Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5345-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5345-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-decadal (1953–2017) rock glacier kinematics analysed by high-resolution topographic data in the upper Kaunertal, Austria
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 95072 Eichstätt, Germany
Florian Haas
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 95072 Eichstätt, Germany
Livia Piermattei
Department of Geosciences, University of Oslo, 0316 Oslo, Norway
Madlene Pfeiffer
Institute of Geography, University of Bremen, 28359 Bremen, Germany
Tobias Heckmann
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 95072 Eichstätt, Germany
Moritz Altmann
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 95072 Eichstätt, Germany
Jakob Rom
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 95072 Eichstätt, Germany
Manuel Stark
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 95072 Eichstätt, Germany
Michael H. Wimmer
Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna,
Austria
Norbert Pfeifer
Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna,
Austria
Michael Becht
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 95072 Eichstätt, Germany
Related authors
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023, https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Short summary
In this study, an area-wide slope-type debris flow record has been established for Horlachtal, Austria, since 1947 based on historical and recent remote sensing data. Spatial and temporal analyses show variations in debris flow activity in space and time in a high-alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the context of extreme precipitation events and their possible future development.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Günter Blöschl, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Julia Eisl, Michael Hofer, Markus Hollaus, Zsolt Horváth, Jürgen Komma, Artem Konev, Juraj Parajka, Norbert Pfeifer, Andreas Reithofer, José Salinas, Peter Valent, Roman Výleta, Jürgen Waser, Michael H. Wimmer, and Heinz Stiefelmeyer
Nat. Hazards Earth Syst. Sci., 24, 2071–2091, https://doi.org/10.5194/nhess-24-2071-2024, https://doi.org/10.5194/nhess-24-2071-2024, 2024
Short summary
Short summary
A methodology of regional flood hazard mapping is proposed, based on data in Austria, which combines automatic methods with manual interventions to maximise efficiency and to obtain estimation accuracy similar to that of local studies. Flood discharge records from 781 stations are used to estimate flood hazard patterns of a given return period at a resolution of 2 m over a total stream length of 38 000 km. The hazard maps are used for civil protection, risk awareness and insurance purposes.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
F. Pöppl, G. Mandlburger, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W3-2023, 161–166, https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-161-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-161-2023, 2023
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
B. Wild, G. Verhoeven, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-M-1-2023, 285–292, https://doi.org/10.5194/isprs-annals-X-M-1-2023-285-2023, https://doi.org/10.5194/isprs-annals-X-M-1-2023-285-2023, 2023
I. Cortesi, A. Masiero, N. Pfeifer, and G. Tucci
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-101-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-101-2023, 2023
F. Pöppl, H. Teufelsbauer, A. Ullrich, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 403–410, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-403-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-403-2023, 2023
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Sarah Betz-Nutz, Tobias Heckmann, Florian Haas, and Michael Becht
Earth Surf. Dynam., 11, 203–226, https://doi.org/10.5194/esurf-11-203-2023, https://doi.org/10.5194/esurf-11-203-2023, 2023
Short summary
Short summary
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal models from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023, https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Short summary
In this study, an area-wide slope-type debris flow record has been established for Horlachtal, Austria, since 1947 based on historical and recent remote sensing data. Spatial and temporal analyses show variations in debris flow activity in space and time in a high-alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the context of extreme precipitation events and their possible future development.
N. Homainejad, S. Zlatanova, S. M. E. Sepasgozar, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W2-2022, 113–119, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-113-2022, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-113-2022, 2022
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
R. Arav, F. Pöppl, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 95–102, https://doi.org/10.5194/isprs-annals-V-2-2022-95-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-95-2022, 2022
N. Homainejad, S. Zlatanova, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 697–704, https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022, 2022
G. Verhoeven, B. Wild, J. Schlegel, M. Wieser, N. Pfeifer, S. Wogrin, L. Eysn, M. Carloni, B. Koschiček-Krombholz, A. Molada-Tebar, J. Otepka-Schremmer, C. Ressl, M. Trognitz, and A. Watzinger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-2-W1-2022, 513–520, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, 2022
A. Iglseder, M. Bruggisser, A. Dostálová, N. Pfeifer, S. Schlaffer, W. Wagner, and M. Hollaus
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 567–574, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-567-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-567-2021, 2021
J. Otepka, G. Mandlburger, W. Karel, B. Wöhrer, C. Ressl, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 35–42, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, 2021
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021, https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Short summary
In mountainous regions rockfall is a common geomorphic process. We selected four study sites that feature different rock types. High-resolution terrestrial laser scanning data were acquired to measure the block size and block shape (axial ratio) of rockfall particles on the scree deposits. Laser scanning data were also used to characterize the morphology of these landforms. Our results show that hill slope and rock particle properties govern rock particle runout in a complex manner.
