Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-479-2021
https://doi.org/10.5194/tc-15-479-2021
Invited perspective article
 | 
01 Feb 2021
Invited perspective article |  | 01 Feb 2021

Invited perspective: What lies beneath a changing Arctic?

Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier

Related authors

A repository of measured soil freezing characteristic curves: 1921 to 2021
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022,https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
High-temporal-resolution hydrometeorological data collected in the tropical Cordillera Blanca, Peru (2004–2020)
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022,https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
GSFLOW–GRASS v1.0.0: GIS-enabled hydrologic modeling of coupled groundwater–surface-water systems
G.-H. Crystal Ng, Andrew D. Wickert, Lauren D. Somers, Leila Saberi, Collin Cronkite-Ratcliff, Richard G. Niswonger, and Jeffrey M. McKenzie
Geosci. Model Dev., 11, 4755–4777, https://doi.org/10.5194/gmd-11-4755-2018,https://doi.org/10.5194/gmd-11-4755-2018, 2018
Short summary
Climate-induced hydrologic change in the source region of the Yellow River: a new assessment including varying permafrost
Pan Wu, Sihai Liang, Xu-Sheng Wang, Yuqing Feng, and Jeffrey M. McKenzie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-744,https://doi.org/10.5194/hess-2017-744, 2018
Manuscript not accepted for further review
Short summary
Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015,https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen ground hydrology
Short-term cooling, drying, and deceleration of an ice-rich rock glacier
Alexander Bast, Robert Kenner, and Marcia Phillips
The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024,https://doi.org/10.5194/tc-18-3141-2024, 2024
Short summary
Massive mobilization of toxic elements from an intact rock glacier in the Central Eastern Alps: insights into ice melt dynamics
Hoda Moradi, Gerhard Furrer, Michael Margreth, David Mair, and Christoph Wanner
EGUsphere, https://doi.org/10.5194/egusphere-2024-789,https://doi.org/10.5194/egusphere-2024-789, 2024
Short summary
Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023,https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 1: Geophysics-based estimates from three different regions
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022,https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Impact of lateral groundwater flow on hydrothermal conditions of the active layer in a high-Arctic hillslope setting
Alexandra Hamm and Andrew Frampton
The Cryosphere, 15, 4853–4871, https://doi.org/10.5194/tc-15-4853-2021,https://doi.org/10.5194/tc-15-4853-2021, 2021
Short summary

Cited articles

Arctic Monitoring and Assessment Programme (AMAP): Snow, Water, Ice, Permafrost in the Arctic (SWIPA), Oslo, Norway, 2017. 
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4, 444–448, https://doi.org/10.1038/ngeo1160, 2011. 
Chen, L., Fortier, D., McKenzie, J. M., and Sliger, M.: Impact of heat advection on the thermal regime of roads built on permafrost, Hydrol. Process., 34, 1647–1664, https://doi.org/10.1002/hyp.13688, 2019. 
Christensen, T. R., Johansson, T., Åkerman, H. J., Mastepanov, M., Malmer, N., Friborg, T., Crill, P., and Svensson, B. H.: Thawing sub-arctic permafrost: Effects on vegetation and methane emissions, Geophys. Res. Lett., 31, L04501, https://doi.org/10.1029/2003gl018680, 2004. 
Download
Short summary
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We provide evidence of how changing groundwater systems underpin surface changes in the north, and we argue for research and inclusion of cryohydrogeology, the study of groundwater in cold regions.