Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4807-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4807-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep ice as a geochemical reactor: insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)
Giovanni Baccolo
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
Milano-Bicocca Section, Istituto Nazionale di Fisica Nucleare,
Milan, Italy
Barbara Delmonte
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
Elena Di Stefano
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
Milano-Bicocca Section, Istituto Nazionale di Fisica Nucleare,
Milan, Italy
Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
Giannantonio Cibin
Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
Ilaria Crotti
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
Laboratoire des Sciences du Climat et de l'Environnement
IPSL, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
Massimo Frezzotti
Department of Science, Roma Tre University, Rome, Italy
Dariush Hampai
Laboratori Nazionali di
Frascati, Istituto Nazionale di Fisica Nucleare, Frascati, Italy
Yoshinori Iizuka
Institute of Low Temperature Science, Hokkaido University, Sapporo,
Japan
Augusto Marcelli
Laboratori Nazionali di
Frascati, Istituto Nazionale di Fisica Nucleare, Frascati, Italy
Rome International Center for Materials Science – Superstripes, Rome, Italy
Valter Maggi
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
Milano-Bicocca Section, Istituto Nazionale di Fisica Nucleare,
Milan, Italy
Related authors
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-56, https://doi.org/10.5194/cp-2024-56, 2024
Preprint under review for CP
Short summary
Short summary
Aeolian diatoms and dust in the RICE ice core (Antarctica) allow reconstructing climate variability in the Eastern Ross Sea over the last 2 ka. Long-term changes are related to environmental parameters as sea ice extent and extension of the Ross Sea Polynya. A climatic reorganization occurred around 1470 CE in response to the development of the Roosevelt Island Polynya. El Niño promoted the establishment of the Ross Sea dipole while La Niña favored the eastward expansion of the polynya.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
EGUsphere, https://doi.org/10.5194/egusphere-2024-1357, https://doi.org/10.5194/egusphere-2024-1357, 2024
Short summary
Short summary
We have reconstructed the multi-decadal (1980s–2023) cumulative mass balance for all the current mountain glaciers in the Italian Dolomites. We used historical aerial imagery, drone surveys and airborne LiDAR to fill the existing gap of glaciological data for the region. We observed an alarming decline in both glaciers area and volume, with some of them showing lower losses due to local topography and debris cover feedback. We strongly encourage more specific monitoring for these small glaciers.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-129, https://doi.org/10.5194/cp-2020-129, 2020
Manuscript not accepted for further review
Short summary
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.
Giovanni Baccolo, Edyta Łokas, Paweł Gaca, Dario Massabò, Roberto Ambrosini, Roberto S. Azzoni, Caroline Clason, Biagio Di Mauro, Andrea Franzetti, Massimiliano Nastasi, Michele Prata, Paolo Prati, Ezio Previtali, Barbara Delmonte, and Valter Maggi
The Cryosphere, 14, 657–672, https://doi.org/10.5194/tc-14-657-2020, https://doi.org/10.5194/tc-14-657-2020, 2020
Short summary
Short summary
Cryoconite is the sediment found on the surface of glaciers. The paper presents cryoconite as an environmental matrix able to accumulate natural and artificial radioactivity with unprecedented efficiency. Only samples from sites where nuclear accidents and explosions occurred present a stronger radioactive contamination. The peculiarities of glacial environments are responsible for this extreme feature, making cryoconite a useful tool tool for the monitoring of environmental radioactivity.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Marius Folden Simonsen, Llorenç Cremonesi, Giovanni Baccolo, Samuel Bosch, Barbara Delmonte, Tobias Erhardt, Helle Astrid Kjær, Marco Potenza, Anders Svensson, and Paul Vallelonga
Clim. Past, 14, 601–608, https://doi.org/10.5194/cp-14-601-2018, https://doi.org/10.5194/cp-14-601-2018, 2018
Short summary
Short summary
Ice core dust size distributions are more often measured today by an Abakus laser sensor than by the more technically demanding but also very accurate Coulter counter. However, Abakus measurements consistently give larger particle sizes. We show here that this bias exists because the particles are flat and elongated. Correcting for this gives more accurate Abakus measurements. Furthermore, the shape of the particles can be extracted from a combination of Coulter counter and Abakus measurements.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Biagio Di Mauro, Giovanni Baccolo, Roberto Garzonio, Claudia Giardino, Dario Massabò, Andrea Piazzalunga, Micol Rossini, and Roberto Colombo
The Cryosphere, 11, 2393–2409, https://doi.org/10.5194/tc-11-2393-2017, https://doi.org/10.5194/tc-11-2393-2017, 2017
Short summary
Short summary
In the paper, we demonstrate the potential of field and satellite hyperspectral reflectance data in characterizing the spatial distribution of impurities on the Morteratsch Glacier. In situ reflectance spectra showed that impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier. Laboratory measurements of cryoconite showed the presence of elemental and organic carbon.
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-56, https://doi.org/10.5194/cp-2024-56, 2024
Preprint under review for CP
Short summary
Short summary
Aeolian diatoms and dust in the RICE ice core (Antarctica) allow reconstructing climate variability in the Eastern Ross Sea over the last 2 ka. Long-term changes are related to environmental parameters as sea ice extent and extension of the Ross Sea Polynya. A climatic reorganization occurred around 1470 CE in response to the development of the Roosevelt Island Polynya. El Niño promoted the establishment of the Ross Sea dipole while La Niña favored the eastward expansion of the polynya.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
EGUsphere, https://doi.org/10.5194/egusphere-2024-1357, https://doi.org/10.5194/egusphere-2024-1357, 2024
Short summary
Short summary
We have reconstructed the multi-decadal (1980s–2023) cumulative mass balance for all the current mountain glaciers in the Italian Dolomites. We used historical aerial imagery, drone surveys and airborne LiDAR to fill the existing gap of glaciological data for the region. We observed an alarming decline in both glaciers area and volume, with some of them showing lower losses due to local topography and debris cover feedback. We strongly encourage more specific monitoring for these small glaciers.