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam., 11, 1153–1194, https://doi.org/10.5194/esd-11-1153-2020, https://doi.org/10.5194/esd-11-1153-2020, 2020
Short summary
Short summary
In the warmer future, Antarctica's ice sheet will lose more ice due to enhanced iceberg calving and a warming ocean that melts more floating ice from below. However, the hydrological cycle is also stronger in a warmer world. Hence, more snowfall will precipitate on Antarctica and may balance the amplified ice loss. We have used future climate scenarios from various global climate models to perform numerous ice sheet simulations to show that precipitation may counteract mass loss.
J. Na, G. Tang, K. Wang, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1485–1490, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1485-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1485-2020, 2020
J. Otepka, G. Mandlburger, M. Schütz, N. Pfeifer, and M. Wimmer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 293–300, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020, 2020
A-M. Loghin, N. Pfeifer, and J. Otepka-Schremmer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 525–532, https://doi.org/10.5194/isprs-annals-V-2-2020-525-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-525-2020, 2020
S. Flöry, C. Ressl, M. Hollaus, G. Pürcher, L. Piermattei, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 695–701, https://doi.org/10.5194/isprs-annals-V-2-2020-695-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-695-2020, 2020
N. Li and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1033–1037, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1033-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1033-2019, 2019
A. Walicka, N. Pfeifer, G. Jóźków, and A. Borkowski
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1149–1154, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1149-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1149-2019, 2019
J. Na, X. Yang, X. Fang, G. Tang, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 469–473, https://doi.org/10.5194/isprs-archives-XLII-2-W13-469-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-469-2019, 2019
M. Bruggisser, M. Hollaus, D. Kükenbrink, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 325–332, https://doi.org/10.5194/isprs-annals-IV-2-W5-325-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-325-2019, 2019
G. Mandlburger, H. Lehner, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 397–404, https://doi.org/10.5194/isprs-annals-IV-2-W5-397-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-397-2019, 2019
P. Glira, N. Pfeifer, and G. Mandlburger
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 567–574, https://doi.org/10.5194/isprs-annals-IV-2-W5-567-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-567-2019, 2019
N. Li, N. Pfeifer, and C. Liu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 107–114, https://doi.org/10.5194/isprs-annals-IV-2-W4-107-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-107-2017, 2017
G. Mandlburger, N. Pfeifer, and U. Soergel
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 123–130, https://doi.org/10.5194/isprs-annals-IV-2-W4-123-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-123-2017, 2017
A. Roncat, N. Pfeifer, and C. Briese
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 131–137, https://doi.org/10.5194/isprs-annals-IV-2-W4-131-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-131-2017, 2017
D. Wang, M. Hollaus, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 157–164, https://doi.org/10.5194/isprs-annals-IV-2-W4-157-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-157-2017, 2017
G. Mandlburger, K. Wenzel, A. Spitzer, N. Haala, P. Glira, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 259–266, https://doi.org/10.5194/isprs-annals-IV-2-W4-259-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-259-2017, 2017
M. Pöchtrager, G. Styhler-Aydın, M. Döring-Williams, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W2, 195–202, https://doi.org/10.5194/isprs-annals-IV-2-W2-195-2017, https://doi.org/10.5194/isprs-annals-IV-2-W2-195-2017, 2017
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
A. Zlinszky, B. Deák, A. Kania, A. Schroiff, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 1293–1299, https://doi.org/10.5194/isprs-archives-XLI-B8-1293-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-1293-2016, 2016
Madlene Pfeiffer and Gerrit Lohmann
Clim. Past, 12, 1313–1338, https://doi.org/10.5194/cp-12-1313-2016, https://doi.org/10.5194/cp-12-1313-2016, 2016
Short summary
Short summary
The Last Interglacial was warmer, with a reduced Greenland Ice Sheet (GIS), compared to the late Holocene. We analyse – through climate model simulations – the impact of a reduced GIS on the global surface air temperature and find a relatively strong warming especially in the Northern Hemisphere. These results are then compared to temperature reconstructions, indicating good agreement with respect to the pattern. However, the simulated temperatures underestimate the proxy-based temperatures.
