Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3495-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3495-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstruction of annual accumulation rate on firn, synchronising H2O2 concentration data with an estimated temperature record
Jandyr M. Travassos
Graduate Program in Geophysics, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa n, 01, Belém, Pará, Brazil
Graduate Program in Geology, Universidade Federal Rural do Rio de Janeiro (UFRRJ), 465 km 7, Seropédica, Brazil
Mariusz Potocki
Climate Change Institute, University of Maine, Orono, ME 04469, USA
School of Earth and Climate Sciences, University of Maine, Orono, ME 04469, USA
Jefferson C. Simões
Centro Polar e Climático, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
Climate Change Institute, University of Maine, Orono, ME 04469, USA
Related authors
No articles found.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Andressa Marcher, Jefferson Cardia Simões, Ronaldo Torma Bernardo, Francisco Eliseu Aquino, Isaías Ullmann Thoen, Pedro Teixeira Valente, and Venisse Schossler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-161, https://doi.org/10.5194/tc-2022-161, 2022
Publication in TC not foreseen
Short summary
Short summary
We investigated the stable water isotopes and snow accumulation records from the upper reaches of the Weddell Sea sector. Our findings revealed that these records are strongly influenced by large-scale modes of climate variability (SAM and ENSO) and synoptic scale events (both extreme precipitation and wind events). They also provide valuable information to understand mass balance on the basin scale in this sector.
Rafael S. dos Reis, Rafael da Rocha Ribeiro, Barbara Delmonte, Edson Ramirez, Norberto Dani, Paul A. Mayewski, and Jefferson C. Simões
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-186, https://doi.org/10.5194/tc-2021-186, 2021
Revised manuscript not accepted
Short summary
Short summary
The ice-core recovered in Peruvian Andes depicts the 12 years of dust particles data in snow accumulation. The seasonality of the dry and wet season, respectively, are represented by high and low dust concentration in profile. Our observations period show the differences between fine and larger particles concentrations over the years and their correlation with oceanic oscillations phenomena. Also, we introduce the link of the dust groupings with Madeira River in the Amazon basin context.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Short summary
Here we present the first-ever radar and ice core data from the sub-Antarctic islands of Bouvet Island, Peter I Island, and Young Island. These islands have the potential to record past climate in one of the most data-sparse regions on earth. Despite their northerly location, surface melting is generally low, and the upper layer of the ice at most sites is undisturbed. We estimate that a 100 m ice core drilled on these islands could capture climate over the past 100–200 years.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-129, https://doi.org/10.5194/cp-2020-129, 2020
Manuscript not accepted for further review
Short summary
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.
Luciano Marquetto, Susan Kaspari, and Jefferson Cardia Simões
The Cryosphere, 14, 1537–1554, https://doi.org/10.5194/tc-14-1537-2020, https://doi.org/10.5194/tc-14-1537-2020, 2020
Short summary
Short summary
Black carbon, commonly known as soot, is a particle originating from the incomplete combustion of fossil fuels and biomass burning that plays an important role in the climatic system. In this work, we analyzed black carbon from an Antarctic ice core spanning 1968–2015 and observed very low concentrations of this particle in the snow, lower than previous works in West Antarctica. We suggest that black carbon transport to East Antarctica is different from its transport to West Antarctica.
Thiago Dias dos Santos, Mathieu Morlighem, Hélène Seroussi, Philippe Remy Bernard Devloo, and Jefferson Cardia Simões
Geosci. Model Dev., 12, 215–232, https://doi.org/10.5194/gmd-12-215-2019, https://doi.org/10.5194/gmd-12-215-2019, 2019
Short summary
Short summary
The reduction of numerical errors in ice sheet modeling increases the results' accuracy reliability. We improve numerical accuracy by better capturing grounding line dynamics, while maintaining a low computational cost. We implement an adaptive mesh refinement (AMR) technique in the Ice Sheet System Model and compare AMR simulations with uniformly refined meshes. Our results show that the computational time with AMR is significantly shorter than for uniformly refined meshes for a given accuracy.
Franciele Schwanck, Jefferson C. Simões, Michael Handley, Paul A. Mayewski, Jeffrey D. Auger, Ronaldo T. Bernardo, and Francisco E. Aquino
The Cryosphere, 11, 1537–1552, https://doi.org/10.5194/tc-11-1537-2017, https://doi.org/10.5194/tc-11-1537-2017, 2017
Short summary
Short summary
The West Antarctic Ice Sheet (WAIS) is more susceptible to marine influences than the East Antarctica Ice Sheet (EAIS). During recent decades, rapid changes have occurred in the WAIS sector, including flow velocity acceleration, retraction of ice streams, and mass loss. In this study, we use an ice core located near the Pine Island Glacier ice divide to reconstruct mineral dust and marine aerosol transport and the influence of climate variables on the elemental concentration.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Related subject area
Discipline: Glaciers | Subject: Paleoclimate
Four North American glaciers advanced past their modern positions thousands of years apart in the Holocene
The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming
Andrew G. Jones, Shaun A. Marcott, Andrew L. Gorin, Tori M. Kennedy, Jeremy D. Shakun, Brent M. Goehring, Brian Menounos, Douglas H. Clark, Matias Romero, and Marc W. Caffee
The Cryosphere, 17, 5459–5475, https://doi.org/10.5194/tc-17-5459-2023, https://doi.org/10.5194/tc-17-5459-2023, 2023
Short summary
Short summary
Mountain glaciers today are fractions of their sizes 140 years ago, but how do these sizes compare to the past 11,000 years? We find that four glaciers in the United States and Canada have reversed a long-term trend of growth and retreated to positions last occupied thousands of years ago. Notably, each glacier occupies a unique position relative to its long-term history. We hypothesize that unequal modern retreat has caused the glaciers to be out of sync relative to their Holocene histories.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Cited articles
Capron, E., Landais, A., Lemieux-Dudon, B., Schilt, A., Masson-Delmotte, V.,
Buiron, D., Chappellaz, J., Dahl-Jensen, D., Johnsen, S., Leuenberger, M.,
et al.: Synchronising EDML and NorthGRIP ice cores using δ18O of
atmospheric oxygen (δ18O atm) and CH4 measurements over MIS5
(80–123 kyr), Quaternary Sci. Rev., 29, 222–234, 2010. a
Chaovalitwongse, W. and Pardalos, P.: On the time series support vector machine
using dynamic time warping kernel for brain activity classification,
Cybern. Syst. Anal., 44, 125–138, 2008. a
Cleveland, W. S. and Grosse, E.: Computational methods for local regression,
Stat. Comput., 1, 47–62, 1991. a
Criel, J. and Tsiporkova, E.: Gene Time Expression Warper: a tool for
alignment, template matching and visualization of gene expression time
series, Bioinformatics, 22, 251–252, 2005. a
Frey, M. M., Bales, R. C., and McConnell, J. R.: Climate sensitivity of the
century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from
West Antarctica, J. Geophys. Res.-Atmos., 111, D21301,
https://doi.org/10.1029/2005JD006816, 2006. a, b, c
Gilbert, J. M., Rybchenko, S. I., Hofe, R., Ell, S. R., Fagan, M. J., Moore,
R. K., and Green, P.: Isolated word recognition of silent speech using
magnetic implants and sensors, Med. Eng. Phys., 32,
1189–1197, 2010. a
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012. a
Herron, M. M. and Langway Jr., C. C.: Firn densification: an empirical model,
J. Glaciol., 25, 373–385, 1980. a
Hutterli, M. A., McConnell, J. R., Bales, R. C., and Stewart, R. W.:
Sensitivity of hydrogen peroxide (H2O2) and formaldehyde (HCHO) preservation
in snow to changing environmental conditions: Implications for ice core
records, J. Geophys. Res.-Atmos., 108, 4023,
https://doi.org/10.1029/2002JD002528, 2003. a
Jayadevan, R., Kolhe, S., and Patil, P.: Dynamic time warping based static hand
printed signature verification, Journal of Pattern Recognition Research, 1,
52–65, available at: https://api.semanticscholar.org/CorpusID:9609636 (last access: 17 July 2021), 2009. a
Latecki, L. J., Megalooikonomou, V., Wang, Q., and Yu, D.: An elastic partial
shape matching technique, Pattern Recogn., 40, 3069–3080, 2007. a
Legrand, B., Chang, C., Ong, S., Neo, S.-Y., and Palanisamy, N.: Chromosome
classification using dynamic time warping, Pattern Recogn. Lett., 29,
215–222, 2008. a
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011. a