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1650, https://doi.org/10.5194/egusphere-2024-1650, 2024
Short summary
Short summary
We applied an ice flow model to a flow line from the summit of Dome C to the Beyond EPICA ice core drill site on Little Dome C in Antarctica. Results show that the oldest ice at the drill site may be 1.12 Ma (at age density of 20 kyr/m) and originate from around 15 km upstream. We also discuss the nature of the 200–250 m thick basal layer which could be composed of accreted ice, stagnant ice, or even disturbed ice containing debris.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Giacomo Traversa, Davide Fugazza, and Massimo Frezzotti
The Cryosphere, 17, 427–444, https://doi.org/10.5194/tc-17-427-2023, https://doi.org/10.5194/tc-17-427-2023, 2023
Short summary
Short summary
Megadunes are fields of huge snow dunes present in Antarctica and on other planets, important as they present mass loss on the leeward side (glazed snow), on a continent characterized by mass gain. Here, we studied megadunes using remote data and measurements acquired during past field expeditions. We quantified their physical properties and migration and demonstrated that they migrate against slope and wind. We further proposed automatic detections of the glazed snow on their leeward side.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Tomotaka Saruya, Shuji Fujita, Yoshinori Iizuka, Atsushi Miyamoto, Hiroshi Ohno, Akira Hori, Wataru Shigeyama, Motohiro Hirabayashi, and Kumiko Goto-Azuma
The Cryosphere, 16, 2985–3003, https://doi.org/10.5194/tc-16-2985-2022, https://doi.org/10.5194/tc-16-2985-2022, 2022
Short summary
Short summary
Crystal orientation fabrics (COF) of the Dome Fuji ice core were investigated with an innovative method with unprecedentedly high statistical significance and dense depth coverage. The COF profile and its fluctuation were found to be highly dependent on concentrations of chloride ion and dust. The data suggest deformation of ice at the deepest zone is highly influenced by COF fluctuations that progressively develop from the near-surface firn toward the deepest zone within ice sheets.
Stefania Danesi, Simone Salimbeni, Alessandra Borghi, Stefano Urbini, and Massimo Frezzotti
EGUsphere, https://doi.org/10.5194/egusphere-2022-29, https://doi.org/10.5194/egusphere-2022-29, 2022
Preprint archived
Short summary
Short summary
Clusters of low-energy seismic events, concentrated in space and time, characterized by highly correlated waveforms (cross-correlation coefficient ≥ 0.95), occur at the floating area of a major ice stream in Antarctica (David Glacier, North Victoria Land). The transient injection of fluids from the David catchment into the regional subglacial hydrographic network, observed by GRACE measurements, is indicated as the main trigger for clustered and repeated seismic occurrences.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Raffaello Nardin, Mirko Severi, Alessandra Amore, Silvia Becagli, Francois Burgay, Laura Caiazzo, Virginia Ciardini, Giuliano Dreossi, Massimo Frezzotti, Sang-Bum Hong, Ishaq Khan, Bianca Maria Narcisi, Marco Proposito, Claudio Scarchilli, Enricomaria Selmo, Andrea Spolaor, Barbara Stenni, and Rita Traversi
Clim. Past, 17, 2073–2089, https://doi.org/10.5194/cp-17-2073-2021, https://doi.org/10.5194/cp-17-2073-2021, 2021
Short summary
Short summary
The first step to exploit all the potential information buried in ice cores is to produce a reliable age scale. Based on chemical and isotopic records from the 197 m Antarctic GV7(B) ice core, accurate dating was achieved and showed that the archive spans roughly the last 830 years. The relatively high accumulation rate allowed us to use the non-sea-salt sulfate seasonal pattern to count annual layers. The accumulation rate reconstruction exhibited a slight increase since the 18th century.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Rafael S. dos Reis, Rafael da Rocha Ribeiro, Barbara Delmonte, Edson Ramirez, Norberto Dani, Paul A. Mayewski, and Jefferson C. Simões
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-186, https://doi.org/10.5194/tc-2021-186, 2021
Revised manuscript not accepted
Short summary
Short summary
The ice-core recovered in Peruvian Andes depicts the 12 years of dust particles data in snow accumulation. The seasonality of the dry and wet season, respectively, are represented by high and low dust concentration in profile. Our observations period show the differences between fine and larger particles concentrations over the years and their correlation with oceanic oscillations phenomena. Also, we introduce the link of the dust groupings with Madeira River in the Amazon basin context.
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Short summary
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micro-destructive, micrometer-scale impurity analysis of ice cores. For improved understanding of the LA-ICP-MS signals, novel 2D impurity imaging is applied to selected glacial and interglacial samples of Antarctic deep ice cores. This allows evaluating the 2D impurity distribution in relation to ice crystal features and assessing implications for investigating highly thinned climate proxy signals in deep polar ice.
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 000 years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 Myr old ice ~265 m above the bed, with sufficient resolution to preserve desired climatic information.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-129, https://doi.org/10.5194/cp-2020-129, 2020
Manuscript not accepted for further review
Short summary
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.
Giovanni Baccolo, Edyta Łokas, Paweł Gaca, Dario Massabò, Roberto Ambrosini, Roberto S. Azzoni, Caroline Clason, Biagio Di Mauro, Andrea Franzetti, Massimiliano Nastasi, Michele Prata, Paolo Prati, Ezio Previtali, Barbara Delmonte, and Valter Maggi
The Cryosphere, 14, 657–672, https://doi.org/10.5194/tc-14-657-2020, https://doi.org/10.5194/tc-14-657-2020, 2020
Short summary
Short summary
Cryoconite is the sediment found on the surface of glaciers. The paper presents cryoconite as an environmental matrix able to accumulate natural and artificial radioactivity with unprecedented efficiency. Only samples from sites where nuclear accidents and explosions occurred present a stronger radioactive contamination. The peculiarities of glacial environments are responsible for this extreme feature, making cryoconite a useful tool tool for the monitoring of environmental radioactivity.
