Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-479-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-479-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Invited perspective: What lies beneath a changing Arctic?
Jeffrey M. McKenzie
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, McGill University,
Montréal, H3A 0E8, Canada
Barret L. Kurylyk
Department of Civil and Resource Engineering and Centre for Water
Resources Studies, Dalhousie University, Halifax, B3H 4R2, Canada
Michelle A. Walvoord
U.S. Geological Survey, Earth System Processes Division, Denver,
Colorado, USA
Victor F. Bense
Department of Environmental Sciences, Wageningen University and
Research, Wageningen, the Netherlands
Daniel Fortier
Cold Regions Geomorphology and Geotechnical Laboratory, Department of
Geography, Université de Montréal, Montréal, Canada
Christopher Spence
National Hydrology Research Centre, Environment and Climate Change
Canada, Saskatoon, Canada
Christophe Grenier
Laboratoire des Sciences du Climat et de l'Environnement, IPSL/LSCE,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Related authors
Bastien Charonnat, Michel Baraer, Eole Valence, Janie Masse-Dufresne, Chloé Monty, Kaiyuan Wang, Elise Devoie, and Jeffrey M. McKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2025-117, https://doi.org/10.5194/egusphere-2025-117, 2025
Short summary
Short summary
Climate change is altering water cycle in mountain regions as glaciers melt, but slower-degrading rock glaciers remain influential. This study examines how a rock glacier in Yukon, Canada, interacts with a riverbed, using advanced methods like thermal and time-lapse imagery. It shows that rock glaciers shape river channels, affect groundwater flow, and encourage ice formation in winter. These findings reveal how rock glaciers link mountain ice to deep groundwater, impacting water resources.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Mostafa Gomaa Daoud, Fakhereh Alidoost, Yijian Zeng, Bart Schilperoort, Christiaan Van der Tol, Maciek W. Lubczynski, Mhd Suhyb Salama, Eric D. Morway, Christian D. Langevin, Prajwal Khanal, Zengjing Song, Lianyu Yu, Hong Zhao, Gualbert Oude Essink, Victor F. Bense, Michiel van der Molen, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2025-4179, https://doi.org/10.5194/egusphere-2025-4179, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study investigates the groundwater role in soil-plant-atmosphere continuum. An integrated ecohydrological modelling approach was developed by coupling STEMMUS-SCOPE to MODFLOW 6 and applied at three sites over 8 years. The coupled model improved simulations of soil moisture and temperature, evapotranspiration, carbon fluxes and fluorescence. The findings highlight the groundwater critical role in ecosystem dynamics and its contribution to advancing water, energy and carbon cycle modelling.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Bastien Charonnat, Michel Baraer, Eole Valence, Janie Masse-Dufresne, Chloé Monty, Kaiyuan Wang, Elise Devoie, and Jeffrey M. McKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2025-117, https://doi.org/10.5194/egusphere-2025-117, 2025
Short summary
Short summary
Climate change is altering water cycle in mountain regions as glaciers melt, but slower-degrading rock glaciers remain influential. This study examines how a rock glacier in Yukon, Canada, interacts with a riverbed, using advanced methods like thermal and time-lapse imagery. It shows that rock glaciers shape river channels, affect groundwater flow, and encourage ice formation in winter. These findings reveal how rock glaciers link mountain ice to deep groundwater, impacting water resources.
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024, https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Short summary
In this paper, we investigate the impact of climatic and anthropogenic factors on future groundwater availability. The changes are simulated using hydrological and groundwater flow models. We find that future groundwater status is influenced more by anthropogenic factors than climatic factors. The results are beneficial for informing responsible parties in operational water management about achieving future (ground)water governance.