Florian Haas, Ludwig Hilger, Fabian Neugirg, Kathrin Umstädter, Christian Breitung, Peter Fischer, Paula Hilger, Tobias Heckmann, Jana Dusik, Andreas Kaiser, Jürgen Schmidt, Marta Della Seta, Ruben Rosenkranz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 16, 1269–1288, https://doi.org/10.5194/nhess-16-1269-2016, https://doi.org/10.5194/nhess-16-1269-2016, 2016
Short summary
Short summary
This study focuses on the quantification and analysis of geomorphic processes on the barely vegetated slopes of a recultivated iron ore mine on the Italian island of Elba using photographs from terrestrial laser scanning and digital photogrammetry by an unmanned aerial vehicle over a period of 5 1/2 years. Beside this, the study tried to work out the potential and the limitations of both methods to detect surface changes by geomorphic process dynamics within a natural environment.
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
A. Kaiser, F. Neugirg, F. Haas, J. Schmidt, M. Becht, and M. Schindewolf
SOIL, 1, 613–620, https://doi.org/10.5194/soil-1-613-2015, https://doi.org/10.5194/soil-1-613-2015, 2015
F. Neugirg, A. Kaiser, M. Schindewolf, M. Becht, J. Schmidt, and F. Haas
Proc. IAHS, 371, 181–187, https://doi.org/10.5194/piahs-371-181-2015, https://doi.org/10.5194/piahs-371-181-2015, 2015
Short summary
Short summary
Digital elevation models acquired with a terrestrial laser scanner were used to study summerly erosion on steep slopes. An existing physical event-based erosion model approach was tested on theses slopes and validated with the laser scanning values. Modeled and scanned values are in 98.4% agreement. Additionally a statistical modeling approach was used to compare the results with a previous study in a nearby area. The comparison showed a good applicability of the model on different slopes.
A. Zlinszky, G. Timár, R. Weber, B. Székely, C. Briese, C. Ressl, and N. Pfeifer
Solid Earth, 5, 355–369, https://doi.org/10.5194/se-5-355-2014, https://doi.org/10.5194/se-5-355-2014, 2014
T. Heckmann, K. Gegg, A. Gegg, and M. Becht
Nat. Hazards Earth Syst. Sci., 14, 259–278, https://doi.org/10.5194/nhess-14-259-2014, https://doi.org/10.5194/nhess-14-259-2014, 2014
Cited articles
Altmann, M., Piermattei, L., Haas, F., Heckmann, T., Fleischer, F., Rom, J.,
Betz-Nutz, S., Knoflach, B., Müller, S., Ramskogler, K., Pfeiffer, M.,
Hofmeister, F., Ressl, C., and Becht, M.: Long-Term Changes of
Morphodynamics on Little Ice Age Lateral Moraines and the Resulting Sediment
Transfer into Mountain Streams in the Upper Kauner Valley, Austria, Water,
12, 3375, https://doi.org/10.3390/w12123375, 2020.
Anderson, S. W.: Uncertainty in quantitative analyses of topographic change:
error propagation and the role of thresholding, Earth Surf. Proc.
Land., 44, 1015–1033, https://doi.org/10.1002/esp.4551, 2019.
Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation
measurements and internal structure of some rock glaciers in Switzerland,
Permafrost Periglac., 13, 117–135,
https://doi.org/10.1002/ppp.414, 2002.
Bakker, M. and Lane, S. N.: Archival photogrammetric analysis of
river-floodplain systems using Structure from Motion (SfM) methods, Earth
Surf. Proc. Land., 42, 1274–1286, https://doi.org/10.1002/esp.4085,
2017.
Barsch, D.: Rockglaciers: Indicators for the Present and Former Geoecology
in High Mountain Environments, Springer Series in Physical Environment, 16,
Springer Berlin Heidelberg, Berlin, Heidelberg, 331 pp., 1996.
Beniston, M.: Mountain Weather and Climate: A General Overview and a Focus
on Climatic Change in the Alps, Hydrobiologia, 562, 3–16,
https://doi.org/10.1007/s10750-005-1802-0, 2006.