Youngjoon Jang, Sang Bum Hong, Christo Buizert, Hun-Gyu Lee, Sang-Young Han, Ji-Woong Yang, Yoshinori Iizuka, Akira Hori, Yeongcheol Han, Seong Joon Jun, Pieter Tans, Taejin Choi, Seong-Joong Kim, Soon Do Hur, and Jinho Ahn
The Cryosphere, 13, 2407–2419, https://doi.org/10.5194/tc-13-2407-2019, https://doi.org/10.5194/tc-13-2407-2019, 2019
Short summary
Short summary
We can learn how human activity altered atmospheric air from the interstitial air in the porous snow layer (firn) on top of glaciers. However, old firn air (> 55 years) was observed only at sites where surface temperatures and snow accumulation rates are very low, such as the South Pole. In this study, we report an unusually old firn air with CO2 age of 93 years from Styx Glacier, near the Ross Sea coast in Antarctica. We hypothesize that the large snow density variations increase firn air ages.
Koji Fujita, Sumito Matoba, Yoshinori Iizuka, Nozomu Takeuchi, and Teruo Aoki
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-97, https://doi.org/10.5194/cp-2019-97, 2019
Revised manuscript not accepted
Short summary
Short summary
This study presents a novel method for reconstructing summer temperatures from ice-layer thickness and annual accumulation in an ice core using an energy balance model. The method calculates a lookup table by considering heat conduction and meltwater refreezing in firn. We applied the method to four ice cores in different climates. Sensitivity analyses reveal that the annual temperature range, amount of annual precipitation, and firn albedo significantly affect the estimated summer temperature.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Emmanuel Le Meur, Olivier Magand, Laurent Arnaud, Michel Fily, Massimo Frezzotti, Marie Cavitte, Robert Mulvaney, and Stefano Urbini
The Cryosphere, 12, 1831–1850, https://doi.org/10.5194/tc-12-1831-2018, https://doi.org/10.5194/tc-12-1831-2018, 2018
Short summary
Short summary
This paper presents surface mass balance measurements from both GPR and ice core data collected during a traverse in a so-far-unexplored area between the DC and Vostok stations. Results presented here will contribute to a better knowledge of the global mass balance of the Antarctic ice sheet and thus help in constraining its contribution to sea level rise. Another novelty of the paper resides in the comprehensive error budget proposed for the method used for inferring accumulation rates.
Marius Folden Simonsen, Llorenç Cremonesi, Giovanni Baccolo, Samuel Bosch, Barbara Delmonte, Tobias Erhardt, Helle Astrid Kjær, Marco Potenza, Anders Svensson, and Paul Vallelonga
Clim. Past, 14, 601–608, https://doi.org/10.5194/cp-14-601-2018, https://doi.org/10.5194/cp-14-601-2018, 2018
Short summary
Short summary
Ice core dust size distributions are more often measured today by an Abakus laser sensor than by the more technically demanding but also very accurate Coulter counter. However, Abakus measurements consistently give larger particle sizes. We show here that this bias exists because the particles are flat and elongated. Correcting for this gives more accurate Abakus measurements. Furthermore, the shape of the particles can be extracted from a combination of Coulter counter and Abakus measurements.
Marie G. P. Cavitte, Frédéric Parrenin, Catherine Ritz, Duncan A. Young, Brice Van Liefferinge, Donald D. Blankenship, Massimo Frezzotti, and Jason L. Roberts
The Cryosphere, 12, 1401–1414, https://doi.org/10.5194/tc-12-1401-2018, https://doi.org/10.5194/tc-12-1401-2018, 2018
Short summary
Short summary
We reconstruct the pattern of surface accumulation in the region around Dome C, East Antarctica, over the last 73 kyr. We use internal isochrones interpreted from ice-penetrating radar surveys and a 1-D ice flow model to invert for time-averaged and paleo-accumulation rates. We observe that surface accumulation patterns are stable through the last 73 kyr, consistent with current observed regional precipitation gradients and consistent interactions between prevailing winds and surface slope.
Masashi Niwano, Teruo Aoki, Akihiro Hashimoto, Sumito Matoba, Satoru Yamaguchi, Tomonori Tanikawa, Koji Fujita, Akane Tsushima, Yoshinori Iizuka, Rigen Shimada, and Masahiro Hori
The Cryosphere, 12, 635–655, https://doi.org/10.5194/tc-12-635-2018, https://doi.org/10.5194/tc-12-635-2018, 2018
Short summary
Short summary
We present a high-resolution regional climate model called NHM–SMAP applied to the Greenland Ice Sheet (GrIS). The model forced by JRA-55 reanalysis is evaluated using in situ data from automated weather stations, stake measurements,
and ice core obtained from 2011 to 2014. By utilizing the model, we highlight that the choice of calculation schemes for vertical water movement in snow and firn has an effect of up to 200 Gt/year in the yearly accumulated GrIS-wide surface mass balance estimates.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Giovanni Leonelli, Anna Coppola, Maria Cristina Salvatore, Carlo Baroni, Giovanna Battipaglia, Tiziana Gentilesca, Francesco Ripullone, Marco Borghetti, Emanuele Conte, Roberto Tognetti, Marco Marchetti, Fabio Lombardi, Michele Brunetti, Maurizio Maugeri, Manuela Pelfini, Paolo Cherubini, Antonello Provenzale, and Valter Maggi
Clim. Past, 13, 1451–1471, https://doi.org/10.5194/cp-13-1451-2017, https://doi.org/10.5194/cp-13-1451-2017, 2017
Short summary
Short summary
We analyze a tree-ring network from several sites distributed along the Italian Peninsula with the aims of detecting common climate drivers of tree growth and of reconstructing the past climate. We detect the main climatic drivers modulating tree-ring width (RW) and tree-ring maximum latewood density (MXD) and we reconstruct late summer temperatures since the early 1700s using a MXD chronology: this reconstruction is representative of a wide area around the Italian Peninsula.