Samuel Gagnon, Daniel Fortier, Étienne Godin, and Audrey Veillette
The Cryosphere, 18, 4743–4763, https://doi.org/10.5194/tc-18-4743-2024, https://doi.org/10.5194/tc-18-4743-2024, 2024
Short summary
Short summary
Thermo-erosion gullies (TEGs) are one of the most common forms of abrupt permafrost degradation. While their inception has been examined in several studies, the processes of their stabilization remain poorly documented. For this study, we investigated two TEGs in the Canadian High Arctic. We found that, while the formation of a TEG leaves permanent geomorphological scars in landscapes, in the long term, permafrost can recover to conditions similar to those pre-dating the initial disturbance.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024, https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Short summary
For vast northern watersheds, hydrological data are often sparse and incomplete. Our study used remote sensing and clustering to produce classifications of the George River watershed (GRW). Results show two types of subwatersheds with different hydrological behaviors. The GRW experienced a homogenization of subwatershed types likely due to an increase in vegetation productivity, which could explain the measured decline of 1 % (~0.16 km3 y−1) in the George River’s discharge since the mid-1970s.
Jason J. KarisAllen, Aaron A. Mohammed, Joseph J. Tamborski, Rob C. Jamieson, Serban Danielescu, and Barret L. Kurylyk
Hydrol. Earth Syst. Sci., 26, 4721–4740, https://doi.org/10.5194/hess-26-4721-2022, https://doi.org/10.5194/hess-26-4721-2022, 2022
Short summary
Short summary
We used a combination of aerial, thermal, hydrologic, and radionuclide monitoring to investigate intertidal springs flowing into a coastal lagoon with a threatened ecosystem. Field data highlight the critical hydrologic and thermal role of these springs in the nearshore zone, and modelling results reveal that the groundwater springs will likely warm substantially in the coming decades due to climate change. Springs sourced from shallower zones in the aquifer will warm first.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Christopher Spence, Zhihua He, Kevin R. Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 1801–1819, https://doi.org/10.5194/hess-26-1801-2022, https://doi.org/10.5194/hess-26-1801-2022, 2022
Short summary
Short summary
We determined how snow and flow in small creeks change with temperature and precipitation in the Canadian Prairie, a region where water resources are often under stress. We tried something new. Every watershed in the region was placed in one of seven groups based on their landscape traits. We selected one of these groups and used its traits to build a model of snow and streamflow. It worked well, and by the 2040s there may be 20 %–40 % less snow and 30 % less streamflow than the 1980s.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Cited articles
Arctic Monitoring and Assessment Programme (AMAP): Snow, Water, Ice, Permafrost in the Arctic (SWIPA), Oslo, Norway,
2017.
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of
high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4,
444–448, https://doi.org/10.1038/ngeo1160, 2011.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Chen, L., Fortier, D., McKenzie, J. M., and Sliger, M.: Impact of heat
advection on the thermal regime of roads built on permafrost, Hydrol.
Process., 34, 1647–1664, https://doi.org/10.1002/hyp.13688, 2019.
Christensen, T. R., Johansson, T., Åkerman, H. J., Mastepanov, M.,
Malmer, N., Friborg, T., Crill, P., and Svensson, B. H.: Thawing sub-arctic
permafrost: Effects on vegetation and methane emissions, Geophys. Res. Lett.,
31, L04501, https://doi.org/10.1029/2003gl018680, 2004.
Cochand, M., Molson, J., and Lemieux, J.: Groundwater hydrogeochemistry in
permafrost regions, Permafrost Periglac., 30, 90–103,
https://doi.org/10.1002/ppp.1998, 2019.
Connolly, C. T., Cardenas, M. B., Burkart, G. A., Spencer, R. G. M., and
McClelland, J. W.: Groundwater as a major source of dissolved organic matter
to Arctic coastal waters, Nat. Commun., 11, 1479,
https://doi.org/10.1038/s41467-020-15250-8, 2020.
Connon, R. F., Quinton, W. L., Craig, J. R., and Hayashi, M.: Changing
hydrologic connectivity due to permafrost thaw in the lower Liard River
valley, NWT, Canada, Hydrol. Process., 28, 4163–4178,
https://doi.org/10.1002/hyp.10206, 2014.