Berger, J., Krainer, K., and Mostler, W.: Dynamics of an active rock glacier
(Ötztal Alps, Austria), Quaternary Res., 62, 233–242,
https://doi.org/10.1016/j.yqres.2004.07.002, 2004.
Berthling, I.: Beyond confusion: Rock glaciers as cryo-conditioned
landforms, Geomorphology, 131, 98–106,
https://doi.org/10.1016/j.geomorph.2011.05.002, 2011.
Besl, P. J. and McKay, N. D.: A method for registration of 3-D shapes, IEEE
T. Pattern Anal., 14, 239–256,
https://doi.org/10.1109/34.121791, 1992.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of
uncertainty and variability in rock glacier inventories, Earth Surf.
Proc. Land., 44, 2450–2466, https://doi.org/10.1002/esp.4674, 2019.
Buchli, T., Kos, A., Limpach, P., Merz, K., Zhou, X., and Springman, S. M.:
Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland,
Permafrost Periglac., 29, 3–20,
https://doi.org/10.1002/ppp.1968, 2018.
Buckel, J. and Otto, J.-C.: The Austrian Glacier Inventory GI 4 (2015) in
ArcGis (shapefile) format, supplement to: Buckel, Johannes; Otto,
Jan-Christoph; Prasicek, Günther; Keuschnig, Markus (2018): Glacial
lakes in Austria – Distribution and formation since the Little Ice Age,
Global Planet. Change, 164, 39–51, 2018.
Bundesamt für Eich- und Vermessungswesen (BEV): http://www.bev.gv.at, last access: 15 September 2021.
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the
seasonal rhythm of rock glacier flow, Earth Planet. Sc. Lett.,
528, 115844, https://doi.org/10.1016/j.epsl.2019.115844, 2019.
Clark, D. H., Steig, E. J., Potter, J. N., and Gillespie, A. R.: Genetic
variability of rock glaciers, Geogr. Ann. A, 80, 175–182, https://doi.org/10.1111/j.0435-3676.1998.00035.x,
1998.
Delaloye, R., Perruchoud, E., Avian, M., Kaufmann, V., Bodin, X., Hausmann, H., Ikeda, A., Kääb, A., Kellerer-Pirklbauer, A., Krainer, K., Lambiel, C., Mihajlovic, D., Staub, B., Roer, I., and Thibert, E.: Recent interannual variations of rock glacier creep in the European Alps, in: 9th International Conference on Permafrost, Fairbanks, Alaska, 29 Juni–3 Juli 2008, 343–348, https://doi.org/10.5167/uzh-7031, 2008.
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier kinematics research in the Swiss Alps, Geogr. Helv., 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010.
Dusik, J.-M., Leopold, M., Heckmann, T., Haas, F., Hilger, L., Morche, D.,
Neugirg, F., and Becht, M.: Influence of glacier advance on the development
of the multipart Riffeltal rock glacier, Central Austrian Alps, Earth Surf.
Proc. Land., 40, 965–980, https://doi.org/10.1002/esp.3695, 2015.
Eriksen, H. Ø., Rouyet, L., Lauknes, T. R., Berthling, I., Isaksen, K.,
Hindberg, H., Larsen, Y., and Corner, G. D.: Recent Acceleration of a Rock
Glacier Complex, Ádjet, Norway, Documented by 62 Years of Remote Sensing
Observations, Geophys. Res. Lett., 45, 8314–8323,
https://doi.org/10.1029/2018GL077605, 2018.
Fawcett, D., Blanco-Sacristán, J., and Benaud, P.: Two decades of
digital photogrammetry: Revisiting Chandler's 1999 paper on “Effective
application of automated digital photogrammetry for geomorphological
research” – a synthesis, Prog. Phys. Geogr., 43, 299–312, https://doi.org/10.1177/0309133319832863, 2019.
Fey, C. and Krainer, K.: Analyses of UAV and GNSS based flow velocity
variations of the rock glacier Lazaun (Ötztal Alps, South Tyrol, Italy),
Geomorphology, 365, 107261, https://doi.org/10.1016/j.geomorph.2020.107261,
2020.
Finsterwalder, S.: Begleitworte zur Karte des Gepatschferners, in: Zeitschrift für Gletscherkunde, 16, 20–41, 1928.
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015.