Biagio Di Mauro, Giovanni Baccolo, Roberto Garzonio, Claudia Giardino, Dario Massabò, Andrea Piazzalunga, Micol Rossini, and Roberto Colombo
The Cryosphere, 11, 2393–2409, https://doi.org/10.5194/tc-11-2393-2017, https://doi.org/10.5194/tc-11-2393-2017, 2017
Short summary
Short summary
In the paper, we demonstrate the potential of field and satellite hyperspectral reflectance data in characterizing the spatial distribution of impurities on the Morteratsch Glacier. In situ reflectance spectra showed that impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier. Laboratory measurements of cryoconite showed the presence of elemental and organic carbon.
Olivier Passalacqua, Catherine Ritz, Frédéric Parrenin, Stefano Urbini, and Massimo Frezzotti
The Cryosphere, 11, 2231–2246, https://doi.org/10.5194/tc-11-2231-2017, https://doi.org/10.5194/tc-11-2231-2017, 2017
Short summary
Short summary
As the Dome C region is a key area for oldest-ice research, we need to better constrain the geothermal flux (GF) so that past basal melt rates are well constrained. Our inverse heat model significantly reduces the confidence intervals of the GF regional field around Dome C, which ranges from 48 to 60 mW m−2. Radar echoes need to be interpreted knowing the time lag of the climate signal to reach the bed. Several old-ice targets are confirmed and a new one is suggested, in which the GF is very low.
Duncan A. Young, Jason L. Roberts, Catherine Ritz, Massimo Frezzotti, Enrica Quartini, Marie G. P. Cavitte, Carly R. Tozer, Daniel Steinhage, Stefano Urbini, Hugh F. J. Corr, Tas van Ommen, and Donald D. Blankenship
The Cryosphere, 11, 1897–1911, https://doi.org/10.5194/tc-11-1897-2017, https://doi.org/10.5194/tc-11-1897-2017, 2017
Short summary
Short summary
To find records of the greenhouse gases found in key periods of climate transition, we need to find sites of unmelted old ice at the base of the Antarctic ice sheet for ice core retrieval. A joint US–Australian–EU team performed a high-resolution survey of such a site (1 km line spacing) near Concordia Station in East Antarctica, using airborne ice-penetrating radar. We found promising targets in rough subglacial terrain, surrounded by subglacial lakes restricted below a minimum hydraulic head.
Niccolò Maffezzoli, Andrea Spolaor, Carlo Barbante, Michele Bertò, Massimo Frezzotti, and Paul Vallelonga
The Cryosphere, 11, 693–705, https://doi.org/10.5194/tc-11-693-2017, https://doi.org/10.5194/tc-11-693-2017, 2017
Short summary
Short summary
Sea ice is a crucial parameter within Earth's climate system. Understanding its dynamics and its response to other climatic variables is therefore of primary importance in view of a warming climate and sea ice decline. In this work we investigate some features of a chemical parameter in ice cores, bromine enrichment, which is linked to sea ice and can therefore be used to reconstruct sea ice in the past.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Christiane Meyer, Ulrich Meyer, Andreas Pflitsch, and Valter Maggi
The Cryosphere, 10, 879–894, https://doi.org/10.5194/tc-10-879-2016, https://doi.org/10.5194/tc-10-879-2016, 2016
Short summary
Short summary
In the paper a new method to calculate airflow speeds in static ice caves by using air temperature data is presented. As most study sites are in very remote places, where it is often not possible to use sonic anemometers and other devices for the analysis of the cave climate, we show how one can use the given database for calculating airflow speeds. Understanding/quantifying all elements of the specific cave climate is indispensable for understanding the evolution of the ice body in ice caves.
J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn
The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015, https://doi.org/10.5194/tc-9-1633-2015, 2015
Short summary
Short summary
The oldest paleoclimatic information is buried within the lowermost layers of deep ice cores. It is therefore essential to judge how deep these records remain unaltered. We study the bottom 60 meters of the EPICA Dome C ice core from central Antarctica to show that the paleoclimatic signal is only affected at the small scale (decimeters) in terms of some of the global ice properties. However our data suggest that the time scale has been considerably distorted by mechanical stretching.
S. Albani, N. M. Mahowald, G. Winckler, R. F. Anderson, L. I. Bradtmiller, B. Delmonte, R. François, M. Goman, N. G. Heavens, P. P. Hesse, S. A. Hovan, S. G. Kang, K. E. Kohfeld, H. Lu, V. Maggi, J. A. Mason, P. A. Mayewski, D. McGee, X. Miao, B. L. Otto-Bliesner, A. T. Perry, A. Pourmand, H. M. Roberts, N. Rosenbloom, T. Stevens, and J. Sun
Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, https://doi.org/10.5194/cp-11-869-2015, 2015
Short summary
Short summary
We propose an innovative framework to organize paleodust records, formalized in a publicly accessible database, and discuss the emerging properties of the global dust cycle during the Holocene by integrating our analysis with simulations performed with the Community Earth System Model. We show how the size distribution of dust is intrinsically related to the dust mass accumulation rates and that only considering a consistent size range allows for a consistent analysis of the global dust cycle.
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
Related subject area
Discipline: Other | Subject: Ice Cores
Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
Regional variability of diatoms in ice cores from the Antarctic Peninsula and Ellsworth Land, Antarctica
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Dieter R. Tetzner, Claire S. Allen, and Elizabeth R. Thomas
The Cryosphere, 16, 779–798, https://doi.org/10.5194/tc-16-779-2022, https://doi.org/10.5194/tc-16-779-2022, 2022
Short summary
Short summary
The presence of diatoms in Antarctic ice cores has been scarcely documented and poorly understood. Here we present a detailed analysis of the spatial and temporal distribution of the diatom record preserved in a set of Antarctic ice cores. Our results reveal that the timing and amount of diatoms deposited present a strong geographical division. This study highlights the potential of the diatom record preserved in Antarctic ice cores to provide useful information about past environmental changes.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Suzanne Preunkert, Michel Legrand, Bénédicte Minster, and Martin Werner
The Cryosphere, 13, 1297–1324, https://doi.org/10.5194/tc-13-1297-2019, https://doi.org/10.5194/tc-13-1297-2019, 2019
Short summary
Short summary
We report new water stable isotope records from the first highly resolved firn core drilled in Adélie Land and covering 1998–2014. Using an updated database, we show that mean values are in line with the range of coastal values. Statistical analyses show no relationship between our record and local surface air temperature. Atmospheric back trajectories and isotopic simulations suggest that water stable isotopes in Adélie provide a fingerprint of the variability of atmospheric dynamics.