Crites, H., Kokelj, S. V., and Lacelle, D.: Icings and groundwater conditions
in permafrost catchments of northwestern Canada, Sci. Rep.-UK, 10, 3283,
https://doi.org/10.1038/s41598-020-60322-w, 2020.
Dagenais, S., Molson, J., Lemieux, J.-M., Fortier, R., and Therrien, R.:
Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq
(Nunavik, Canada), Hydrogeol. J., 28, 887–904, https://doi.org/10.1007/s10040-020-02111-3, 2020.
Devoie, É. G., Craig, J. R., Connon, R. F., and Quinton, W. L.: Taliks: A
tipping point in discontinuous permafrost degradation in peatlands, Water
Resour. Res., 55, 9838–9857, https://doi.org/10.1029/2018wr024488, 2019.
Duan, L., Man, X., Kurylyk, B., and Cai, T.: Increasing winter baseflow in
response to permafrost thaw and precipitation regime shifts in northeastern
China, Water, 9, 25, https://doi.org/10.3390/w9010025, 2017.
Elder, C. D., Xu, X., Walker, J., Schnell, J. L., Hinkel, K. M.,
Townsend-Small, A., Arp, C. D., Pohlman, J. W., Gaglioti, B. V., and
Czimczik, C. I.: Greenhouse gas emissions from diverse Arctic Alaskan lakes
are dominated by young carbon, Nat. Clim. Change, 8, 166–171,
https://doi.org/10.1038/s41558-017-0066-9, 2018.
Evans, S. G., Yokeley, B., Stephens, C., and Brewer, B.: Potential
mechanistic causes of increased baseflow across northern Eurasia catchments
underlain by permafrost, Hydrol. Process., 55, 9838–9857, https://doi.org/10.1002/hyp.13759, 2020.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S.
L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague,
C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J.,
Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X.,
Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B.,
Safeeq, M., Shen, C., Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope
Hydrology in Global Change Research and Earth System Modeling, Water Resour.
Res., 55, 1737–1772, https://doi.org/10.1029/2018wr023903, 2019.
Grenier, C., Anbergen, H., Bense, V., Chanzy, Q., Coon, E., Collier, N.,
Costard, F., Ferry, M., Frampton, A., Frederick, J., Gonçalvès, J.,
Holmén, J., Jost, A., Kokh, S., Kurylyk, B., McKenzie, J., Molson, J.,
Mouche, E., Orgogozo, L., Pannetier, R., Rivière, A., Roux, N.,
Rühaak, W., Scheidegger, J., Selroos, J.-O., Therrien, R., Vidstrand, P.,
and Voss, C.: Groundwater flow and heat transport for systems undergoing
freeze-thaw: Intercomparison of numerical simulators for 2D test cases, Adv.
Water Resour., 114, 196–218, https://doi.org/10.1016/j.advwatres.2018.02.001, 2018.
Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M.
B., Fastie, C. L., Griffith, B., Hollister, R. D., Hope, A., Huntington, H.
P., Jensen, A. M., Jia, G. J., Jorgenson, T., Kane, D. L., Klein, D. R.,
Kofinas, G., Lynch, A. H., Lloyd, A. H., McGuire, A. D., Nelson, F. E.,
Oechel, W. C., Osterkamp, T. E., Racine, C. H., Romanovsky, V. E., Stone, R.
S., Stow, D. A., Sturm, M., Tweedie, C. E., Vourlitis, G. L., Walker, M. D.,
Walker, D. A., Webber, P. J., Welker, J. M., Winker, K. S., and Yoshikawa,
K.: Evidence and Implications of Recent Climate Change in Northern Alaska
and Other Arctic Regions, Clim. Change, 72, 251–298,
https://doi.org/10.1007/s10584-005-5352-2, 2005.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147,
https://doi.org/10.1038/s41467-018-07557-4, 2018.
Instanes, A.: Incorporating climate warming scenarios in coastal permafrost
engineering design – Case studies from Svalbard and northwest Russia, Cold
Reg. Sci. Technol., 131, 76–87, https://doi.org/10.1016/j.coldregions.2016.09.004, 2016.