Fliri, F.: Das Klima der Alpen im Raume von Tirol, Monographien zur
Landeskunde Tirol, Folge 1, Universitätsverlag, Innsbruck, 454 pp.,
1975.
Frehner, M., Ling, A. H. M., and Gärtner-Roer, I.: Furrow-and-Ridge
Morphology on Rockglaciers Explained by Gravity-Driven Buckle Folding: A
Case Study From the Murtèl Rockglacier (Switzerland), Permafrost
Periglac., 26, 57–66, https://doi.org/10.1002/ppp.1831, 2015.
Glira, P., Pfeifer, N., Briese, C., and Ressl, C.: A Correspondence
Framework for ALS Strip Adjustments based on Variants of the ICP Algorithm < BR > Korrespondenzen für die
ALS-Streifenausgleichung auf Basis von ICP, Photogrammetrie – Fernerkundung
– Geoinformation, 2015, 275–289, https://doi.org/10.1127/pfg/2015/0270,
2015.
Groh, T. and Blöthe, J. H.: Rock Glacier Kinematics in the Kaunertal,
Ötztal Alps, Austria, Geosciences, 9, 373,
https://doi.org/10.3390/geosciences9090373, 2019.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O.,
Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S.,
and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost
Periglac., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Hartl, L., Fischer, A., Stocker-waldhuber, M., and Abermann, J.: Recent
speed-up of an alpine rock glacier: an updated chronology of the kinematics
of outer hochebenkar rock glacier based on geodetic measurements,
Geogr. Ann. A, 98, 129–141,
https://doi.org/10.1111/geoa.12127, 2016.
Hausmann, H., Krainer, K., Brückl, E., and Ullrich, C.: Internal
structure, ice content and dynamics of Ölgrube and Kaiserberg rock
glaciers (Ötztal Alps, Austria) determined from geophysical surveys,
Austrian J. Earth Sci., 105, 12–31, 2012.
Heid, T. and Kääb, A.: Evaluation of existing image matching methods
for deriving glacier surface displacements globally from optical satellite
imagery, Remote Sens. Environ., 118, 339–355,
https://doi.org/10.1016/j.rse.2011.11.024, 2012.
Hock, R., Rasul, G., Adler, C., Caceres, S., Gruber, S., Hirabayashi, Y.,
Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U.,
Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC
Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor,
M., Poloczanska, E., Mintenbeck, K., Alegria, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N. M., 2019.
Hoinkes, G. and Thöni, M.: Evolution of the Ötztal-Stubai,
Scarl-Campo and Ulten Basement Units, in: Pre-Mesozoic Geology in the Alps,
edited by: von Raumer, J. F. and Neubauer, F., Springer Berlin Heidelberg,
Berlin, Heidelberg, 485–494,
https://doi.org/10.1007/978-3-642-84640-3_29, 1993.
Ikeda, A., Matsuoka, N., and Kääb, A.: Fast deformation of
perennially frozen debris in a warm rock glacier in the Swiss Alps: An
effect of liquid water, J. Geophys. Res., 113, 212,
https://doi.org/10.1029/2007JF000859, 2008.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers
and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90,
https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Kääb, A. and Vollmer, M.: Surface Geometry, Thickness Changes and
Flow Fields on Creeping Mountain Permafrost: Automatic Extraction by Digital
Image Analysis, Permafrost Periglac., 11, 315–326,
https://doi.org/10.1002/1099-1530(200012)11:4<315:AID-PPP365>3.0.CO;2-J, 2000.
Kääb, A., Chiarle, M., Raup, B., and Schneider, C.: Climate change
impacts on mountain glaciers and permafrost, Global Planet. Change,
56, vii–ix, https://doi.org/10.1016/j.gloplacha.2006.07.008, 2007.
Kääb, A., Strozzi, T., Bolch, T., Caduff, R., Trefall, H., Stoffel, M., and Kokarev, A.: Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s, The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, 2021.
Kaufmann, V. and Kellerer-Pirklbauer, A.: Regional quantification of rock
glacier movement in Austria using governmental GIS data, in: Geomorphometry
for geosciences: [this vol. is a contribution to the 4th International
Conference on Geomorphometry; Geomorphometry 2015: Conference and Workshops; Geomorphometry for natural hazards geomodelling, Poznan (Poland), 22-26 June 2015], edited by: Jasiewicz, J., 165–168, 2015.
Kaufmann, V., Seier, G., Sulzer, W., Wecht, M., Liu, Q., Lauk, G., and Maurer, M.: ROCK GLACIER MONITORING USING AERIAL PHOTOGRAPHS: CONVENTIONAL VS. UAV-BASED MAPPING – A COMPARATIVE STUDY, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 239–246, https://doi.org/10.5194/isprs-archives-XLII-1-239-2018, 2018.
Kaufmann, V., Sulzer, W., Seier, G., and Wecht, M.: Panta Rhei: Movement
Change of Tschadinhorn Rock Glacier (Hohe Tauern Range, Austria), 1954–2017, Kartogr. Geoinf. (Online), 18, 4–24,
https://doi.org/10.32909/kg.18.31.1, 2019.
Kellerer-Pirklbauer, A. and Kaufmann, V.: About the relationship between
rock glacier velocity and climate parameters in central Austria, Austrian J. Earth Sci., 105,
94–112, 2012.
Kellerer-Pirklbauer, A. and Kaufmann, V.: Deglaciation and its impact on
permafrost and rock glacier evolution: New insight from two adjacent cirques
in Austria, Sci. Total Environ., 621, 1397–1414,
https://doi.org/10.1016/j.scitotenv.2017.10.087, 2018.
Kellerer-Pirklbauer, A., Lieb, G. K., and Kaufmann, V.: The Dösen Rock
Glacier in Central Austria: A key site for multidisciplinary long-term rock
glacier monitoring in the Eastern Alps, Austrian J. Earth Sci., 110, 2,
https://doi.org/10.17738/ajes.2017.0013, 2018.
Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner, E.,
and Volken, M.: Factors Controlling Velocity Variations at Short-Term,
Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss
Alps, Permafrost Periglac., 28, 675–684,
https://doi.org/10.1002/ppp.1953, 2017.
Kenner, R., Pruessner, L., Beutel, J., Limpach, P., and Phillips, M.: How
rock glacier hydrology, deformation velocities and ground temperatures
interact: Examples from the Swiss Alps, Permafrost Periglac., 31,
3–14, https://doi.org/10.1002/ppp.2023, 2020.
Krainer, K. and Mostler, W.: Flow velocities of active rock glaciers in the
Austrian Alps, Geogr. Ann. A, 88,
267–280, 2006.
Krainer, K. and Ribis, M.: A rock glacier inventory of the Tyrolean Alps
(Austria), Austrian J. Earth Sci., 105, 32–57, 2012.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K.,
Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A
10,300-year-old permafrost core from the active rock glacier Lazaun,
southern Ötztal Alps (South Tyrol, northern Italy), Quaternary Res., 83,
324–335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015.
Kummert, M. and Delaloye, R.: Mapping and quantifying sediment transfer
between the front of rapidly moving rock glaciers and torrential gullies,
Geomorphology, 309, 60–76, https://doi.org/10.1016/j.geomorph.2018.02.021,
2018.
Land Tirol: https://www.tirol.gv.at/en/, last access:
15 September 2021.
Marcer, M., Cicoira, A., Cusicanqui, D., Bodin, X., Echelard, T., Obregon,
R., and Schoeneich, P.: Rock glaciers throughout the French Alps accelerated
and destabilised since 1990 as air temperatures increased, Commun. Earth
Environ., 2, 383, https://doi.org/10.1038/s43247-021-00150-6, 2021.
Micheletti, N., Lambiel, C., and Lane, S. N.: Investigating decadal-scale
geomorphic dynamics in an alpine mountain setting, J. Geophys. Res.-Earth, 120, 2155–2175, https://doi.org/10.1002/2015JF003656, 2015.
Monnier, S. and Kinnard, C.: Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33° S), Earth Surf. Dynam., 5, 493–509, https://doi.org/10.5194/esurf-5-493-2017, 2017.
Olefs, M., Koch, R., Schöner, W., and Marke, T.: Changes in Snow Depth,
Snow Cover Duration, and Potential Snowmaking Conditions in Austria,
1961–2020 – A Model Based Approach, Atmosphere, 11, 1330,
https://doi.org/10.3390/atmos11121330, 2020.
Otto, J.-C., Schrott, L., and Keller, F.: Map of permafrost distribution for Austria, Europe, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.917719, 2020
Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M., McNabb, R.,
Nagler, T., Nuth, C., Rastner, P., Strozzi, T., and Wuite, J.: Error sources
and guidelines for quality assessment of glacier area, elevation change, and
velocity products derived from satellite data in the Glaciers_cci project, Remote Sens. Environ., 203, 256–275,
https://doi.org/10.1016/j.rse.2017.08.038, 2017.