Cited articles
Albani, S., Delmonte, B., Maggi, V., Baroni, C., Petit, J.-R., Stenni, B., Mazzola, C., and Frezzotti, M.: Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica): implications for atmospheric variations from regional to hemispheric scales, Clim. Past, 8, 741–750, https://doi.org/10.5194/cp-8-741-2012, 2012a.
Albani, S., Mahowald, N. M., Delmonte, B.,Maggi, V., and Winckler, G.: Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current
climates, Clim. Dynam., 38, 1731–1755, 2012b.
Aubry, L., Roperch, P., de Urreiztieta, M., Rossello, E., and Chauvin, A.:
Paleomagnetic study along the southeastern edge of the Altiplano- Puna Plateau: Neogene tectonic rotations, J. Geophys. Res.-Solid, 101, 17833–17899, 1996.
Baccolo, G., Cibin, G., Delmonte, B., Hampai, D., Marcelli, A., Di Stefano,
E., Macis, S., and Maggi, V.: The contribution of synchrotron light for the
characterization of atmospheric mineral dust in deep ice cores: preliminary
results from the talos dome ice core (east antarctica), Condens. Matter, 3,
25, https://doi.org/10.3390/condmat3030025, 2018a.
Baccolo, G., Delmonte, B., Albani, S., Baroni, C., Cibin, G., Frezzotti, M.,
Hampai, D., Marcelli, A., Revel, M., Salvatore, M., Stenni, B., and Maggi, V.: Regionalization of the atmospheric dust cycle on the periphery of the East Antarctic ice sheet since the last glacial maximum, Geochem. Geophy. Geosy., 19, 3540–3554, 2018b.
Baccolo, G., Delmonte, B., Niles, P. B., Cibin, G., Di Stefano, E., Hampai, D., Keller, L., Maggi, V., Marcelli, A., Michalski, J., Snead, C., Frezzotti, and M.: XAS spectra of dust particles from ice sections of the Talos Dome ice core (East Antarctica), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.924114, 2020.
Baccolo, G., Delmonte, B., Niles, P. B., Cibin, G., Di Stefano, E., Hampai,
D., Keller, L., Maggi, V., Marcelli, A., Michalski, J., Snead, C., and Frezzotti, M.: Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars, Nat. Commun., 12, 1–8, 2021.
Barnes, P., Wolff, E., Mader, H., Udisti, R., Castellano, E., and Röthlisberger, R.: Evolution of chemical peak shapes in the Dome C,
Antarctica, ice core, J. Geophys. Res.-Atmos., 108, D4126, https://doi.org/10.1029/2002JD002538, 2003.
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013.
Berry, A. J., O'Neill, H. S. C., Jayasuriya, K. D., Campbell, S. J., and
Foran, G. J.: XANES calibrations for the oxidation state of iron in a silicate glass, Am. Mineralog., 88, 967–977, 2003.
Beyer, K. D., Hansen, A. R., and Poston, M.: The search for sulfuric acid
octahydrate: experimental evidence, J. Phys. Chem. A, 107, 2025–2032, 2003.
Burgay, F., Erhardt, T., Della Lunga, D., Jensen, C. M., Spolaor, A.,
Vallelonga, P., Fischer, H., and Barbante, C.: Fe2+ in ice cores as a new potential proxy to detect past volcanic eruptions, Sci. Total Environ., 654, 1110–1117, 2019.
Calvin, S.: XAFS for everyone, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013.
Cibin, G., Marcelli, A., Maggi, V., Baccolo, G., Hampai, D., Robbins, P. E.,
Liedl, A., Polese, C., D'Elia, A., Macis, S., Grilli, A., and Raco, A.: Synchrotron Radiation Research and Analysis of the Particulate Matter in Deep Ice Cores: An Overview of the Technical Challenges, Condens. Matter, 4, 61, https://doi.org/10.3390/condmat4030061, 2019.
Conway, T. M., Wolff, E. W., Röthlisberger, R., Mulvaney, R., and
Elderfield, H.: Constraints on soluble aerosol iron flux to the Southern
Ocean at the Last Glacial Maximum, Nat. Commun., 6, 1–9, 2015.
Crotti, I., Landais, A., Stenni, B., Bazin, L., Parrenin, F., Frezzotti, M.,
Ritterbusch, F., Lu, Z. T., Jiang, W., Yang, G. M., Fourré, E., Orsi, A., Jacob, R., Minster, B., Prié, F., Dreossi, G., and Barbante, C.: An extension of the TALDICE ice core age scale reaching back to MIS 10.1, Quaternary Sci. Rev., 266, 107078, https://doi.org/10.1016/j.quascirev.2021.107078, 2021.
De Angelis, M., Morel-Fourcade, M.-C., Barnola, J.-M., Susini, J., and Duval, P.: Brine micro-droplets and solid inclusions in accreted ice from Lake Vostok (East Antarctica), Geophys. Res. Lett., 32, L12501, https://doi.org/10.1029/2005GL022460, 2005.
De Angelis, M., Tison, J.-L., Morel-Fourcade, M.-C., and Susini, J.:
Micro-investigation of EPICA Dome C bottom ice: evidence of long term in
situ processes involving acid–salt interactions, mineral dust, and organic
matter, Quaternary Sci. Rev., 78, 248–265, 2013.
Delmonte, B., Petit, J., and Maggi, V.: Glacial to Holocene implications of
the new 27 000-year dust record from the EPICA Dome C (East Antarctica) ice
core, Clim. Dynam., 18, 647–660, 2002.
Delmonte, B., Basile-Doelsch, I., Petit, J.-R., Maggi, V., Revel-Rolland,
M., Michard, A., Jagoutz, E., and Grousset, F.: Comparing the Epica and
Vostok dust records during the last 220,000 years: stratigraphical correlation and provenance in glacial periods, Earth-Sci. Rev., 66, 63–87, 2004.
