S., Springer
Science+ Business Media B. V., 147–171, 2008.
Stenberg, P., Mõttus, M., and Rautiainen, M.: Photon recollision
probability in modelling the radiation regime of canopies – A review,
Remote Sens. Environ., 183, 98–108, 2016.
Toikka, M.: Field tests with the Snow fork in determining the density and
wetness profiles of a snow pack, in: URSI Symposium on Terrestrial Remote Sensing with Microwaves: Signatures, Techniques and Systems, Igls, Innsbruck, Austria, 1–3 July 1992, available at: https://toikkaoy.com/snowfork_brochure_2018.pdf (last access: 20 January 2020), 1992.
Tsang, L., Kong., J. A., and Shin, R. T.: Theory of Microwave Remote Sensing,
John Wiley & Sons, New York, USA, 613 pp., 1985.
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave Remote Sensing, Active
and Passice, Addison-Wesley, London, UK, 457–106, 1982.
Warren, S. G.: Optical constants of ice from the ultraviolet to the
microwave, Appl. Optics, 23, 1206–1225, https://doi.org/10.1364/AO.23.001206, 1984.
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the
ultraviolet to the microwave: A revised compilation, J. Geophys. Res., 113,
D14220, https://doi.org/10.1029/2007JD009744, 2008.
Warren, S. G. and Wiscombe, W. J.: A Model for the Spectral Albedo of Snow,
II: Snow Containing Atmospheric Aerosols,
J. Atmos. Sci., 37, 2734–2745, 1980.
Warren, S. G., Brandt, R. E., and O'Rawe Hinton, P.: Effect of surface
roughness on bidirectional reflectance of Antarctic snow, J. Geophys. Res., 103, 25789–25807, 1998.
Zhang, Z., Yang, P., Kattawar, G., Tsay, S., Baum, B., Hu, Y., Heymsfield,
A., and Reichardt, J.: Geometrical-optics solution to light scattering by
droxtal ice crystals, Appl. Optics, 43, 2490–2499, 2004.
Zhuravleva, T. B. and Kokhanovsky, A. A.: Influence of surface roughness on
the reflective properties of snow,
J. Quant. Spectrosc. Ra., 112, 1353–1368, 2011.
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
The primary goal of this paper is to present a model of snow surface albedo (brightness)...