Martins, S. and Travassos, J.: daily_temperature.asc, figshare [data set], https://doi.org/10.6084/m9.figshare.14946177.v1, 2021. a
Masson-Delmotte, V., Dreyfus, G., Braconnot, P., Johnsen, S., Jouzel, J., Kageyama, M., Landais, A., Loutre, M.-F., Nouet, J., Parrenin, F., Raynaud, D., Stenni, B., and Tuenter, E.: Past temperature reconstructions from deep ice cores: relevance for future climate change, Clim. Past, 2, 145–165, https://doi.org/10.5194/cp-2-145-2006, 2006. a
Nye, J.: Correction factor for accumulation measured by the thickness of the
annual layers in an ice sheet, J. Glaciol., 4, 785–788, 1963. a
Passalacqua, O., Gagliardini, O., Parrenin, F., Todd, J., Gillet-Chaulet, F., and Ritz, C.: Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome, Geosci. Model Dev., 9, 2301–2313, https://doi.org/10.5194/gmd-9-2301-2016, 2016. a
Potocki, M., Mayewski, P. A., Kurbatov, A. V., Simoes, J. C., Dixon, D. A.,
Goodwin, I., Carleton, A. M., Handley, M. J., Jaña, R., and Korotkikh,
E. V.: Recent increase in Antarctic Peninsula ice core uranium
concentrations, Atmos. Environ., 140, 381–385, https://doi.org/10.1016/j.atmosenv.2016.06.010, 2016. a, b, c, d
Rolland, C.: Spatial and seasonal variations of air temperature lapse rates in
Alpine regions, J. Climate, 16, 1032–1046, 2003. a
Steig, E. J., Mayewski, P. A., Dixon, D. A., Kaspari, S. D., Frey, M. M.,
Schneider, D. P., Arcone, S. A., Hamilton, G. S., Spikes, V., Albert, M.,
Meese, D., Gow, A. J., Shuman, C. A., White, J. W. C., Sneed, S., Flaherty, J., and Wumkes, M.: High-resolution ice cores from US ITASE (West Antarctica):
Development and validation of chronologies and determination of precision and
accuracy, Ann. Glaciol., 41, 77–84, https://doi.org/10.3189/172756405781813311, 2005. a
Thomas, E. R., Marshall, G. J., and McConnell, J. R.: A doubling in snow
accumulation in the western Antarctic Peninsula since 1850, Geophys.
Res. Lett., 35, L01706, https://doi.org/10.1029/2007GL032529, 2008. a
Thomas, E. R., van Wessem, J. M., Roberts, J., Isaksson, E., Schlosser, E., Fudge, T. J., Vallelonga, P., Medley, B., Lenaerts, J., Bertler, N., van den Broeke, M. R., Dixon, D. A., Frezzotti, M., Stenni, B., Curran, M., and Ekaykin, A. A.: Regional Antarctic snow accumulation over the past 1000 years, Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, 2017. a
Thompson, L., Peel, D., Mosley-Thompson, E., Mulvaney, R., Dal, J., Lin, P.,
Davis, M., and Raymond, C.: Climate since AD 1510 on Dyer Plateau, Antarctic
Peninsula: Evidence for recent climate change, Ann. Glaciol., 20,
420–426, 1994. a
Travassos, J. M., Martins, S. S., Simões, J. C., and Mansur, W. J.: Radar
diffraction horizons in snow and firn due to a surficial vertical transfer of
mass, Brazilian Journal of Geophysics, 36, 507–518, 2018. a
Verbesselt, J., Hyndman, R., Newnham, G., and Culvenor, D.: Detecting trend and
seasonal changes in satellite image time series, Remote Sens.
Environ., 114, 106–115, 2010. a
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen,
M.-L., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.: A synchronized dating of three Greenland
ice cores throughout the Holocene, J. Geophys. Res.-Atmos., 111, D13102, https://doi.org/10.1029/2005JD006921, 2006. a, b
Wang, K. and Gasser, T.: Alignment of curves by dynamic time warping, Ann. Stat., 25, 1251–1276, https://doi.org/10.1214/aos/1069362747, 1997.
a
Winstrup, M., Svensson, A. M., Rasmussen, S. O., Winther, O., Steig, E. J., and Axelrod, A. E.: An automated approach for annual layer counting in ice cores, Clim. Past, 8, 1881–1895, https://doi.org/10.5194/cp-8-1881-2012, 2012. a
Xue, Z., Du, P., and Feng, L.: Phenology-driven land cover classification and
trend analysis based on long-term remote sensing image series, IEEE J.
Sel. Top. Appl., 7,
1142–1156, 2014. a
Short summary
This paper gives a timescale estimation and the yearly accumulation rate from ice cores encompassing the entire firn layer at the Detroit Plateau, the Antarctic Peninsula, through a non-linear pairing transformation of high-resolution H2O2 concentration data to a local temperature time series. An 11-year moving average of the yearly ice accumulation rate may suggest an increase in the span of 30 years, with an average of 2.5–2.8 m w.e./year.
This paper gives a timescale estimation and the yearly accumulation rate from ice cores...