Delmonte, B., Baroni, C., Andersson, P. S., Schoberg, H., Hansson, M., Aciego, S., Petit, J.-R., Albani, S., Mazzola, C., Maggi, V., and Frezzotti, M.: Aeolian dust in the Talos Dome ice core (East Antarctica, Pacific/Ross Sea sector): Victoria Land versus remote sources over the last two climate cycles, J. Quatern. Sci., 25, 1327–1337, 2010.
Delmonte, B., Paleari, C. I., Andò, S., Garzanti, E., Andersson, P. S.,
Petit, J. R., Crosta, X., Narcisi, B., Baroni, C., Salvatore, M. C., Baccolo, G., and Maggi, V.: Causes of dust size variability in central East Antarctica (Dome B): Atmospheric transport from expanded South American sources during Marine Isotope Stage 2, Quaternary Sci. Rev., 168, 55–68, 2017.
Dow, J. and Neall, V.: Geology of the lower Rennick Glacier, northern
Victoria Land, Antarctica, N. Zeal. J. Geol. Geophys., 17, 659–714, 1974.
Durand, G., Weiss, J., Lipenkov, V., Barnola, J., Krinner, G., Parrenin, F.,
Delmonte, B., Ritz, C., Duval, P., Röthlisberger, R., and Bigler, M.: Effect of impurities on grain growth in cold ice sheets, J. Geophys. Res.-Earth, 111, F01015, https://doi.org/10.1029/2005JF000320, 2006.
Eichler, J., Weikusat, C., Wegner, A., Twarloh, B., Behrens, M., Fischer,
H., Hörhold, M., Jansen, D., Kipfstuhl, S., Ruth, U., Wilhelms, F., and Weikusat, I.: Impurity analysis and microstructure along the climatic transition from MIS 6 into 5e in the EDML ice core using cryo-Raman microscopy, Front. Earth Sci., 7, 20, https://doi.org/10.3389/feart.2019.00020, 2019.
Faria, S. H., Freitag, J., and Kipfstuhl, S.: Polar ice structure and the
integrity of ice-core paleoclimate records, Quaternary Sci. Rev., 29, 338–351, 2010.
Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Parrenin, F., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., van Ommen, T., and Wilhelms, F.: Where to find 1.5 million yr old ice for the IPICS “Oldest-Ice” ice core, Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, 2013.
Formenti, P., Caquineau, S., Chevaillier, S., Klaver, A., Desboeufs, K., Rajot, J. L., Belin, S., and Briois, V.: Dominance of goethite over hematite
in iron oxides of mineral dust from Western Africa: Quantitative partitioning by X-ray absorption spectroscopy, J. Geophys. Res.-Atmos., 119, 12–740, 2014.
Frezzotti, M., Bitelli, G., De Michelis, P., Deponti, A., Forieri, A.,
Gandolfi, S., Maggi, V., Mancini, F., Remy, F., Tabacco, I. E., Urbini, S., Vittuari, L., and Zirizzotti, A.: Geophysical survey at Talos Dome, East Antarctica: the search for a new deep-drilling site, Ann. Glaciol., 39, 423–432, 2004.
Fukazawa, H., Sugiyama, K., Mae, S., Narita, H., and Hondoh, T.: Acid ions
at triple junction of Antarctic ice observed by Raman scattering, Geophys. Res. Lett., 25, 2845—2848, 1998.
Goossens, T., Sapart, C. J., Dahl-Jensen, D., Popp, T., El Amri, S., and Tison, J.-L.: A comprehensive interpretation of the NEEM basal ice build-up using a multi-parametric approach, The Cryosphere, 10, 553–567, https://doi.org/10.5194/tc-10-553-2016, 2016.
Hooper, J., Mayewski, P., Marx, S., Henson, S., Potocki, M., Sneed, S., Handley, M., Gassò, S., Fischer, M., and Saunders, K. M.: Examining
links between dust deposition and phytoplankton response using ice cores, Aeol.Res., 36, 45–60, 2019.
Iida, A.: Synchrotron Radiation X-Ray Fluorescence Spectrometry, in:
Encyclopedia of Analytical Chemistry, John Wiley & Sons, Hoboken, NJ, https://doi.org/10.1002/9780470027318.a9329, 2013.
Iizuka, Y., Horikawa, S., Sakurai, T., Johnson, S., Dahl-Jensen, D., Steffensen, J. P., and Hondoh, T.: A relationship between ion balance and
the chemical compounds of salt inclusions found in the Greenland Ice Core
Project and Dome Fuji ice cores, J. Geophys. Res.-Atmos., 113, D07303, https://doi.org/10.1029/2007JD009018, 2008.
Iizuka, Y., Delmonte, B., Oyabu, I., Karlin, T., Maggi, V., Albani, S.,
Fukui, M., Hondoh, T., and Hansson, M.: Sulphate and chloride aerosols
during Holocene and last glacial periods preserved in the Talos Dome Ice
Core, a peripheral region of Antarctica, Tellus B, 65, 20197, https://doi.org/10.3402/tellusb.v65i0.20197, 2013.
Jones, A. M., Griffin, P. J., Collins, R. N., and Waite, T. D.: Ferrous iron
oxidation under acidic conditions – The effect of ferric oxide surfaces,
Geochim. Cosmochim. Ac., 145, 1–12, 2014.
Kawamura, K. and Dome Fuji Ice Core Project Members: State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling, Sci. Adv., 3, e1600446, https://doi.org/10.1126/sciadv.1600446, 2017.
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R., Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.: Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core, Nature, 452, 616–619, 2008.
Li, G., Hartmann, J., Derry, L. A.,West, A. J., You, C.-F., Long, X., Zhan,
T., Li, L., Li, G., Qiu, W., Li, T., Liu, L., Chen, Y., Ji, J., Zhao, L., and Chen, J.: Temperature dependence of basalt weathering, Earth Planet. Sc. Lett., 443, 59–69, 2016.
Long, D., Fegan, N., McKee, J., Lyons, W., Hines, M., and Macumber, P.:
Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia, Chem. Geol., 96, 183–202, 1992.