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Zhou, L., and Wang, T.:
Change in snow phenology and its potential feedback to temperature in the
Northern Hemisphere over the last three decades, Environ. Res. Lett., 8,
14008, https://doi.org/10.1088/1748-9326/8/1/014008, 2013.
PERMOS: Permafrost in Switzerland 2014/2015 to 2017/2018, Swiss Permafrost
Monitoring Network, Glaciological Report (Permafrost), No. 16–19, 2019.
Pillewizer, W.: Untersuchungen an Blockstrfmen der Ötztaler Alpen, Geomorphologische Abhandlungen des Geographischen Institutes
derFU Berlin (Otto-Maull-Festschrift), 5, 37–50, 1957.
Rangwala, I. and Miller, J. R.: Climate change in mountains: a review of
elevation-dependent warming and its possible causes, Climatic Change, 114,
527–547, https://doi.org/10.1007/s10584-012-0419-3, 2012.
Ravanel, L., Magnin, F., and Deline, P.: Impacts of the 2003 and 2015 summer
heatwaves on permafrost-affected rock-walls in the Mont Blanc massif,
Sci. Total Environ., 609, 132–143,
https://doi.org/10.1016/j.scitotenv.2017.07.055, 2017.
Roer, I.: Rockglacier kinematics in a high mountain geosystem, Dissertation,
Mathematisch-Naturwissenschaftliche Fakultät, Rheinische
Friedrich-Wilhelms-Untiversität Bonn, Bonn, 263 pp., 2005.
Roer, I., Kääb, A., and Dikau, R.: Rockglacier acceleration in the
Turtmann valley (Swiss Alps): Probable controls, Norsk Geogr. Tidsskr., 59, 157–163,
https://doi.org/10.1080/00291950510020655, 2005.
Roer, I., Haeberli, W., Avian, M., Kaufmann, V., Delaloye, R., Lambiel, C.,
and Kääb, A.: Observations and considerations on destabilizing
active rock glaciers in the European Alps, 9th International Conference on
Permafrost, Fairbanks, Alaska, 29 June–3 July 2008, 1505–1510,
2008.
Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler, R. A.:
Application of image cross-correlation to the measurement of glacier
velocity using satellite image data, Remote Sens. Environ., 42,
177–186, 1992.
Scapozza, C., Lambiel, C., Bozzini, C., Mari, S., and Conedera, M.:
Assessing the rock glacier kinematics on three different timescales: a case
study from the southern Swiss Alps, Earth Surf. Proc. Land., 39,
2056–2069, https://doi.org/10.1002/esp.3599, 2014.
Schoeneich, P., Bodin, X., Echelard, T., Kaufmann, V., Kellerer-Pirklbauer,
A., Krysiecki, J.-M., and Lieb, G. K.: Velocity Changes of Rock Glaciers and
Induced Hazards, in: Engineering Geology for Society and Territory – Volume
1, edited by: Lollino, G., Manconi, A., Clague, J., Shan, W., and Chiarle,
M., Springer International Publishing, Cham, 223–227,
https://doi.org/10.1007/978-3-319-09300-0_42, 2015.
Scotti, R., Crosta, G. B., and Villa, A.: Destabilisation of Creeping
Permafrost: The Plator Rock Glacier Case Study (Central Italian Alps),
Permafrost Periglac., 28, 224–236,
https://doi.org/10.1002/ppp.1917, 2017.
Vivero, S. and Lambiel, C.: Monitoring the crisis of a rock glacier with repeated UAV surveys, Geogr. Helv., 74, 59–69, https://doi.org/10.5194/gh-74-59-2019, 2019.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016.
Short summary
We investigate the long-term (1953–2017) morphodynamic changes in rock glaciers in Kaunertal valley, Austria. Using a combination of historical aerial photographs and laser scanning data, we derive information on flow velocities and surface elevation changes. We observe a loss of volume and an acceleration from the late 1990s onwards. We explain this by changes in the meteorological forcing. Individual rock glaciers react to these changes to varying degrees.
We investigate the long-term (1953–2017) morphodynamic changes in rock glaciers in Kaunertal...