Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4845-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4845-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Weak control of snow avalanche deposit volumes by avalanche path morphology
Hippolyte Kern
CORRESPONDING AUTHOR
Université Paris 1 Panthéon-Sorbonne, LGP-CNRS, 1 place Aristide Briand, Meudon, France
Nicolas Eckert
UR ETNA, INRAe, Université Grenoble Alpes, Grenoble, France
Vincent Jomelli
Université Paris 1 Panthéon-Sorbonne, LGP-CNRS, 1 place Aristide Briand, Meudon, France
Aix-Marseille University, CNRS, IRD, Coll. France, INRAE, CEREGE, 13545 Aix-en-Provence, France
Delphine Grancher
Université Paris 1 Panthéon-Sorbonne, LGP-CNRS, 1 place Aristide Briand, Meudon, France
Michael Deschatres
Aix-Marseille University, CNRS, IRD, Coll. France, INRAE, CEREGE, 13545 Aix-en-Provence, France
Gilles Arnaud-Fassetta
Université de Paris, UMR 8586 PRODIG, 8, rue Albert Einstein, 75013 Paris, France
Related authors
No articles found.
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
Earth Surf. Dynam., 13, 607–627, https://doi.org/10.5194/esurf-13-607-2025, https://doi.org/10.5194/esurf-13-607-2025, 2025
Short summary
Short summary
This work presents a protocol and a model to obtain the sizes of the pebbles in mountain rivers from uncrewed aerial vehicle images. A total of 12 rivers located in southeastern France were photographed to build the model. The results show that the model has little error and should be usable for similar rivers. The grain size of mountain rivers is an important parameter for environmental diagnostics by mapping the aquatic habitats and for flood management by estimating the pebble fluxes during floods.
Erich H. Peitzsch, Justin T. Martin, Ethan M. Greene, Nicolas Eckert, Adrien Favillier, Jason Konigsberg, Nickolas Kichas, Daniel K. Stahle, Karl W. Birkeland, Kelly Elder, and Gregory T. Pederson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2217, https://doi.org/10.5194/egusphere-2025-2217, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Snow avalanches pose substantial risks to communities and public safety in Colorado. We studied tree growth patterns impacted by avalanches from 1698 to 2020 alongside meteorological data. We found variations in avalanche frequency revealing a decline in regional avalanche activity and shifts in the causes of these types of large and widespread avalanche events. This knowledge can enhance avalanche safety measures and infrastructure design.
Louise Dallons Thanneur, Florie Giacona, Nicolas Eckert, and Philippe Frey
EGUsphere, https://doi.org/10.5194/egusphere-2025-761, https://doi.org/10.5194/egusphere-2025-761, 2025
Short summary
Short summary
This paper proposes a methodology to develop a long-range multirisk database. Combining scattered pre-existing records and intensive research in historical archives provides a 1600–2020 record of past events in a valley of the French Alps. It goes far beyond any inventory existing in terms of number of events, temporal coverage and detailed description of events characteristics in a mountain context. Spatio-temporal patterns are analysed, opening perspective for multirisk assessment.
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023, https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Short summary
We assess projected changes in snowfall extremes in the French Alps as a function of elevation and global warming level for a high-emission scenario. On average, heavy snowfall is projected to decrease below 3000 m and increase above 3600 m, while extreme snowfall is projected to decrease below 2400 m and increase above 3300 m. At elevations in between, an increase is projected until +3 °C of global warming and then a decrease. These results have implications for the management of risks.
Léo Viallon-Galinier, Pascal Hagenmuller, and Nicolas Eckert
The Cryosphere, 17, 2245–2260, https://doi.org/10.5194/tc-17-2245-2023, https://doi.org/10.5194/tc-17-2245-2023, 2023
Short summary
Short summary
Avalanches are a significant issue in mountain areas where they threaten recreationists and human infrastructure. Assessments of avalanche hazards and the related risks are therefore an important challenge for local authorities. Meteorological and snow cover simulations are thus important to support operational forecasting. In this study we combine it with mechanical analysis of snow profiles and find that observed avalanche data improve avalanche activity prediction through statistical methods.
Cécile Duvillier, Nicolas Eckert, Guillaume Evin, and Michael Deschâtres
Nat. Hazards Earth Syst. Sci., 23, 1383–1408, https://doi.org/10.5194/nhess-23-1383-2023, https://doi.org/10.5194/nhess-23-1383-2023, 2023
Short summary
Short summary
This study develops a method that identifies individual potential release areas (PRAs) of snow avalanches based on terrain analysis and watershed delineation and demonstrates its efficiency in the French Alps context using an extensive cadastre of past avalanche limits. Results may contribute to better understanding local avalanche hazard. The work may also foster the development of more efficient PRA detection methods based on a rigorous evaluation scheme.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022, https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Short summary
Anticipating risks related to climate extremes is critical for societal adaptation to climate change. In this study, we propose a statistical method in order to estimate future climate extremes from past observations and an ensemble of climate change simulations. We apply this approach to snow load data available in the French Alps at 1500 m elevation and find that extreme snow load is projected to decrease by −2.9 kN m−2 (−50 %) between 1986–2005 and 2080–2099 for a high-emission scenario.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, https://doi.org/10.5194/tc-15-4335-2021, 2021
Short summary
Short summary
Extreme snowfall can cause major natural hazards (avalanches, winter storms) that can generate casualties and economic damage. In the French Alps, we show that between 1959 and 2019 extreme snowfall mainly decreased below 2000 m of elevation and increased above 2000 m. At 2500 m, we find a contrasting pattern: extreme snowfall decreased in the north, while it increased in the south. This pattern might be related to increasing trends in extreme snowfall observed near the Mediterranean Sea.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Nat. Hazards Earth Syst. Sci., 20, 2961–2977, https://doi.org/10.5194/nhess-20-2961-2020, https://doi.org/10.5194/nhess-20-2961-2020, 2020
Short summary
Short summary
To minimize the risk of structure collapse due to extreme snow loads, structure standards rely on 50-year return levels of ground snow load (GSL), i.e. levels exceeded once every 50 years on average, that do not account for climate change. We study GSL data in the French Alps massifs from 1959 and 2019 and find that these 50-year return levels are decreasing with time between 900 and 4800 m of altitude, but they still exceed return levels of structure standards for half of the massifs at 1800 m.
Cited articles
Bartelt, P. and McArdell, B. W.: Granulometric investigations of snow avalanches, J. Glaciol., 55, 829–833, https://doi.org/10.3189/002214309790152384, 2009.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.
Eckert, N., Parent, E., Faug, T., and Naaim, M.: Bayesian optimal design of an avalanche dam using a multivariate numerical avalanche model, Stoch. Env. Res. Risk A., 23, 1123–1141, 2009.
Eckerstorfer, M. and Christiansen, H. H.: Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006–2009, Geomorphology, 134, 186–196, https://doi.org/10.1016/j.geomorph.2011.07.001, 2011.
Favier, P., Eckert, N., Bertrand, D., and Naaim, M.: Sensitivity of avalanche risk evaluation to vulnerability relations, Cold Reg. Sci. Technol., 108, 163–177, https://doi.org/10.1016/j.coldregions.2014.08.009, 2014.
Gaume J., Chambon G., Eckert N., and Naaim M.: Relative influence of mechanical and meteorological factors on avalanche release depth distributions: An application to French Alps, Geophys. Res. Lett., 39, L12401, https://doi.org/10.1029/2012GL051917, 2012.
INRAE: EPA database, https://www.avalanches.fr/static/1public/epaclpa/EPA_listes_evenements/, last access: 10 October 2021.
Jomelli V.: Les effets de la fonte sur la sédimentation de dépôts d'avalanche de neige chargée dans le massif des Ecrins (Alpes françaises), Géomorphologie, 5, 39–57, 1999.
Jomelli, V. and Bertran, P.: Wet snow avalanche deposits in the French Alps: structure and sedimentology, Geogr. Ann., 83, 15–28, https://doi.org/10.1111/j.0435-3676.2001.00141.x, 2001.
Jomelli, V., Pavlova, I., Giacona, F., Zgheib, T., and Eckert, N.: Respective influence of geomorphologic and climate conditions on debris-flows occurrence in the Northern French Alps, Landslides, 16, 1871–1883, https://doi.org/10.1007/s10346-019-01195-7, 2019.
Kern, H., Jomelli, V., Eckert, N., Grancher, D., and Deschâtres, M.: Variabilité des volumes des dépôts d'avalanche et relations avec la morphologie des couloirs d'écoulement (Bessans, Savoie, France), Géomorphologie, 26, 129–140, https://doi.org/10.4000/geomorphologie.14361, 2020.
Kölher, A., McElwaine, J. N., and Sovilla, B.: GEODAR Data and the flows regimes of snow avalanches, J. Geophys. Res.-Earth, 123, 1272–1294, https://doi.org/10.1002/2017JF004375, 2018.
Leone, F., Colas, A., Garcin, Y., Eckert, N., Jomelli, V., and Gherardi, M.: Le risque avalanche sur le réseau routier alpin français. Évaluation des impacts et cartographie de la perte d’accessibilité territoriale, J. Alp. Res., 102, 1760–7426,
https://doi.org/10.4000/rga.2491, 2014.
Li, X., Sovilla, B., Jiang, C., and Gaume, J.: The mechanical origin of snow avalanche dynamics and flow regime transitions, The Cryosphere, 14, 3381–3398, https://doi.org/10.5194/tc-14-3381-2020, 2020.
Mc Clung, D. M. and Gauer, P.: Maximum frontal speeds, alpha angles and deposit volumes of flowing snow avalanches, Cold Reg. Sci. Technol., 153, 78–85, https://doi.org/10.1016/j.coldregions.2018.04.009, 2018.
Moré, J. J.: The Levenberg–Marquardt algorithm: implementation and theory, edited by: Watson, G. A., Numerical Analysis, 630, 106–116, 1978.
Naaim, M., Eckert, N., Giraud, G., Faug, T., Chambon, G., Naaim-Bouvet, F., and Richard, D.: Impact du réchauffement climatique sur l'activité avalancheuse et multiplication des avalanches humides dans les Alpes françaises, Houille Blanche, 6, 12–20, https://doi.org/10.1051/lhb/2016055, 2016.
Sovilla, B., McElwaine, J. N., Schaer, M., and Vallet, J.: Variation of deposition depth with slope angle in snow avalanches: Measurement from Vallée de la Sionne, J. Geophys. Res., 115, 13, https://doi.org/10.1029/2009JF001390, 2010.
Sovilla, B., McElwaine, J. N., and Louge, M. Y.: The structure of powder snow avalanches, C. R. Phys., 16, 97–104, https://doi.org/10.1016/j.crhy.2014.11.005, 2015.
Steinkogler, W., Sovilla, B., and Lehning, M.: Influence of snow cover properties on avalanches dynamics, Cold Reg. Sci. Technol., 97, 121–131, https://doi.org/10.1016/j.coldregions.2013.10.002, 2014.
Zgheib, T., Giacona, F., Granet-Abisset, A. N., Morin, S., and Eckert, N.: One and a half century of avalanche risk to settlements in the upper Maurienne valley inferred from land cover and socio- environmental changes, Global Environ. Change, 65, 102149, https://doi.org/10.1016/j.gloenvcha.2020.102149, 2020.
Short summary
Snow avalanches are a major component of the mountain cryosphere that often put people, settlements, and infrastructures at risk. This study investigated avalanche path morphological factors controlling snow deposit volumes, a critical aspect of snow avalanche dynamics that remains poorly known. Different statistical techniques show a slight but significant link between deposit volumes and avalanche path morphology.
Snow avalanches are a major component of the mountain cryosphere that often put people,...