Macis, S., Cibin, G., Maggi, V., Baccolo, G., Hampai, D., Delmonte, B., D'Elia, A., and Marcelli, A.: Microdrop deposition technique: Preparation
and characterization of diluted suspended particulate samples, Condens. Matter, 3, 21, https://doi.org/10.3390/condmat3030021, 2018.
Maher, B., Prospero, J., Mackie, D., Gaiero, D., Hesse, P. P., and Balkanski, Y.: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum, Earth-Sci. Rev., 99, 61–97, 2010.
Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S. P.,
Prentice, I. C., Schulz, M., and Rodhe, H.: Dust sources and deposition
during the last glacial maximum and current climate: A comparison of model
results with paleodata from ice cores and marine sediments, J. Geophys. Res.-Atmos., 104, 15895–15916, 1999.
Marath, N. K. and Wettlaufer, J. S.: Impurity effects in thermal regelation, Soft Matter, 16, 5886, https://doi.org/10.1039/D0SM00558D, 2020.
Markle, B. R., Steig, E. J., Roe, G. H., Winckler, G., and McConnell, J. R.:
Concomitant variability in high-latitude aerosols, water isotopes and the
hydrologic cycle, Nat. Geosci., 11, 853–859, 2018.
Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida,
M., Ciardini, V., Colizza, E., Melis, R., Salvatore, M., Severi, M., Scarchilli, C., Traversi, R., Udisti, R., and Frezzotti, M.: Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea, Nat. Commun., 8, 1–12, 2017.
Moncur, M., Jambor, J., Ptacek, C., and Blowes, D.: Mine drainage from the
weathering of sulfide minerals and magnetite, Appl. Geochem., 24, 2362–2373, 2009.
Montagnat, M., Buiron, D., Arnaud, L., Broquet, A., Schlitz, P., Jacob, R.,
and Kipfstuhl, S.: Measurements and numerical simulation of fabric evolution
along the Talos Dome ice core, Antarctica, Earth Planet. Sc. Lett., 357, 168–178, 2012.
Mulvaney, R., Wolff, E. W., and Oates, K.: Sulphuric acid at grain boundaries in Antarctic ice, Nature, 331, 247–249, 1988.
Nesbitt, H. and Young, G.: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 299, 715–717, 1982.
Ng, F. S. L.: Pervasive diffusion of climate signals recorded in ice-vein ionic impurities, The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021, 2021.
Niles, P. B., Michalski, J., Ming, D. W., and Golden, D.: Elevated olivine
weathering rates and sulfate formation at cryogenic temperatures on Mars,
Nat. Commun., 8, 1–5, 2017.
Ohno, H., Igarashi, M., and Hondoh, T.: Salt inclusions in polar ice core: Location and chemical form of water-soluble impurities, Earth Planet. Sc. Lett., 232, 171–178, 2005.
Ohno, H., Igarashi, M., and Hondoh, T.: Characteristics of salt inclusions
in polar ice from Dome Fuji, East Antarctica, Geophys. Res. Lett., 33, L08501, https://doi.org/10.1029/2006GL025774, 2006.
Ohno, H., Iizuka, Y., Horikawa, S., Sakurai, T., Hondoh, T., and Motoyama, H.: Potassium alum and aluminum sulfate micro-inclusions in polar ice from
Dome Fuji, East Antarctica, Polar Sci., 8, 1–9, 2014.
Ohno, H., Iizuka, Y., Hori, A., Miyamoto, A., Hirabayashi, M., Miyake, T.,
Kuramoto, T., Fujita, S., Segawa, T., Uemura, R., Sakurai, T., Suzuki, T., and Motoyama, H.: Physicochemical properties of bottom ice from Dome Fuji, inland East Antarctica, J. Geophys. Res.-Earth, 121, 1230–1250, 2016.
Paleari, C. I., Delmonte, B., Andò, S., Garzanti, E., Petit, J. R., and
Maggi, V.: Aeolian Dust Provenance in Central East Antarctica During the
Holocene: Environmental Constraints From Single-Grain Raman Spectroscopy, Geophys. Res. Lett., 46, 9968–9979, 2019.
Papike, J., Karner, J., and Shearer, C.: Comparative planetary mineralogy:
Implications of martian and terrestrial jarosite. A crystal chemical perspective, Geochim. Cosmochim. Ac., 70, 1309–1321, 2006.
Potenza, M., Albani, S., Delmonte, B., Villa, S., Sanvito, T., Paroli, B.,
Pullia, A., Baccolo, G., Mahowald, N., and Maggi, V.: Shape and size
constraints on dust optical properties from the Dome C ice core, Antarctica,
Scient. Rep., 6, 1–9, 2016.
Ravel, B. and Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for
X-ray absorption spectroscopy using IFEFFIT, J. Synchro. Radiat., 12, 537–541, 2005.
Rempel, A. W., Wettlaufer, J., and Waddington, E. D.: Anomalous diffusion of
multiple impurity species: Predicted implications for the ice core climate
records, J. Geophys. Res.-Solid, 107, 2330, https://doi.org/10.1029/2002JB001857, 2002.
Rochette, P., Folco, L., Suavet, C., Van Ginneken, M., Gattacceca, J.,
Perchiazzi, N., Braucher, R., and Harvey, R.: Micrometeorites from the
transantarctic mountains, P. Natl. Acad. Sci. USA, 105, 18206–18211, 2008.
Royer, A., De Angelis, M., and Petit, J. R.: A 30 000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate models, Climatic Change, 5, 381–412, 1983.
Rudnick, R. and Gao, S.: Composition of the continental crust, Crust, 3, 1–64, 2003.
Ruth, U., Barnola, J.-M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lambrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., and Wolff, E.: “EDML1”: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years, Clim. Past, 3, 475–484, https://doi.org/10.5194/cp-3-475-2007, 2007.
Sakurai, T., Ohno, H., Motoyama, H., and Uchida, T.: Micro-droplets containing sulfate in the Dome Fuji deep ice core, Antarctica: findings using micro-Raman spectroscopy, J. Raman Spectrosc., 48, 448–452, 2017.