Instanes, A., Kokorev, V., Janowicz, R., Bruland, O., Sand, K., and Prowse,
T.: Changes to freshwater systems affecting Arctic infrastructure and
natural resources, J. Geophys. Res.-Biogeo., 121, 567–585,
https://doi.org/10.1002/2015jg003125, 2016.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O.,Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., 2019.
Johnson, K.: Nunavut communities struggle with water shortage and supply
issues, Environmental Science & Engineering Magazine, April, 10–12,
2018.
Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L., and Zipper, S. C.:
Changing groundwater discharge dynamics in permafrost regions, Environ. Res.
Lett., 13, 084017, https://doi.org/10.1088/1748-9326/aad404, 2018.
Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L., Molson, J., and
Lyon, L. N.: Guidelines for cold-regions groundwater numerical modeling,
Wires Water, 7, e1467, https://doi.org/10.1002/wat2.1467, 2020.
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., and Slater, A.
G.: Permafrost thaw and resulting soil moisture changes regulate projected
high-latitude CO2 and CH4 emissions, Environ. Res. Lett., 10, 094011,
https://doi.org/10.1088/1748-9326/10/9/094011, 2015.
Legendre, M., Bartoli, J., Shmakova, L., Jeudy, S., Labadie, K., Adrait, A.,
Lescot, M., Poirot, O., Bertaux, L., Bruley, C., Coute, Y., Rivkina, E.,
Abergel, C., and Claverie, J.-M.: Thirty-thousand-year-old distant relative
of giant icosahedral DNA viruses with a pandoravirus morphology, P.
Natl. Acad. Sci. USA, 111, 4274–4279, https://doi.org/10.1073/pnas.1320670111, 2014.
Lemieux, J.-M., Fortier, R., Talbot-Poulin, M.-C., Molson, J., Therrien, R.,
Ouellet, M., Banville, D., Cochand, M., and Murray, R.: Groundwater
occurrence in cold environments: examples from Nunavik, Canada, Hydrogeol. J.,
24, 1497–1513, https://doi.org/10.1007/s10040-016-1411-1, 2016.
Lemieux, J.-M., Fortier, R., Murray, R., Dagenais, S., Cochand, M.,
Delottier, H., Therrien, R., Molson, J., Pryet, A., and Parhizkar, M.:
Groundwater dynamics within a watershed in the discontinuous permafrost zone
near Umiujaq (Nunavik, Canada), Hydrogeol. J., 28, 833–851,
https://doi.org/10.1007/s10040-020-02110-4, 2020.
McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen,
G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S.,
Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G.,
Moore, J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A.
G., and Zhuang, Q.: Dependence of the evolution of carbon dynamics in the
northern permafrost region on the trajectory of climate change, P.
Natl. Acad. Sci. USA, 115, 3882–3887, https://doi.org/10.1073/pnas.1719903115, 2018.
Neilson, B. T., Cardenas, M. B., O'Connor, M. T., Rasmussen, M. T., King, T.
V., and Kling, G. W.: Groundwater flow and exchange across the land surface
explain carbon export patterns in continuous permafrost watersheds, Geophys.
Res. Lett., 45, 7596–7605, https://doi.org/10.1029/2018gl078140, 2018.
Parazoo, N. C., Koven, C. D., Lawrence, D. M., Romanovsky, V., and Miller, C. E.: Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions, The Cryosphere, 12, 123–144, https://doi.org/10.5194/tc-12-123-2018, 2018.
Pastick, N. J., Jorgenson, M. T., Goetz, S. J., Jones, B. M., Wylie, B. K.,
Minsley, B. J., Genet, H., Knight, J. F., Swanson, D. K., and Jorgenson, J.
C.: Spatiotemporal remote sensing of ecosystem change and causation across
Alaska, Global Change Biol., 25, 1171–1189, https://doi.org/10.1111/gcb.14279, 2018.
Schuster, P. F., Schaefer, K. M., Aiken, G. R., Antweiler, R. C., Dewild, J.
F., Gryziec, J. D., Gusmeroli, A., Hugelius, G., Jafarov, E., Krabbenhoft,
D. P., Liu, L., Herman-Mercer, N., Mu, C., Roth, D. A., Schaefer, T.,
Striegl, R. G., Wickland, K. P., and Zhang, T.: Permafrost stores a globally
significant amount of mercury, Geophys. Res. Lett., 45, 1463–1471, https://doi.org/10.1002/2017gl075571,
2018.
Schuur, E., McGuire, A., Schädel, C., Grosse, G., Harden, J., Hayes, D.,
Hugelius, G., Koven, C., Kuhry, P., Lawrence, D., Natali, S., Olefeldt, D.,
Romanovsky, V., Schaefer, K., Turetsky, M., Treat, C., and Vonk, J.: Climate
change and the permafrost carbon feedback, Nature, 520, 171–179,
https://doi.org/10.1038/nature14338, 2015.
Sinitsyn, A., Depina, I., Bekele, Y. W., Christensen, S. O., and van
Oosterhout, D.: SINTEF Open: Development of coastal infrastructure in cold
climate. Summary Guideline, SFI SAMCoT report, SINTEF akademisk forlag,
ISBN 978-82-536-1676-6, 2020.
Smith, L. C., Sheng, Y., MacDonald, G. M., and Hinzman, L. D.: Disappearing
Arctic Lakes, Science, 308, 1429–1429, https://doi.org/10.1126/science.1108142,
2005.
St. Jacques, J.-M. S. and Sauchyn, D. J.: Increasing winter baseflow and
mean annual streamflow from possible permafrost thawing in the Northwest
Territories, Canada, Geophys. Res. Lett., 36, L011401, https://doi.org/10.1029/2008gl035822,
2009.
Tank, S. E., Vonk, J. E., Walvoord, M. A., McClelland, J. W., Laurion, I., and Abbott, B. W.: Landscape matters: Predicting the biogeochemical effects
of permafrost thaw on aquatic networks with a state factor approach, Permafrost and Periglacial
Processes, 31, 358–370, https://doi.org/10.1002/ppp.2057, 2020.
Vaughan, D. G., Comiso, J. C., Allison I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T, Paul, F., Ren, J. Rignot, E., Solomina, O., Steffen, K., and Zhang, T.: Observations: Cryosphere, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom, 2013.
Vonk, J. E. and Gustafsson, Ö.: Permafrost-carbon complexities, Nat.
Geosci., 6, 675–676, https://doi.org/10.1038/ngeo1937, 2013.
Vonk, J. E., Tank, S. E., and Walvoord, M. A.: Integrating hydrology and
biogeochemistry across frozen landscapes, Nat. Commun., 10, 5377,
https://doi.org/10.1038/s41467-019-13361-5, 2019.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic Impacts of Thawing
Permafrost – A Review, Vadose Zone J., 15, https://doi.org/10.2136/vzj2016.01.0010,
2016.
Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream
discharge from permafrost thawing in the Yukon River basin: Potential
impacts on lateral export of carbon and nitrogen, Geophys. Res. Lett., 34, L12402,
https://doi.org/10.1029/2007gl030216, 2007.
Walvoord, M. A., Voss, C. I., Ebel, B. A., and Minsley, B. J.: Development of
perennial thaw zones in boreal hillslopes enhances potential mobilization of
permafrost carbon, Environ. Res. Lett., 14, 015003,
https://doi.org/10.1088/1748-9326/aaf0cc, 2019.
Williams, J. R. and Everdingen, R. O. V.: Groundwater investigations in
permafrost regions of North America: a review, in: Permafrost: North American
Contribution to the Second International Conference, pp. 435–446, National
Academy of Sciences, Washington, 1973.
Short summary
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We provide evidence of how changing groundwater systems underpin surface changes in the north, and we argue for research and inclusion of cryohydrogeology, the study of groundwater in cold regions.
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We...