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat. Geosci., 2, 337–340, 2009.
Schwertmann, U.: Occurrence and formation of iron oxides in various
pedoenvironments, in: Iron in soils and clay minerals, Springer, Dordrecht, the Netherlands, 267–308, 1988.
Schwertmann, U. and Murad, E.: Effect of pH on the formation of goethite and hematite from ferrihydrite, Clays Clay Miner., 31, 277–284, 1983.
Shi, Z., Krom, M. D., Jickells, T. D., Bonneville, S., Carslaw, K. S., Mihalopoulos, N., Baker, A. R., and Benning, L. G.: Impacts on iron solubility in the mineral dust by processes in the source region and the
atmosphere: A review, Aeol. Res., 5, 21–42, 2012.
Shoenfelt, E. M., Sun, J., Winckler, G., Kaplan, M. R., Borunda, A. L.,
Farrell, K. R., Moreno, P. I., Gaiero, D. M., Recasens, C., Sambrotto, R.
N., and Bostick, B. C.: High particulate iron (II) content in glacially sourced dusts enhances productivity of a model diatom, Sci. Adv., 3, e1700314, https://doi.org/10.1126/sciadv.1700314, 2017.
Shoenfelt, E. M., Winckler, G., Lamy, F., Anderson, R. F., and Bostick, B.
C.: Highly bioavailable dust-borne iron delivered to the Southern Ocean
during glacial periods, P. Natl. Acad. Sci. USA, 115, 11180–11185, 2018.
Spolaor, A., Vallelonga, P., Cozzi, G., Gabrieli, J., Varin, C., Kehrwald,
N., Zennaro, P., Boutron, C., and Barbante, C.: Iron speciation in aerosol
dust influences iron bioavailability over glacial-interglacial timescales,
Geophys. Res. Lett., 40, 1618–1623, 2013.
Stenni, B., Buiron, D., Frezzotti, M., and the TALDICE collaboration: Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation, Nat. Geosci., 4, 46–49, 2011.
Stoll, N., Eichler, J., Hörhold, M., Shigeyama, W., and Weikusat, I.: A
review of the microstructural location of impurities in polar ice and their
impacts on deformation, Front. Earth Sci., 8, 658, https://doi.org/10.3389/feart.2020.615613, 2021.
Sturm, A. and Carryer, S.: Geology of the region between the Matusevich and
Tucker Glaciers, north Victoria Land, Antarctica, N. Zeal. J. Geol. Geophys., 13, 408–435, 1970.
Sugden, D. E., McCulloch, R. D., Bory, A. J.-M., and Hein, A. S.: Influence
of Patagonian glaciers on Antarctic dust deposition during the last glacial
period, Nat. Geosci., 2, 281–285, 2009.
Talalay, P., Li, Y., Augustin, L., Clow, G. D., Hong, J., Lefebvre, E., Markov, A., Motoyama, H., and Ritz, C.: Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica, The Cryosphere, 14, 4021–4037, https://doi.org/10.5194/tc-14-4021-2020, 2020.
Taylor, S. R. and McLennan, S. M.: The continental crust: its composition and evolution, Blackwell Scientific Pub., Palo Alto, CA, 1985.
Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J.-R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., and Samyn, D.: Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core, The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015, 2015.
Traversi, R., Becagli, S., Castellano, E., Marino, F., Rugi, F., Severi, M.,
Angelis, M. d., Fischer, H., Hansson, M., Stauffer, B., Steffensen, J. P., Bigler, M., and Udisti, R.: Sulfate spikes in the deep layers of EPICA-Dome C ice core: Evidence of glaciological artifacts, Environ. Sci. Technol., 43, 8737–8743, 2009.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Wegner, A., Fischer, H., Delmonte, B., Petit, J. R., Erhardt, T., Ruth, U.,
Svensson, A., Vinther, B., and Miller, H.: The role of seasonality of mineral
dust concentration and size on glacial/interglacial dust changes in the
EPICA Dronning Maud Land ice core, J. Geophys. Res.-Atmos., 120, 9916–9931, 2015.
Wilke, M., Farges, F., Petit, P.-E., Brown Jr., G. E., and Martin, F.:
Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study, Am. Mineralog., 86, 714–730, 2001.
Wolff, E., Barbante, C., Becagli, S., Bigler, M., Boutron, C., Castellano,
E., De Angelis, M., Federer, U., Fischer, H., Fundel, F., Hansson, M., Hutterli, M., Jonsell, U., Karlin, T., Kaufmann, P., Lambert, F., Littot, G. C., Mulvaney, R., Röthlisberger, R., Ruth, U., Severi, M., Siggaard-Andersen, M. L., Sime, L. C., Steffensen, J. P., Stocker, T. F., Traversi, R., Twarloh, B., Udisti, R., Wagenbach, D., and Wegner, A.: Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core, Quaternary Sci. Rev., 29, 285–295, 2010.
Wolff, E. W.: Location, movement and reactions of impurities in solid ice,
in: Chemical Exchange between the atmosphere and polar snow, Springer, Berlin, 541–560, 1996.
Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C.,
Mulvaney, R., Röthlisberger, R., De Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Sigaard-Andersen, M. L., Udisti, R., Becagli, S., Castellano, R., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P., and Gaspari, V.: Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles, Nature, 440, 491–496, 2006.
Zolotov, M. Y. and Mironenko, M. V.: Timing of acid weathering on Mars: A
kinetic-thermodynamic assessment, J. Geophys. Res.-Planets, 112, E07006, https://doi.org/10.1029/2006JE002882, 2007.
Zolotov, M. Y. and Shock, E. L.: Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophys. Res. Lett., 32, L21203, https://doi.org/10.1029/2005GL024253, 2005.
Short summary
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic reconstructions, it is now essential to explore deep ice. The latter was considered a relatively stable environment, but this view is changing. This study shows that the conditions of deep ice promote the interaction between soluble and insoluble impurities, favoring complex geochemical reactions that lead to the englacial dissolution and precipitation of specific minerals present in atmospheric mineral dust.
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic...